79 research outputs found

    Cardiac Time Intervals by Tissue Doppler Imaging M-Mode:Normal Values and Association with Established Echocardiographic and Invasive Measures of Systolic and Diastolic Function

    Get PDF
    PURPOSE:To define normal values of the cardiac time intervals obtained by tissue Doppler imaging (TDI) M-mode through the mitral valve (MV). Furthermore, to evaluate the association of the myocardial performance index (MPI) obtained by TDI M-mode (MPITDI) and the conventional method of obtaining MPI (MPIConv), with established echocardiographic and invasive measures of systolic and diastolic function. METHODS:In a large community based population study (n = 974), where all are free of any cardiovascular disease and cardiovascular risk factors, cardiac time intervals, including isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET) were obtained by TDI M-mode through the MV. IVCT/ET, IVRT/ET and the MPI ((IVRT+IVCT)/ET) were calculated. We also included a validation population (n = 44) of patients who underwent left heart catheterization and had the MPITDI and MPIConv measured. RESULTS:IVRT, IVRT/ET and MPI all increased significantly with increasing age in both genders (p<0.001 for all). IVCT, ET, IVRT/ET, and MPI differed significantly between males and females, displaying that women, in general exhibit better cardiac function. MPITDI was significantly associated with invasive (dP/dt max) and echocardiographic measures of systolic (LVEF, global longitudinal strain and global strainrate s) and diastolic function (e', global strainrate e)(p<0.05 for all), whereas MPIConv was significantly associated with LVEF, e' and global strainrate e (p<0.05 for all). CONCLUSION:Normal values of cardiac time intervals differed between genders and deteriorated with increasing age. The MPITDI (but not MPIConv) is associated with most invasive and established echocardiographic measures of systolic and diastolic function

    Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction

    Get PDF
    Global longitudinal systolic strain (GLS) has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI). The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information.In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI), treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI) and two-dimensional strain echocardiography (2DSE).During a median-follow-up of 5.3 (IQR 2.5-6.1) years the primary endpoint (death, heart failure or a new MI) was reached by 145 (38.9%) patients. After adjustment for significant confounders (including conventional echocardiographic parameters) and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS) remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032). In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters).Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse outcome

    Potential role of conventional and speckle-tracking echocardiography in the screening of structural and functional cardiac abnormalities in elderly individuals:Baseline echocardiographic findings from the LOOP study

    Get PDF
    BACKGROUND: Elderly individuals occupy an increasing part of the general population. Conventional and speckle-tracking transthoracic echocardiography may help guide risk stratification in these individuals. The purpose of this study was to evaluate the potential utility of conventional and speckle-tracking echocardiography in the screening of cardiac abnormalities in the elderly population. METHODS: Two cohorts of elderly individuals (sample size: 1441 and 944) were analyzed, who were part of a randomized controlled clinical trial (LOOP study) and of an observational study (Copenhagen City Heart Study), recruiting participants from the general population >70 years of age with cardiovascular risk factors (arterial hypertension, diabetes mellitus, heart failure, or prior stroke) and sinus rhythm. Participants underwent a comprehensive transthoracic echocardiographic examination, including myocardial speckle tracking. Cardiac abnormalities were defined according to the ASE/EACVI guidelines. RESULTS: Structural cardiac abnormalities such as left ventricular (LV) remodeling, mitral annular calcification (MAC), and aortic valve sclerosis (with or without stenosis) were highly prevalent in the LOOP study (40%, 39%, and 27%, respectively). Moreover, a high prevalence of functional cardiac alterations such as LV diastolic dysfunction (LVDD), abnormal LV longitudinal systolic strain (GLS), and abnormal left atrial (LA) reservoir strain was present in the LOOP study (27%, 18%, and 9%, respectively). Likewise, the rate of LVDD, abnormal GLS, and abnormal LA reservoir strain was comparable in the validation sample from the Copenhagen City Heart Study. In line with these findings, subjects with LV remodeling, MAC, and aortic valve changes had a higher prevalence of LVDD, abnormal GLS, and abnormal LA reservoir strain than those without structural cardiac alterations. CONCLUSION: The findings of this study highlight the potential clinical utility of conventional and speckle-tracking echocardiography in the screening of structural and functional cardiac abnormalities in the elderly population. Further studies are warranted to determine the prognostic relevance of these findings

