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REVIEW ARTICLE OPEN

Embryonic development of selectively vulnerable neurons in
Parkinson’s disease
Miguel A. P. Oliveira 1, Rudi Balling1, Marten P. Smidt2 and Ronan M. T. Fleming 1

A specific set of brainstem nuclei are susceptible to degeneration in Parkinson’s disease. We hypothesise that neuronal vulnerability
reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is
mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of
the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage
for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson’s
disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the
development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain
transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to
degeneration in early Parkinson’s disease. Some transcription factors can even distinguish between differentially vulnerable nuclei
within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral
tegmental area. We do not suggest that Parkinson’s disease is a developmental disorder. In contrast, we consider identification of
shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic
features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors
should be completed for all neuronal populations vulnerable to degeneration in early Parkinson’s disease.

npj Parkinson’s Disease  (2017) 3:21 ; doi:10.1038/s41531-017-0022-4

INTRODUCTION
Parkinson’s disease (PD), symptoms and pathology
PD is a clinical syndrome, identified by a combination of
bradykinesia plus resting tremor or rigidity,1 that is histopatholo-
gically confirmed by identification of both degeneration and loss
of dopaminergic neurons (DN) within the substantia nigra pars
compacta (SNC).2 Neuronal degeneration is characterised by Lewy
pathology, which consists of intracellular protein aggregates that
co-identify with alpha-synuclein.3 The existence of a prodromal
phase to PD is supported epidemiologically4 by clinical observa-
tion of early non-motor symptoms5 and by evidence of extranigral
Lewy pathology associated with prodromal PD symptoms. The
onset of PD is hypothesised to be up to 20 years before
the occurrence of motor symptoms, with consistent and early
cell loss in the substantia nigra.6 In the later stages of PD, cell
loss and Lewy pathology is present in other brainstem nuclei7–10

but evidence of cell loss in prodromal PD has not yet been
reported.7, 11–13 Based on the distribution of Lewy pathology in
the brain, cardial and cutaneous autonomic nerves,6 a neuro-
pathological temporal staging scheme has been proposed for
PD.14–17 Six sequential Braak stages of Lewy pathology generally
seem to coincide with the onset or exacerbation of certain clinical
symptoms18 (Fig. 1).
Lewy pathology may reflect a compensatory response to

proteostatic stress,12, 19–25 but may also cause neuronal dysfunc-
tion,26 e.g., by disruption of axonal organelle transport.13 Lewy
pathology is also present in other synucleinopathies, e.g.,

dementia with Lewy Bodies and incidental Lewy Body disease.13

Despite variation in the association between Lewy pathology and
onset of clinical signs, in the majority of PD patients, non-motor
symptoms appear before motor symptoms in a manner consistent
with Braak’s neuropathological staging scheme. Prodromal (Braak
stages 1, 2) and early PD (Braak stage 3) is characterised by Lewy
pathology in a selective subset of brainstem nuclei (Fig. 1). This is
consistent with the conclusions of multiple independent studies
that have reported cell loss in many of the same brainstem nuclei,
albeit in late PD.7–10, 27 An anatomically specific and consistent
picture of cell loss combined with Lewy pathology provides
evidence that certain neuronal populations are selectively
vulnerable to degeneration in PD7, 11, 13 (Fig. 1).
Selectively vulnerable neurons share some phenotypic char-

acteristics, e.g., unmyelinated axons that have previously been
hypothesised to increase the risk of degeneration in PD.13

A combination of anatomical, morphological, physiological and
biochemical characteristics can be used to define the identity of a
neuronal population. Even within a single brainstem nucleus, only
certain neuronal populations, identifiable by detailed phenotypic
characterisation, may be selectively vulnerable to degeneration.
Therefore, comprehensive multimodal phenotypic characterisa-
tion of selectively vulnerable neurons in PD is required to further
elucidate the relationship between selective vulnerability and
shared neuronal phenotype.28

From an embryological perspective, mature cellular phenotype
is the cumulative result of a molecularly specified program that
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operates on a spatiotemporally evolving developmental lineage.
Phenotypically similar neuronal populations share certain aspects
of their developmental molecular specification program, spatio-
temporal proximity, or both. Therefore, in this review we
synthesise the literature on the spatiotemporal developmental
lineage position and transcription factor specification of a set of
neuronal populations with clear evidence of selective vulnerability
to degeneration in prodromal or early PD (Fig. 2). Our objective is
to assess whether selectively vulnerable neurons share similar
developmental molecular specification programs, spatiotemporal
proximity or both. We chose to restrict our focus to nuclei
associated with prodromal evidence of Lewy pathology, evidence
of neuronal cell loss in later stages of PD and sufficient
developmental literature (e.g., genetic fate mapping). Specifically,
we focus on neuronal populations of the dorsal motor nucleus of
the vagus (10N), locus coeruleus (LC), upper raphe nuclei (PnRa),
lower raphe nuclei (MoRa) and SNC. We summarise (and detail in
Supplementary 1) the known phenotypic characteristics specifying
the identity of each of the aforementioned mature neuronal
populations. For each mature population, we review salient
aspects of its developmental lineage and summarise the main
transcription factors required for general specification of the
corresponding mitotic progenitor, postmitotic progenitor and
mature neuron. Where literature permits, we also distinguish
between neuronal subtypes within each of these populations
based on the origin of the corresponding progenitors and on
variations to general specification programs, especially when

subtypes are associated with differential vulnerability. We conclude
with a discussion of the developmental features that are shared
between precursors of vulnerable neuronal populations. This
developmental perspective compliments previous efforts to
understand the phenotypic characteristics that are shared between
selectively vulnerable mature neuronal populations13 (Fig. 2).

