41 research outputs found

    Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5.

    Get PDF
    Current air quality standards for particulate matter (PM) use the PM mass concentration [PM with aerodynamic diameters ≤ 10 μm (PM(10)) or ≤ 2.5 μm (PM(2.5))] as a metric. It has been suggested that particles from combustion sources are more relevant to human health than are particles from other sources, but the impact of policies directed at reducing PM from combustion processes is usually relatively small when effects are estimated for a reduction in the total mass concentration

    Geological Field Trips

    Get PDF
    This field trip guide organized in the framework of the Goldschmidt Conference 2013, held in Florence from August 25 to 30, 2013, is here presented. The two-days field trip, shows some of the many geological, naturalistic and cultural features in the Fiorano area (Modena), in which history, geology and passion for Ferrari come together in a perfect marriage. The first excursion day is dedicated to visit the Natural Reserve of Salse di Nirano, where the mud volcanoes, produced by the cold mud, salt water and hydrocarbons - mainly methane- can be observed. The second day is devoted to visit the Ferrari Museum and goes on at the Spezzano Castle, hosting the Ceramics Museum. Clays are, in fact, abundant in the hilly margin, where they form badlands, characteristic narrow crests washed out by running waters. In the Castle there is also a Balsamic Vinegar producing Consortium, it’s a peculiar and typical product of Modena province. The itinerary ends with the tour to Enzo Ferrari’s Birthplace at Modena

    Targeted mitochondrial therapy using MitoQ shows equivalent renoprotection to angiotensin converting enzyme inhibition but no combined synergy in diabetes.

    Get PDF
    Mitochondrial dysfunction is a pathological mediator of diabetic kidney disease (DKD). Our objective was to test the mitochondrially targeted agent, MitoQ, alone and in combination with first line therapy for DKD. Intervention therapies (i) vehicle (D); (ii) MitoQ (DMitoQ;0.6 mg/kg/day); (iii) Ramipril (DRam;3 mg/kg/day) or (iv) combination (DCoAd) were administered to male diabetic db/db mice for 12 weeks (n = 11-13/group). Non-diabetic (C) db/m mice were followed concurrently. No therapy altered glycaemic control or body weight. By the study end, both monotherapies improved renal function, decreasing glomerular hyperfiltration and albuminuria. All therapies prevented tubulointerstitial collagen deposition, but glomerular mesangial expansion was unaffected. Renal cortical concentrations of ATP, ADP, AMP, cAMP, creatinine phosphate and ATP:AMP ratio were increased by diabetes and mostly decreased with therapy. A higher creatine phosphate:ATP ratio in diabetic kidney cortices, suggested a decrease in ATP consumption. Diabetes elevated glucose 6-phosphate, fructose 6-phosphate and oxidised (NAD+ and NADP+) and reduced (NADH) nicotinamide dinucleotides, which therapy decreased generally. Diabetes increased mitochondrial oxygen consumption (OCR) at complex II-IV. MitoQ further increased OCR but decreased ATP, suggesting mitochondrial uncoupling as its mechanism of action. MitoQ showed renoprotection equivalent to ramipril but no synergistic benefits of combining these agents were shown

    The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms

    Get PDF
    Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.National Institutes of Health (U.S.). National Institute of Environmental Health Sciences (Training Grant in Toxicology 5 T32 ES7020-37

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina

    No full text
    Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye
    corecore