12 research outputs found

    Embryonic development of selectively vulnerable neurons in Parkinson's disease

    Get PDF
    A specific set of brainstem nuclei are susceptible to degeneration in Parkinson’s disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson’s disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson’s disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson’s disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson’s disease

    Structural conserved moiety splitting of a stoichiometric matrix

    Get PDF
    Characterising biochemical reaction network structure in mathematical terms enables the inference of functional biochemical consequences from network structure with existing mathematical techniques and spurs the development of new mathematics that exploits the peculiarities of biochemical network structure. The structure of a biochemical network may be specified by reaction stoichiometry, that is, the relative quantities of each molecule produced and consumed in each reaction of the network. A biochemical network may also be specified at a higher level of resolution in terms of the internal structure of each molecule and how molecular structures are transformed by each reaction in a network. The stoichiometry for a set of reactions can be compiled into a stoichiometric matrix N is an element of Z(mxn), where each row corresponds to a molecule and each column corresponds to a reaction. We demonstrate that a stoichiometric matrix may be split into the sum of m - rank(N) moiety transition matrices, each of which corresponds to a subnetwork accessible to a structurally identifiable conserved moiety. The existence of this moiety matrix splitting is a property that distinguishes a stoichiometric matrix from an arbitrary rectangular matrix. (C) 2020 Elsevier Ltd. All rights reserved.Analytical BioScience

    LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide

    No full text
    Recent advances in metabolomics have enabled larger proportions of the human metabolome to be analyzed quantitatively. However, this usually requires the use of several chromatographic methods coupled to mass spectrometry to cover the wide range of polarity, acidity/basicity and concentration of metabolites. Chemical derivatization allows in principle a wide coverage in a single method, as it affects both the separation and the detection of metabolites: it increases retention, stabilizes the analytes and improves the sensitivity of the analytes. The majority of quantitative derivatization techniques for LC-MS in metabolomics react with amines, phenols and thiols; however, there are unfortunately very few methods that can target carboxylic acids at the same time, which contribute to a large proportion of the human metabolome. Here, we describe a derivatization technique which simultaneously labels carboxylic acids, thiols and amines using the reagent dimethylaminophenacyl bromide (DmPABr). We further improve the quantitation by employing isotope-coded derivatization (lCD), which uses internal standards derivatized with an isotopically-labelled reagent (DmPABr-D-6). We demonstrate the ability to measure and quantify 64 central carbon and energy-related metabolites including amino acids, N-acetylated amino acids, metabolites from the TCA cycle and pyruvate metabolism, acylcarnitines and medium-/long-chain fatty acids. To demonstrate the applicability of the analytical approach, we analyzed urine and SUIT-2 cells utilizing a 15-minute single UPLC-MS/MS method in positive ionization mode. SUIT-2 cells exposed to rotenone showed definitive changes in 28 out of the 64 metabolites, including metabolites from all 7 classes mentioned. By realizing the full potential of DmPABr to derivatize and quantify amines and thiols in addition to carboxylic acids, we extended the coverage of the metabolome, producing a strong platform that can be further applied to a variety of biological studies. (C) 2019 The Authors. Published by Elsevier B.V.Analytical BioScience

    Community-driven roadmap for integrated disease maps.

    No full text
    The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions

    Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    No full text
    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.National University of Ireland, Galway, Science Faculty Fellowship. I.T. was supported by NIH grant Grant 5R01GM057089-11.Deposited by bulk impor

    Phenotype-agnostic molecular subtyping of neurodegenerative disorders: the Cincinnati Cohort Biomarker Program (CCBP)

    No full text
    Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.Analytical BioScience
    corecore