Neuronal identity of vulnerable populations
Neuronal identity and its cellular and molecular phenotypic
specification is mostly encoded by a profile of transcription factors,
expressed by ancestral progenitors and by postmitotic neurons.29, 30

These transcription factors are expressed early in the developing
brain, downstream of specific developmental inductions, and are
responsible for the gradual fate restriction of the embryonic pool of
pluripotent stem cells. The enormous variety of neuronal popula-
tions arises from combinatorial induction that is specific to each
particular location within the brain, where subtle inductive
differences generate different neuronal populations.29 Lineage
tracing studies provide a powerful means to understand the
properties of mature populations, their development, homoeostasis
and disease vulnerability, especially when combined with experi-
mental manipulation of signals regulating cell-fate decisions.31

Phenotypic characteristics are shared between vulnerable popula-
tions. It has been hypothesised that selectively vulnerable
neurons share a set of common phenotypic characteristics leading
to an increased risk of degeneration in PD.13 These characteristics,

Fig. 1 Clinical manifestations,225–228 brainstem nuclei, Lewy pathology and cell loss in Parkinson’s disease (PD). Nuclei with evidence cell
loss in late PD (red) are distinguished from those with evidence for Lewy pathology alone (black). The dorsal motor nucleus of the
vagus (10N)7, 8, 18, 229 and the intermediate reticular zone (IRt) of the medullary reticular formation18, 230 are among the earliest brainstem
populations with Lewy pathology in PD (Braak stage 1). Located outside the brainstem, both olfactory bulb (OB) and the anterior olfactory
nucleus (AON) may also show Lewy pathology at this early stage. Subsequently in Braak stage 2, Lewy pathology is found within three main
nuclei: the locus coeruleus (LC),9, 10 the lower raphe nuclei (MoRa)18, 229 and the gigantically reticular nuclei (GiRt) of the medullary reticular
formation.18 In Braak stage 3, together with the characteristic motor symptoms (extrapyramidal changes) and degeneration of the SNC,18, 27, 229

the upper raphe nuclei (PnRa), located in the pons, also presents with Lewy pathology. In Stage 3, multiple other nuclei of the midbrain
tegmentum show Lewy pathology, including the pedunculopontine tegmental nucleus (PTg),18 the paranigral nucleus (PaN),18 the pigmented
parabrachial nucleus (PBP)18 and the Edinger Wesphal nucleus (EW).18 However, only neuronal cell loss of the SNC is widely considered
specific for PD (Supplementary 1). (Figure adapted from ref. 231 with brain ontology according to the Human brain reference atlas of the Allen
Brain Atlas.142)
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which include neurotransmission, electrophysiology, morphology
and connectivity, do seem to be consistent with age being the
single largest risk factor in PD.13 Regarding neurotransmission, the
presence of high levels of cytosolic monoamines is hypothesised
to underlie selective degeneration13, 32 since these populations
also generally include a catecholamine-derived neuromelanin
pigment in primates13, 33 (Fig. 3 and Supplementary 1 and 2).
Electrophysiological characteristics associated with increased risk
include autonomous activity, broad action potentials and a low
intrinsic calcium buffering capacity.13 On morphology and
connectivity, vulnerable populations are generally characterised
as having long, poorly myelinated, highly branched axons and
terminal fields.13

Currently, the majority of genes or expression signatures used
in the biochemical characterisation of neuronal populations are
related to their neurotransmitter identity (Fig. 3 and Supplemen-
tary 1 and 2). However, this characterisation only covers the ability
to produce, secrete and re-uptake specific neurotransmitters,34, 35

which is not sufficient to completely specify the neuronal
identity.34 Some neurons co-release more than one neurotrans-
mitter36, 37 and neuronal plasticity enables neurons to switch
between neurotransmitters.34, 38–40 Therefore, a more inclusive
characterisation of neuronal identity, besides neurotransmission
alone, is required28 (Supplementary 1).
Developmental programs that specify neurotransmitter pheno-

types are well studied aspects of neuronal identity,28, 29, 41

particularly with respect to terminal differentiation of monoami-
nergic neurons (noradrenergic, dopaminergic and serotonergic).34

Neuronal transcriptomic analysis is also a powerful way to
characterise neuronal identity,42–44 e.g., transcriptome sequencing
is quantitative, and highly reproducible.28, 45 However, the
correlation between transcript and protein levels is generally too
weak for accurate quantitative inference of one from the other.46

Targeted quantification of key developmental proteins and
confirmation of their role in specification of multiple nerve cell
functions47, 48 can be used to compliment genome-scale
measurements and lead to a more robust characterisation of
neuronal identity.49 By inferring cell-type-specific function from

developmental programs and expression profiles, one can also
assess the cell-type specificity of functional attributes, derived
from parallel morphological and electrophysiological studies.28

RESULTS
Development of vulnerable brainstem populations
In the past two decades, substantial progress in developmental
neuroscience has uncovered a large set of extracellular signals and
transcriptional regulators that control the development and
maturation of different types of neurons. However, the develop-
mental program is not yet fully understood for each and every
neuronal population. In order to better understand the generation
of different neuronal populations, it is important to study the
mechanisms behind the maintenance of infinite self-renewal
capacity in stem cells (unrestricted fate potential) and the
mechanisms responsible for lineage commitment during differ-
entiation.50 The final neuronal phenotype comprises generic pan
neuronal characteristics and more specific characteristics, such as
origin and termination of axonal projections.51

Neurons originate from multipotent stem cells in the neural
plate (Supplementary 3.1) that continuously limit their fate and
generate restricted mitotic progenitors that, in a sequential order,
give rise to neuronal and glial progenitors.52–54 Neuronal
differentiation occurs at different embryonic stages (E) and within
different neuromeric segments of the early brain (prosomeres P3-
1, mesomeres M1-2 and rhombomeres R1-8) (Fig. 4). For each
neuromere-specific neuronal progenitor, the induction of a
specific neuronal fate is controlled in a context-dependent
manner by a combination of intrinsic factors and extrinsic
signalling molecules, both of which act as regulators of neuronal
differentiation52–55 (Supplementary 3.2). Specific intrinsic factors
and inductive combinations result in the upregulation (or down-
regulation) of certain genes, mostly transcription factors, which
are required to be active (resp. inactive) to ensure lineage
commitment and generation of specific neuronal fates.50 Devel-
opmental transcription factors can either be transiently or