    Myocardial Work in Patients Hospitalized With COVID‐19:Relation to Biomarkers, COVID‐19 Severity, and All‐Cause Mortality

    Get PDF
    BACKGROUND: COVID‐19 infection has been hypothesized to affect left ventricular function; however, the underlying mechanisms and the association to clinical outcome are not understood. The global work index (GWI) is a novel echocardiographic measure of systolic function that may offer insights on cardiac dysfunction in COVID‐19. We hypothesized that GWI was associated with disease severity and all‐cause death in patients with COVID‐19. METHODS AND RESULTS: In a multicenter study of patients admitted with COVID‐19 (n=305), 249 underwent pressure‐strain loop analyses to quantify GWI at a median time of 4 days after admission. We examined the association of GWI to cardiac biomarkers (troponin and NT‐proBNP [N‐terminal pro‐B‐type natriuretic peptide]), disease severity (oxygen requirement and CRP [C‐reactive protein]), and all‐cause death. Patients with elevated troponin (n=71) exhibited significantly reduced GWI (1508 versus 1707 mm Hg%; P=0.018). A curvilinear association to NT‐proBNP was observed, with increasing NT‐proBNP once GWI decreased below 1446 mm Hg%. Moreover, GWI was significantly associated with a higher oxygen requirement (relative increase of 6% per 100–mm Hg% decrease). No association was observed with CRP. Of the 249 patients, 37 died during follow‐up (median, 58 days). In multivariable Cox regression, GWI was associated with all‐cause death (hazard ratio, 1.08 [95% CI, 1.01–1.15], per 100–mm Hg% decrease), but did not increase C‐statistics when added to clinical parameters. CONCLUSIONS: In patients admitted with COVID‐19, our findings indicate that NT‐proBNP and troponin may be associated with lower GWI, whereas CRP is not. GWI was independently associated with all‐cause death, but did not provide prognostic information beyond readily available clinical parameters. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04377035

    Multicentric Atrial Strain COmparison between Two Different Modalities: MASCOT HIT Study

    Get PDF
    Two methods are currently available for left atrial (LA) strain measurement by speckle tracking echocardiography, with two different reference timings for starting the analysis: QRS (QRS-LASr) and P wave (P-LASr). The aim of MASCOT HIT study was to define which of the two was more reproducible, more feasible, and less time consuming. In 26 expert centers, LA strain was analyzed by two different echocardiographers (young vs senior) in a blinded fashion. The study population included: healthy subjects, patients with arterial hypertension or aortic stenosis (LA pressure overload, group 2) and patients with mitral regurgitation or heart failure (LA volume–pressure overload, group 3). Difference between the inter-correlation coefficient (ICC) by the two echocardiographers using the two techniques, feasibility and analysis time of both methods were analyzed. A total of 938 subjects were included: 309 controls, 333 patients in group 2, and 296 patients in group 3. The ICC was comparable between QRS-LASr (0.93) and P-LASr (0.90). The young echocardiographers calculated QRS-LASr in 90% of cases, the expert ones in 95%. The feasibility of P-LASr was 85% by young echocardiographers and 88% by senior ones. QRS-LASr young median time was 110 s (interquartile range, IR, 78-149) vs senior 110 s (IR 78-155); for P-LASr, 120 s (IR 80-165) and 120 s (IR 90-161), respectively. LA strain was feasible in the majority of patients with similar reproducibility for both methods. QRS complex guaranteed a slightly higher feasibility and a lower time wasting compared to the use of P wave as the reference

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore