127 research outputs found

    Exact-exchange density-functional calculations for noble-gas solids

    Full text link
    The electronic structure of noble-gas solids is calculated within density functional theory's exact-exchange method (EXX) and compared with the results from the local-density approximation (LDA). It is shown that the EXX method does not reproduce the fundamental energy gaps as well as has been reported for semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials reproduce about 80 % of the experimental optical gaps. The structural properties of noble-gas solids are described by the EXX method as poorly as by the LDA one. This is due to missing Van der Waals interactions in both, LDA and EXX functionals.Comment: 4 Fig

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Plasmonic excitations in noble metals: The case of Ag

    Get PDF
    The delicate interplay between plasmonic excitations and interband transitions in noble metals is described by means of {\it ab initio} calculations and a simple model in which the conduction electron plasmon is coupled to the continuum of electron-hole pairs. Band structure effects, specially the energy at which the excitation of the dd-like bands takes place, determine the existence of a subthreshold plasmonic mode, which manifests itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not observed in the other noble metals. Here, this different behavior is also analyzed and an explanation is provided.Comment: 9 pages, 8 figure

    Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    Full text link
    On the basis of a new ab initio, all-electron response scheme, formulated within time-dependent density-functional theory, we solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d-symmetry. While the effect of many-particle correlations is small, the correlations built into the "final-state" -d-bands play an important, and novel, role ---which is related to the phase-space complexity associated with these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik

    The GW space-time method for the self-energy of large systems

    Get PDF
    We present a detailed account of the GW space-time method. The method increases the size of systems whose electronic structure can be studied with a computational implementation of Hedin's GW approximation. At the heart of the method is a representation of the Green function G and the screened Coulomb interaction W in the real-space and imaginary-time domain, which allows a more efficient computation of the self-energy approximation Sigma = iGW. For intermediate steps we freely change between representations in real and reciprocal space on the one hand, and imaginary time and imaginary energy on the other, using fast Fourier transforms. The power of the method is demonstrated using the example of Si with artificially increased unit cell sizes. (C) 1999 Elsevier Science B.V

    Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon

    Full text link
    Motivated by the negative thermal expansion observed for silicon between 20 K and 120 K, we present first an ab initio study of the volume dependence of interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and of the associated mode Gruneisen parameters. The influence of successive nearest neighbors shells is analysed. Analytical formulas, taking into account interactions up to second nearest neighbors, are developped for phonon frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen parameters. We also analyze the volume and pressure dependence of various thermodynamic properties (specific heat, bulk modulus, thermal expansion), and point out the effect of the negative mode Gruneisen parameters of the acoustic branches on these properties. Finally, we present the evolution of the mean square atomic displacement and of the atomic temperature factor with the temperature for different volumes, for which the anomalous effects are even greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys. Rev.

    Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation

    Full text link
    We study the effect of semicore states on the self-energy corrections and electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a plane-wave basis. For these materials, we generate {\it ab initio} pseudopotentials treating as valence states the outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudopotential calculations. The resulting direct and indirect energy gaps are compared with experimental measurements and with previous calculations based on pseudopotential and ``all-electron'' approaches. Our results show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well accounted for in the standard valence-only pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
    • …
    corecore