Fig. 2 Hypothesis: neurons selectively vulnerable to degeneration in PD share similarities in their cellular and molecular developmental
programs. Vulnerable neuronal populations share certain identifiable phenotypic characteristics. Mature neuronal identity is largely the result
of a developmental program, that is specific to each cell type. By comparing and contrasting the cellular developmental lineage and
requirement for absence or presence of specific developmental transcription factors, we can discover shared developmental similarities of
neurons selectively vulnerable in early PD
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constitutively expressed during development, and still be
individually required for fate restriction and the generation of
specific mature populations.
Within each neuromere, an initial set of active genes, activated

before neurogenesis, confers an intrinsic segmental identity to the
corresponding progenitors (Fig. 4), which is inherited or diversified
during neuronal induction by extrinsic signals, especially during
terminal differentiation56 (Fig. 4d). An anatomically defined
nucleus may have different neuronal subtypes with differences
that can be traced back to the neuromeric origin of the
corresponding progenitor. For example, genetic fate mapping of
raphe nuclei has established that different serotonergic neuronal
subtypes arise from separate rhombomeres and from variations of
the general serotonergic specification program.44, 48, 51, 57–62 The
same developmental principle also applies to other types of
neuron, e.g., noradrenergic63 and visceromotor neurons,64, 65

where nuclear subtype specification has also been associated with
neuromere-specific transcription factors and variations of the
general specification program for each type of neuron. For
mesodiencephalic dopaminergic populations66–78 mediolateral
progenitor positioning has a similar effect.

Visceromotor populations of the dorsal motor nucleus of the
vagus. Visceromotor neurons are a subset of cranial motor
neurons that project from multiple brainstem nuclei, including the
10N, towards internal organs, like lungs, heart and vicera. The 10N
visceromotor population project their axons to the viscera, via the
vagus nerve (Supplementary 1.1).

Progenitors of visceromotor neurons Multiple subsets of viscer-
omotor neurons are generated throughout brainstem, except

R1.64, 79 These subsets originate from neuromere-derived basal
p3 progenitors (p3 or pMNv), which bilaterally flank the floor
plate.64, 65, 80 These progenitors are also common to both
branchiomotor81 and serotonergic populations.57, 82 The p3 pool
of progenitors is generated after an anteroposterior (AP)-graded
retinoic acid (RA) signalling, which confers multiple rhombomeric
identities, specified by a combination of Hox genes65 and a ventral
SHH signalling, which is necessary to impose a specifically motor
fate64, 83 (Fig. 4d and Supplementary tables 1, 2).

General specification program of visceromotor neurons The
general specification program of visceromotor neurons (and
branchiomotor neurons) begins with the acquisition of the
correct p3 progenitor identity and neurogenesis around E9.5
(Embryonic day 9.5)57, 82 (Fig. 4d and Supplementary table 1-2).
Visceromotor neurons require simultaneous expression of Nkx2-2
and Nkx2-9.64, 65, 81, 84 Nkx6-1 and Nkx6-2 are also expressed at this
stage but this expression is not necessary for specification, despite
their importance in repressing alternative interneuronal fates and
addressing migration and pathfinding.64, 65

Phox2b is expressed earlier than Phox2a (not required) and
Phox2b expression is required for visceromotor specification,57

since Phox2b-mutant mice are depleted of all visceromotor and
branchiomotor neurons.85

In order to generate a motor neuron phenotype, p3 progenitors
require low or absent Foxa2 expression.57 From E10.5 onwards,
and within the rhombomeres R2-3 and R5-8, some p3 basal
progenitors switch their visceromotor fate towards serotonergic,
which coincides with the up-regulation of Foxa2 and the down-
regulation of Nkx2-9 and Phox2b.57, 82

Fig. 3 Neurotransmitter identity (adapted from ref. 232). Multiple transmitters and transmitter-like substances have been studied in PD and it
is clear that neurons releasing neurotransmitters other than dopamine (DA) are also susceptible to neurodegeneration.227 These transmitters
include the monoamines serotonin (5-HT) and noradrenaline (NA) and the neurotransmitters acetylcholine (ACh). In catecholaminergic
neurons (dopaminergic, noradrenergic and adrenergic), the neurotransmitter is synthesised from the amino acid tyrosine (Tyr) in a common
biosynthetic pathway.232 Mesodiencephalic DN of the SNC, together with the noradrenergic neurons of the LC, require the expression of
tyrosine hydroxylase (TH) and amino acid decarboxylase (DDC). As opposed to DN, noradrenergic populations further require the expression
of dopamine beta-hydroxylase (DBH), which converts DA into noradrenaline. Adrenergic neurons, in turn, also require the expression of
phenylethanolamine-N-methyl-transferase (PNMT), which converts noradrenaline into adrenaline. On the other hand, although serotonergic
neurons from the raphe nucleus synthesise 5-HT through the hydroxylation of tryptophan, a reaction catalysed by tryptophan hydroxylase
(TPH), they also require the expression of DDC.232 In neurotransmitter packing, both catecholaminergic and serotonergic neurons require the
same vesicular monoamine transporters, SLC18A1/2.232 The transporter responsible for the re-uptake of neurotransmitters from the synaptic
cleft is specific for each population. Serotonergic neurons require the transporter SLC6A4, DN require SLC6A3 and noradrenergic neurons
require SLC6A2. For neurotransmitter degradation, the catecholaminergic neurons require catechol-O-methyl transferase (COMT), monoamine
oxidase (MAO) and aldehyde dehydrogenase (ALDH), while the serotonergic neurons only require MAO and ALDH.232 Cholinergic neurons
secrete acetylcholine (ACh), which is synthesised by the choline acetyltransferase (CHAT) from acetyl-CoA and choline (Chol). In cholinergic
neurons from the 10N, ACh is packed into synaptic vesicles by an energy-dependent process that involves the SLC18A3. This vesicular ACh is
released in the synaptic cleft and is rapidly converted into Chol, by the acetylcholinesterase (ACHE), which then is transported intracellularly
by SLC5A7.227, 233 (also see Supplementary 2)
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In the visceromotor specification program, Ascl1 is expressed
but not required.86 Post-mitotic motor neurons require the
expression of Isl1,65, 87, 88 and Tbx20 is only expressed within
branchiomotor and visceromotor neurons,65, 89 like the 10N
visceromotor neurons. Both Lhx3/4 are not expressed in the 10N
visceral motor neurons, since they are key determinants of the
ventral pathway in motor neurons and this population has a dorsal
orientation of their axonal projections.65, 90 Developing viscer-
omotor neurons do not express genes characteristic of dorsal
progenitor sub-types, such as Dbx1/291 and Irx3.92 Also, their
specification is not dependent on the somatic motor neuron
markers Pax6,65, 93 Mnx1,65, 94 Olig2,65, 92 or Isl2.65, 87, 88

