We study the effect of semicore states on the self-energy corrections and
electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are
computed within the GW approach, and electronic states are expanded in a
plane-wave basis. For these materials, we generate {\it ab initio}
pseudopotentials treating as valence states the outermost two shells of atomic
orbitals, rather than only the outermost valence shell as in traditional
pseudopotential calculations. The resulting direct and indirect energy gaps are
compared with experimental measurements and with previous calculations based on
pseudopotential and ``all-electron'' approaches. Our results show that,
contrary to recent claims, self-energy effects due to semicore states on the
band gaps can be well accounted for in the standard valence-only
pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.