Subtype specification program of visceromotor neurons In early
PD, Lewy pathology,7, 11 but not cell loss, has been reported in the
inferior salivatory nucleus (IS), which is adjacent to the 10N, and
projects visceromotor neurons within the glossopharyngeal nerve.
In contrast, Lewy pathology is more pronounced and is
consistently observed in the 10N.11 Visceromotor neurons from
the IS and 10N nuclei both originate from basal p3 progenitors
and during development they migrate dorsally into an alar
position64, 65 (Fig. 4a, b). Although these subtypes share the same
general specification program, they have different rhombomeric
origins. The visceromotor neurons from the IS originate from R6,

while those from the 10N originate from R7-8.64, 65 IS progenitors
require the Mafb gene to be present and the Hoxa4 and Hoxb4
genes to be absent, whereas 10N progenitors require the opposite
(Fig. 4d). To our knowledge, no subtypes have been reported
based on variations of the general specification program
described above.

Serotonergic populations of raphe nuclei. Raphe nuclei contain
the central serotonergic populations (B1–9),95 totalling
20,000–30,000 neurons in rats,95 which are distinguishable by
their anatomical location, and can be divided into caudal (B1–B4)
and rostral clusters (B5–B9). Raphe nuclei clusters61, 96 are
positioned caudal and rostral to rhombomere R4, which is a
neuromeric segment that is only populated by motor neurons.82

Progenitors of serotonergic neurons of raphe nuclei Raphe
nuclei contain serotonergic neurons generated from a mixture
of rhombomere-derived basal p3 progenitors, which initially
reside in the bilateral paramedian territories that flank the floor
plate48, 51, 58, 61, 97 (Fig. 4a, b). These p3 progenitors are common
to brainstem viscero-motor neurons and branchio-motor neu-
rons,57, 82 with the exception of those that are R4-derived.48, 58, 61

A multipotent pool of hindbrain p3 progenitors are differentially
induced along the AP axis, due to a gradient signalling by RA,

Fig. 4 Brainstem development and neuronal specification program of brainstem vulnerable populations in PD. a Each brainstem progenitor
originates from one rostro-caudally segmented neuromere (colour coded) and gives rise to specific mature neurons via a developmental
lineage. b Transverse view of three neuromeric segments (positions correspond to red lines in a with dorso-ventral progenitor origin (shape
coded). c Mature neuronal populations after development, which may include migration, in vulnerable brainstem nuclei within a quasi-
saggital section of a juvenile brain (neuromeric segment is colour coded and dorso-ventral progenitor origin is shape coded, as before),
adapted from.58, 61, 63 d A set of developmental transcription factors is associated with the identity of each segment (upper) and the
specification program for each neuronal population (middle), whether required to be expressed (dark blue), or required not to be expressed
(light blue) or an experimental knowledge gap (white). e Neuronal populations are clustered by their developmental requirements highlighting
similarities. Dorsal motor nucleus of the vagus (10N), medullary/lower raphe nuclei [MoRa (RMg/B3, ROb/B2, RPa/B1)], pontine/upper raphe
nuclei [PnRa (PRn/B5, DR/B6-7, MnR/B8, PMnR/B9)], locus coeruleus (LC/A6), subcoeruleus (SubC/A7), substantia nigra pars compacta (SNC/
A9). Neuronal populations highlighted in this review are presented in black and red (vulnerability), the remaining neuronal populations are in
light grey. The X sign represents the absence of neurogenesis from the corresponding progenitor. *involved but not required. **medial
position. See Supplementary Information for details, including references to supporting literature
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FGF8 signalling at rostral positions, FGF4 signalling at caudal
positions and ventral SHH signalling.98 Differential combinatorial
induction across the hindbrain determines the neuronal sub-type
specification program,51, 61 via a rhombomeric-specific expression
of Hox genes (Fig. 4d and Supplementary tables 1, 2). Differential
expression of Hox genes, the Hox code, results in considerable
differences between caudal and rostral serotonergic profiles.
Caudal serotonergic populations, which localise within B1–B4
populations, result from progenitors expressing multiple Hox
genes, while the rostral serotonergic populations within B1–B4
populations result from progenitors highly expressing Hmx2/3
genes (Fig. 4d upper table). Both Shh signalling at ventral
positions99 and rhombencephalic absence of Otx2 expression
are required for the correct development of a serotonergic
phenotype.61, 100

General specification program of serotonergic neurons of raphe
nuclei The general specification program for serotonergic
neurons is known96, 101 although the details of the molecular
mechanisms are still poorly understood.58, 60, 61, 102–105 In mice,
the rostral and caudal cluster of serotonergic neurons start to
differentiate at E10 and E11, respectively51, 57, 82 and their
morphology is only defined after the P0 stage. The serotonergic
developmental program mostly occurs through the activation of a
pair of genetic cascades51, 57, 98, 106 (Fig. 4d and Supplementary
tables 1, 2). The first cascade involves ventral SHH signalling and
subsequent activation of both Nkx transcription factors (Nkx2-2)
and Foxa2 expression, which results in activation of Gata
transcription factors (Gata2/3) and Lmx1b.51, 61, 100 This specifica-
tion program requires the absence of Otx2 expression and the
presence of Nkx2-2 expression.51, 84 Importantly, there is also a
parallel secondary cascade, where Ascl1 expression is activated
around E11.582, 107 and instructs a sequential expression of Gata3,
Lmx1b, and Insm1.51 Ascl1 and Insm1 are both part of the genetic
regulatory network that controls serotonergic identity,108 where
Insm1 expression contributes with an additional control of THP2
expression.51 On the other hand, Lmx1b, which is expressed
downstream from Gata2/3 in both raphe clusters, is required for
terminal differentiation and maintenance of all serotonergic
populations. Like all aminergic neurons, Lmx1b has been
suggested to regulate the expression of the vesicular monoamine
transporter.51, 109 Lmx1b might also regulate SLC6A4 (SERT) and
TPH2 expression110 in mature populations.
It has also been described that a complete neurochemical

serotonergic phenotype is, to a certain extent, controlled by
Pet1.51 Both Lmx1b and Pet1 have been implicated in the
regulation of SLC6A4110–112 and Pet1 has been described as the
only gene whose expression is limited to hindbrain serotonergic
neurons. Pet1 precedes the expression of serotonin by 12 h and
acts on the binding sites closer to genes involved in the
maturation of the serotonergic phenotype. Examples include
TPH2, DDC, SLC6A4 and HTR1A (5-HT1a).111, 112 The develop-
mental combination of Nkx2-2, Lmx1b, and Pet1 seem to be
sufficient for the generation of serotonergic neurons in ectopic
expression studies.109 However, across all serotonergic popula-
tions (B1–9), Pet1 expression is not necessary for specification of
~30% of all serotonergic neurons, which have projections to
highly selective targets in the brain and transcend classic
anatomical subdivisions of the raphe.51, 59, 112

Subtype specification program of serotonergic neurons of raphe
nuclei Distinct subtypes of serotonergic populations (reviewed
in ref. 105) have been defined in different raphe nuclei, either
biochemically,44, 48, 60, 113, 114 based on distinct axonal trajectories
and firing patterns,115, 116 or based on rhombomere-specific
developmental programs.48, 51, 58–61, 101, 105 Both caudal and
rostral clusters of the raphe, in the medulla and pons, respectively,

contain nuclei that tend to display differential vulnerability to
degeneration, but further histopathological studies would be
desirable.
In the medullary raphe (caudal cluster), the raphe obscurus

(ROb/B2) is more vulnerable than the raphe magnus (RMg/B3,
Supplementary 1.2). The raphe obscurus (ROb/B2) is derived from
R7-8 progenitors, which do not require Egr2 expression (Fig. 4d).
The raphe magnus (RMg/B3) is thought to be derived partially
from R5 progenitors, requiring early developmental expression of
Egr2,62 and also partially from R6-7 progenitors, which do not
require Egr2 expression (Fig. 4d). In the pons (rostral cluster), the
median raphe (MnR/B8) is especially vulnerable, while the dorsal
raphe (DR/B6-7) is less vulnerable (Supplementary 1.2). The
median raphe (MnR/B8) originates from a mixture of R1-3
progenitors, while the dorsal raphe (DR/B6-7) originates from R1
progenitors58 (Fig. 4b).
Expression of En1 and En2 play an intrinsic role in the

development of all R1-derived serotonergic neurons.44 Unlike
other serotonergic neurons, all R1-derived serotonergic neurons
require the expression of Nkx6-151 and do not require expression
of Insm1 for terminal differentiation.51, 108 In another deviation
from the general specification program, a subset of R1-derived
serotonergic neurons require expression of Nkx2-2.51, 84 The
relative vulnerability of R1-3-derived neurons within the median
raphe is not known.

Noradrenergic populations of the coeruleus complex. Central
noradrenergic neurons are found in the medulla (A1, A2) and
the pons (A4-7). Within the coeruleus complex of the pons, we
focus on the LC (A6), which is the largest central noradrenergic
population and the SubC (A4). Coeruleus complex noradrenergic
neurons are generated from a mixture of specific rhombomere-
derived neuronal progenitors located within R1-6.63

Progenitors of coeruleus complex noradrenergic neurons During
development, multipotent rostral alar progenitors are induced by
FGF8 and WNT signalling, from the anteriorly adjacent isthmus
organiser, enabling the expression of En1/2, and the AP-graded RA
signalling influences all rhombomere-derived progenitor pools,
which result in the expression of specific combinations of Hox
genes (Fig. 4d and Supplementary table 1). BMPs (BMP5, 7), which
are produced in the dorsal ectoderm and roof plate, establish a
dorsoventral signalling gradient that specifies the identity of
caudodorsal progenitors117 (Fig. 4d and Supplementary table 2). In
mice, LC development requires NOTCH-RBPJ signalling and its
direct regulation of Ascl1 expression, as well as its indirect
regulation through the target gene Hes1.118 In zebrafish, Shh
signalling may play an indirect role in the maintenance of LC
noradrenergic populations.119

General specification program of coeruleus complex noradrener-
gic neurons In mice, the noradrenergic specification program
begins with the acquisition of the correct alar progenitor identity
and is followed by neurogenesis around E9 (Fig. 4d and
Supplementary tables 1, 2). At least four transcription factors,
Ascl1, Phox2a/b and Tlx3,34, 120, 121 are required for this program.
Dorsal BMP signalling is required for the downstream expression
of Ascl1, Phox2a/b34, 117, 122 and analysis of knock-out phenotypes
for these genes suggest that they act according to a linear
cascade. Ascl1 expression is essential for dopamine beta-
hydroxylase (DBH) expression in all noradrenergic populations
and it induces the expression of both Phox2a and Phox2b in the
LC.120, 123–126 Phox2a/b expression is required for correct
specification and differentiation of LC noradrenergic popula-
tions,124, 127–129 and mid- to hind-brain motor neurons.121 Phox2a
is required for the activation of Phox2b, and the latter is also
necessary for the expression of DBH, which is a key enzyme in
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noradrenaline synthesis. Lmx1b seems to be required for
noradrenergic development, since knockout mice present no
vesicular monoamine transporter immunoreactivity in the brain-
stem.51, 109, 130

While Insm1 expression is necessary for the timely onset of TH
expression, the expression of Nr2f6131 and transient expression of
Onecut1/2/3 are both required for full development of LC
noradrenergic neurons.132 On the contrary, Gata2 and Gata3 are
not expressed in LC and there is no strict correlation between
expression of these genes and noradrenergic differentiation.133

Coeruleus complex noradrenergic neuronal subtype specification
programs Within the coeruleus complex, the LC is more
vulnerable to degeneration than the SubC (Supplementary 1.3).
The LC (A6) mainly originates from a dorso-alar R1 progenitor
pool63, 134 (Fig. 4a, b). Alar progenitor pools from R1 to R6 each
contribute to the SubC (A4)63 (Fig. 4b), which can be subdivided
into dorsal and ventral parts. Like the LC, the dorsal SubC mainly
derives from R1 progenitors, but can also include some R2-4
derived neurons. The ventral SubC is mainly derived from alar R4
progenitors, but can also include R2-3 derived neurons.63 A few
R2-derived neurons are consistently observed within both the LC
and the SubC, and can be identified identified by the expression
of Hoxa2.63

Almost all of the LC (A6) and the dorsal part of the SubC (A4)
arise from the aforementioned dorso-alar R1 progenitor pool.
These progenitors require the expression of En1 and during
development they migrate ventrocaudally to a basolateral
location within R1.63, 134, 135 A particular subset of R1-derived
neurons can be further distinguished within the caudal LC as they
require transient expression of Tlx3 to induce expression of
DBH.136 In contrast to noradrenergic LC neurons, the noradrener-
gic neurons of the SubC and other CNS populations (A1/2/5/7) do
not require the developmental expression of Phox2a.124 Within
each of these anatomically defined nuclei, especially in the C2/A2
and C1/A1 medullary nuclei, there is a subset of neurons that have
not yet been associated with any particular rhombomere.63

Mesodiencephalic dopaminergic populations. Mesodiencephalic
DN are organised ventrally in a continuum along the mesence-
phalon and diencephalon.137–142 In the mouse ventral midbrain,
the retrorubral field (A8), SNC (A9), and VTA (A10) populations
together contain 20,000–30,000 DN, representing almost 75% of
all central DN.68, 143, 144

Progenitors of mesodiencephalic DN In the mesodiencephalon,
a competent pool of multipotent floor plate progenitors is
generated and maintained once this region has been defined
(Fig. 4d and Supplementary table 1). The correct positioning of the
isthmic organiser requires Gbx2/Otx298, 145 and subsequent
interaction between floor plate-produced SHH and isthmic-
produced FGF8 is required for a ventral mesodiencephalic
dopaminergic phenotype (Fig. 4d and Supplementary table 2).
WNT1 is expressed in both dorsal (roof plate) and medioventral
(floor and basal plate) midbrain and, like FGF8, WNT1 is also
produced within the isthmus and required for the development of
bilaterally flanking mesodiencephalic dopaminergic popula-
tions.146 TGFβ and other members of TGFβ superfamily147 are
essential for the proper development of these populations.148 It
has been described that RA signalling is involved in the terminal
differentiation program where it is suggested to be essential for a
SNc subset of DA neurons.149

Combinatorial induction diversifies genetic regulation68 and
generates multiple heterogeneous subsets of mesodiencephalic
progenitors. Along the anterioposterior axis FGF8, WNT1 and BMP
are sensed differently due to variable distance to organisational
centres150 (Fig. 4d and Supplementary tables 1, 2). At least eight

different subsets of ventral mesodiencephalic progenitors have
already been proposed151 arising from spatiotemporal inductive
differences, including floor plate mediolateral differences in SHH
signalling.151, 152 In contrast to continuous Shh expression within
the hindbrain floor plate, mesodiencephalic precursors transiently
express Shh due to suppression via WNT signalling, which causes a
unique neurogenic response within brainstem floor plate pre-
cursors and has been suggested to be a prerequisite for
differentiation of DN.153–157 Regional Otx2 expression within the
mesodiencephalon is essential for the unique neurogenic
potential of mesodiencephalic floor plate cells158 (through the
expression of Lmx1a68), since hindbrain and spinal cord floor plate
precursors do not appear to undergo neurogenesis.158 In
mesodiencephalic floor plate cells, the absence of intrinsic Otx2
expression shifts them towards a serotonergic neuronal fate.159–161

General specification program of mesodiencephalic DN In mice,
the first sign of a dopaminergic phenotype appears around E9,
with the expression of Lmx1a and Msx1,67, 150, 162 while the
corresponding mature mesodiencephalic DN are only first
detectable around E10 by the expression of TH, in the absence
of DBH expression.163 Multiple intrinsic factors and extrinsic
inducers are required to activate the correct differentiation
program (Fig. 4d and Supplementary table 2), which consists of
many inter-dependent downstream genetic cascades.68, 144

The mesodiencephalic DN general specification program occurs
once the corresponding progenitor markers are expressed
together with Foxa1/2, Lmx1b, Msx2 and Neurog2.164 In chick,
Foxa2 is necessary and sufficient for specification of the entire
floor plate into a dopaminergic phenotype,165, 166 and its
expression can occur via a SHH-dependent or SHH-independent
pathway.167 In this program, both Foxa1168, 169 and Foxa2168–171

are necessary to promote neurogenesis by maintaining Lmx1a and
Lmx1b expression,169 regulating the expression of Neurog2 and
Ascl1168 and inhibiting Nkx2-2 expression.169 Ascl1 has no detected
function in the development of normal mesodiencephalic DN,
although it can partially rescue the generation of their precursors
in the absence of Neurog2.
While Lmx1a172, 173 is required for early differentiation,

Lmx1b172, 174 is an essential regulator34 that is co-expressed
with Lmx1a and the transcriptional repressor Msx1. Lmx1a
expression appears to be directly induced by SHH and it ultimately
induces multiple proneural factors, such as Neurog2, and then
Msx1.158, 164, 175 Neurog2 expression starts neurogenesis, and is
required for neuronal differentiation of mitotic precursors and
is maintained after neuronal maturation.150, 176, 177 Msx1 inhibits
the expression of neurogenesis regulators, such as Nkx6-1,175

nevertheless its expression is neither necessary nor sufficient for
the generation of mesodiencephalic DNs.150 At E10.5-E11.5 in
mice, both Neurog2 and Msx1 are responsible for proliferative
cascades that allow cells to become postmitotic and to migrate
radially from the initial ventricular surface into an intermediate
zone of the floor plate mantle. Furthermore, loss of Onecut1/2/3
expression results in a diminished generation of ventral mesence-
phalic DN.178

Expression of Nr4a2158, 175, 179, 180 (Nurr1) is crucial for the
generation and maintenance of mesodiencephalic dopaminergic
populations and is downregulated in PD patients.181 Its expression
occurs around E10.5 in mice when the corresponding mitotic
precursors exit the cell cycle. This expression marks the develop-
mental stages of both young and fully differentiated neurons, and
regulates the expression of proteins involved in dopamine
synthesis182 and transport.183–185 Nr4a2 represses Neurog2 expres-
sion and its expression can be observed across the mesencephalic
flexure, diencephalon and posterior hypothalamus, although it is
not exclusively present in mesodiencephalic DN.140, 180, 182
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At later stages of development, immature postmitotic cells
derived from the mesodiencephalic floor plate also express
Pitx3,149, 186 which is dependent on correct regional specification
by Lmx1b187 and modulated by En1.69

Subtype specification program of mesodiencephalic DN In the
mesodiencephalon, the SNC (A9) and the VTA (A10) are vulnerable to
degeneration in PD, but SNC DN are considerably more affected than
those from the VTA (Supplementary 1.4). Despite their shared origin
and general specification program, subtypes of mature mesodience-
phalic DN display clear phenotypic diversity.70–73, 78 Multiple
vertebrate studies,139, 188–193 including in mice,139, 194–196 suggest
that the SNC and VTA both contain mesodiencephalic DN from
multiple mesodiencephalic neuromeres (M1-2 and P2-1)68, 158, 197

(Fig. 4a, b).
After neurogenesis and during the subsequent radial and

tangential migration towards their final locations, post-mitotic
mesodiencephalic cells differentiate into mature neurons. How-
ever, the developmental programs for VTA and SNC DN are
distinct.70, 78, 187 The SNC and VTA both contain different subtypes
of mesodiencephalic DN.143, 144 VTA DN arise from paramedian
floor plate progenitors, whereas SNC DN, located lateral to the
VTA, arise from median floor plate progenitors.152, 155, 156, 198–200

Later, during migration, the intrinsic expression of Otx2
becomes restricted to VTA subtypes,140, 201, 202 while Sox6
expression becomes restricted to SNC subtypes.72, 202–205

Although both SNC and VTA subtypes express Pitx3 during terminal
differentiation143, 144 and in aged humans,206 only the SNC, in terms
of survival, requires expression of Pitx3.68, 186, 207 Pitx3 supresses the
intrinsic expression of En1 and thereby of posterior markers such as
CCK in SNC DN.69, 70, 78 Different patterns of gene expression during
development permit the identification of two foetal dopaminergic
neuronal subtypes that diversify into five adult mouse DN subtypes.47,
144 The relationship between molecular subtypes and selective
vulnerability needs to be established further through advanced gene
function analysis. A first sign of such a relationship has been described
through the selective requirement of SNC neurons towards RA (RA)
signalling and detoxification machinery in the breakdown pathway of
DA. The aldehyde dehydrogenase enyme, Ahd2, depends on the
activity of Pitx3 and En1, and the selective dependence of the SNC to
this gene has been described.149, 208 This suggests that the SNC has
specific requirements in term of genetic programming and metabolic
demand that require the neurons to be equiped with high enough
levels of Ahd2. This requirement is an inherent vulnerability in terms
of function and distinguishes the SNC DN from VTA DN. Additional
evidence towards this concept might be discovered through using
the subset transcriptome data as described above. In addition to this,
nigral neurons have a higher rate of oxidative phosphorylation and a
more complex axonal arborisation.209 Such phenotypic differences
rely on specific molecular programming as discussed above and
highlight the importance of understanding the molecular machinery
behind SNC programming.

DISCUSSION
A shared requirement for a specific set of developmental transcrip-
tion factors can be used to infer functional similarity as well as
proximity within a cellular developmental lineage (Fig. 4d). In PD,
vulnerable neuronal populations do share certain functional
similarities, so we synthesised the literature on required activity of
or inactivity of a set of 51 developmental transcription factors across
five brainstem regions with clear evidence of vulnerability to
degeneration in PD. Within each region, we also refine our analysis
to include more and less vulnerable nuclei and neuronal subtypes.
Variations in the types, amount and duration of developmental
induction results in different sets of required active (or inactive)
developmental transcription factors, thereby shaping the landscape

of lineage commitment possibilities, e.g., rhombencephalic p3
progenitors receiving a longer duration of developmental induction
commit to a serotonergic fate, which correlates with an increase in
Foxa2 expression and a decrease of Nkx2-9 and Phox2b expression, in
a switch from an otherwise motor fate.57, 82

Our synthesis suggests that some developmental requirements
are shared between vulnerable brainstem regions. We find that
vulnerable neuronal populations often share a common require-
ment for Shh signalling, but this induction alone is not sufficient to
predict neuronal vulnerability in PD, since many other ventral
brainstem nuclei do not seem to be especially vulnerable to
degeneration. The activity of some transcription factors is similar in
each of the five studied brainstem populations that are vulnerable
to degeneration in early PD. For example, Ascl1 is expressed in all
five populations, although it is only required for the development
of LC noradrenergic and raphe serotonergic populations. Together
with Phox2b, Ascl1 co-regulates catecholamine synthesising
enzymes in noradrenergic populations.210 During the specification
of neuronal fate, the requirement for Ascl1 activity varies
depending on the lineage of an individual cell.211 Absence of
Ascl1 results in loss of olfactory and autonomic neurons as well as
delayed differentiation of retinal neurons.212, 213

Phox2b is required for development of noradrenergic neurons, and
visceromotor neurons of the dorsal motor nucleus of the vagus
(10N), while its paralogue Phox2a is also required for LC, but not
subcoeruleus (SubC) noradrenergic neurons. Trochlear motor and
oculomotor neurons share the same Phox2a and Phox2b develop-
mental requirements as LC noradrenergic neurons,121, 128 however
these neurons do not seem to be vulnerable in PD. In most of the
brainstem, Phox2b represses serotonergic differentiation and there-
fore it is required to be absent for specification of raphe serotonergic
neurons. Although Phox2b is expressed in caudal midbrain
dopaminergic populations, it does not seem to be required for the
specification of substantia nigra, pars compacta (SNC) DN.214

In mice, Lmx1b expression is required for the expression of
monoamine vesicular transporters in all brainstem aminergic neurons
(dopaminergic, noradrenergic and serotonergic),51, 109, 130, 174

despite not being required for zebrafish LC noradrenergic
populations.184 Visceromotor neurons of the 10N do not express
vesicular monoamine transporters,33 but it is not known if Lmx1b
is required for the development of these neurons. Importantly,
Lmx1a/b is required to control autophagic-lysosomal function,
integrity of nerve terminals, long-term survival of midbrain DN215

and recently has been implicated in regulation of mitochondrial
function.216 Lmx1a/b conditional ablation, after neuronal specifi-
cation, results in abnormalities that show striking resemblance to
early cellular abnormalities seen in PD. Moreover, a decrease in
Lmx1b expression has been reported in midbrain DN of PD
patients.215 Finally, it has been shown that aspecific subset of SNc
neurons is absent in Lmx1a mutants.217

Within each of the five vulnerable brainstem regions we
considered, different nuclei are more or less vulnerable to degenera-
tion in PD. Of the visceromotor neurons, those in the 10N are more
vulnerable to degeneration than those in the inferior salivatory (IS)
nucleus.7, 11 Even though these nuclei share the same general
specification program, the IS originates from the R6 rhombomere,
while the 10N originates from the R7-8 rhombomeres.64, 65

Differential vulnerability within mesodiencephalic dopaminergic
nuclei is well established and there also exist differences in their
developmental specification programs. Medial and paramedial
mesodiencephalic floor plate progenitors generate DN in the SNC
and VTA, respectively. Both express Pitx3,143, 144, 206 but knock-out
of Pitx3 results in selective loss of SNC neurons,68, 186, 207 so Pitx3
expression is required for the development of the SNC but not
required for the VTA.
Within some vulnerable nuclei, the existence of different

developmental programs that generate different neuronal sub-
types are known, e.g., three dopaminergic neuronal subtypes can
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be distinguished in human VTA.144 Within other vulnerable nuclei,
differential vulnerability of anatomically distinct areas is known in
PD, e.g., there is an increasing fraction of cell loss from medial to
dorsolateral SNC.218 However, to our knowledge, a simultaneous
analysis of developmental subtype-specific markers and anatomi-
cally resolved quantification of cell loss in PD have not been
reported. We suggest that tissue samples from previous cell loss
studies should be immunohistopathologically revisited to check if
there is a relationship between the relative degree of neuropro-
tection of neuronal subtypes that are defined by differential
expression of known developmental transcription factors respon-
sible for adult maintenance.
The developmental origins of selectively vulnerable neurons

needs further clarification. Further experimental work is required
to assess the temporal requirement for certain transcription
factors (e.g., Onecut, Gata2/3, Isl1, Insm1, Pet, Tbx20, Nr2f6, Nr4a2,
Pitx3, Lmx1a) that seem to be necessary for specification of a
subset of nuclei but are not yet known to be required for other
vulnerable nuclei that we have considered. The need for data on
the timing of requirements is supported by evidence that Nr4a2 is
required for maintenance of mesencephalic DN in adult mice.219

This review presents a comprehensive manual curation of the
development of ten vulnerable brainstem nuclei in five different
brainstem regions. Our compendium of transcription factor require-
ments is accurate but not yet comprehensive at genome scale. This
limitation can be partially overcome by complementing our
compendium with developmental omics data, e.g., the Allen
developmental primate atlas.220 In turn, the noise in such large scale
datasets can be mitigated by using our manually curated transcrip-
tion factor requirements as an anchor to benchmark data integration
algorithms. Ultimately, cell fate mapping and gene inactivation
studies are required to establish the combination of genes required
for developmental specification of each neuronal subtype.

CONCLUSIONS
In early PD, mature neurons that are selectively vulnerable to
degeneration can be identified by some shared biochemical,
morphological and functional characteristics. However, the mole-
cular basis for selective vulnerability in PD remains to be fully
elucidated. As mature neuronal identity is largely the result of a
developmental program that is specific to each cell type (Fig. 4e),
for five brainstem regions, each with at least two nuclei with
varying degrees of vulnerability, we compared and contrasted their
cellular lineage and their requirement for absence or presence of 51
transcription factors (Fig. 4d). Certain combinations of transcription
factors seem to be required for development of many vulnerable
brainstem regions, e.g., Ascl1 coregulates catecholamine-synthesis-
ing enzymes in noradrenergic populations.
Within vulnerable brainstem regions, certain nuclei are more

vulnerable to degeneration than others and this correlates with
important differences in the developmental transcription factor
requirements for their lineage, e.g., Pitx3 is expressed in all
mesodiencephalic DN but it is only required for development of
SNC, but not ventral tegmental area, DN. Of the vulnerable
visceromotor neurons, those from the inferior salivary nucleus are
less vulnerable than those from the dorsal motor nucleus of the
vagus, yet they both have almost the same developmental
program, except that they originate from separate rhombence-
phalic neuromeres. Tracing the molecular consequences of
developmental specification programs in more and less vulnerable
brainstem nuclei, e.g., with experimental determination of the
genomic targets of key transcription factors would help to identify
the molecular species that participate in the biochemical path-
ways that could be associated with differential vulnerability. The
development of a comprehensive molecular basis for the shared
characteristics of vulnerable neurons is an essential pre-requisite
for development of drugs targeted towards the causes of PD.

METHODS
To completely reconstruct an anatomically resolved cellular
developmental lineage of adult human neurons as well as
the corresponding developmental transcription factors would
require human experimental data, which is not available.
Fortunately, the brainstem and its development is highly
homologous between mammalian species. It also contains the
most archaic neuronal networks in the brain, which may be
related to susceptibility degeneration in PD.221 Therefore, we
relied on manual curation of developmental studies in model
organisms to obtain the details of neuronal progenitor patterning,
neurogenesis and cell fate specification222, 223 as well as the
details on genoarchitecture and neuromere-related lineage
mapping.224 Unless indicated otherwise, all statements refer to
murine studies. Differentiation and fate restriction requirements
were studied by considering multiple loss-of-function studies,
which describe the dependence of each neuronal population on a
specific set of gene products. In this regard, when possible, we
highlight whether a particular gene is necessary to be active, or
necessary to be inactive, for each lineage (Fig. 4d). Furthermore,
migration patterns were selectively reconstructed by curating
lineage tracing studies (Fig. 4c). We used the same neuromere
scheme and ontology as the Allen Developing Mouse Brain
reference atlas.142
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