1,993 research outputs found

    Spin- and angle-resolved photoemission studies of the electronic structure of Si(110)"16x2" surfaces

    Get PDF
    The electronic structure of Si(110)"16 x 2" double-domain, single-domain and 1 x 1 surfaces have been investigated using spin- and angle-resolved photoemission at sample temperatures of 77 K and 300 K. Angle-resolved photoemission was conducted using horizontally- and vertically-polarised 60 eV and 80 eV photons. Band-dispersion maps revealed four surface states (S1S_1 to S4S_4) which were assigned to silicon dangling bonds on the basis of measured binding energies and photoemission intensity changes between horizontal and vertical light polarisations. Three surface states (S1S_1, S2S_2 and S4S_4), observed in the Si(110)"16 x 2" reconstruction, were assigned to Si adatoms and Si atoms present at the edges of the corrugated terrace structure. Only one of the four surface states, S3S_3, was observed in both the Si(110)"16 x 2" and 1 x 1 band maps and consequently attributed to the pervasive Si zigzag chains that are components of both the Si(110)"16 x 2" and 1 x 1 surfaces. A state in the bulk-band region was attributed to an in-plane bond. All data were consistent with the adatom-buckling model of the Si(110)"16 x 2" surface. Whilst room temperature measurements of PyP_y and PzP_z were statistically compatible with zero, PxP_x measurements of the enantiomorphic A-type and B-type Si(110)"16 x 2" surfaces gave small average polarisations of around 1.5\% that were opposite in sign. Further measurements at 77 K on A-type Si(110)"16 x 2" surface gave a smaller value of +0.3\%. An upper limit of 1%\sim1\% may thus be taken for the longitudinal polarisation.Comment: Main paper: 12 pages and 11 figures. Supplemental information: 5 pages and 2 figure

    Transport of Proteins into Mitochondria

    Get PDF
    The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein

    Vestibular rehabilitation in multiple sclerosis: study protocol for a randomised controlled trial and cost-effectiveness analysis comparing customised with booklet based vestibular rehabilitation for vestibulopathy and a 12 month observational cohort study of the symptom reduction and recurrence rate following treatment for benign paroxysmal positional vertigo

    Get PDF
    BACKGROUND: Symptoms arising from vestibular system dysfunction are observed in 49-59% of people with Multiple Sclerosis (MS). Symptoms may include vertigo, dizziness and/or imbalance. These impact on functional ability, contribute to falls and significant health and social care costs. In people with MS, vestibular dysfunction can be due to peripheral pathology that may include Benign Paroxysmal Positional Vertigo (BPPV), as well as central or combined pathology. Vestibular symptoms may be treated with vestibular rehabilitation (VR), and with repositioning manoeuvres in the case of BPPV. However, there is a paucity of evidence about the rate and degree of symptom recovery with VR for people with MS and vestibulopathy. In addition, given the multiplicity of symptoms and underpinning vestibular pathologies often seen in people with MS, a customised VR approach may be more clinically appropriate and cost effective than generic booklet-based approaches. Likewise, BPPV should be identified and treated appropriately. METHODS/ DESIGN: People with MS and symptoms of vertigo, dizziness and/or imbalance will be screened for central and/or peripheral vestibulopathy and/or BPPV. Following consent, people with BPPV will be treated with re-positioning manoeuvres over 1-3 sessions and followed up at 6 and 12 months to assess for any re-occurrence of BPPV. People with central and/or peripheral vestibulopathy will be entered into a randomised controlled trial (RCT). Trial participants will be randomly allocated (1:1) to either a 12-week generic booklet-based home programme with telephone support or a 12-week VR programme consisting of customised treatment including 12 face-to-face sessions and a home exercise programme. Customised or booklet-based interventions will start 2 weeks after randomisation and all trial participants will be followed up 14 and 26 weeks from randomisation. The primary clinical outcome is the Dizziness Handicap Inventory at 26 weeks and the primary economic endpoint is quality-adjusted life-years. A range of secondary outcomes associated with vestibular function will be used. DISCUSSION: If customised VR is demonstrated to be clinically and cost-effective compared to generic booklet-based VR this will inform practice guidelines and the development of training packages for therapists in the diagnosis and treatment of vestibulopathy in people with MS. TRIAL REGISTRATION: ISRCTN Number: 27374299 Date of Registration 24/09/2018 Protocol Version 15 25/09/2019

    Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation

    Get PDF
    5-hydroxymethylcytosine (5-hmC) is a novel DNA modification that is highly enriched in the adult brain and dynamically regulated by neural activity. 5-hmC accumulates across the lifespan; however, the functional relevance of this change in 5-hmC and whether it is necessary for behavioral adaptation have not been fully elucidated. Moreover, although the ten-eleven translocation (Tet) family of enzymes is known to be essential for converting methylated DNA to 5-hmC, the role of individual Tet proteins in the adult cortex remains unclear. Using 5-hmC capture together with high-throughput DNA sequencing on individual mice, we show that fear extinction, an important form of reversal learning, leads to a dramatic genome-wide redistribution of 5-hmC within the infralimbic prefrontal cortex. Moreover, extinction learning-induced Tet3-mediated accumulation of 5-hmC is associated with the establishment of epigenetic states that promote gene expression and rapid behavioral adaptation

    Photocatalytic hydrogen production by biomimetic indium sulfide using Mimosa pudica leaves as template

    Get PDF
    Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization, revealing an increase in surface area, decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (S O/S C/S H) and sulfur oxide species ( SO2, SO32−, SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles, respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1, respectively, indicating an improvement by a factor of three in the templated sample

    Evidence of inverted-gravity driven variation in predictive sensorimotor function.

    Get PDF
    We move our eyes to place the fovea into the part of a viewed scene currently of interest. Recent evidence suggests that each human has signature patterns of eye movements like handwriting which depend on their sensitivity, allocation of attention and experience. Use of implicit knowledge of how earth's gravity influences object motion has been shown to aid dynamic perception. We used a projected ball tracking task with a plain background offering no context cues to probe the effect of acquired experience about physical laws of gravitation on performance differences of 44 participants under a simulated gravity and an atypical (upward) antigravity condition. Performance measured by the unsigned difference between instantaneous eye and stimulus positions (RMSE) was consistently worse in the antigravity condition. In the vertical RMSE, participants took about 200ms longer to improve to the best performance for antigravity compared to gravity trials. The antigravity condition produced a divergence of individual performance which was correlated with levels of questionnaire based quantified traits of schizotypy but not control traits. Grouping participants by high or low traits revealed a negative relationship between schizotypy traits level and both initiation and maintenance of tracking, a result consistent with trait related impoverished sensory prediction. The findings confirm for the first time that where cues enabling exact estimation of acceleration are unavailable, knowledge of gravity contributes to dynamic prediction improving motion processing. With acceleration expectations violated, we demonstrate that antigravity tracking could act as a multivariate diagnostic window into predictive brain function

    Charge dynamics at heterojunctions for PbS/ZnO colloidal quantum dot solar cells probed with time-resolved surface photovoltage spectroscopy

    Get PDF
    Time-resolved laser-pump X-ray-photoemission-probe spectroscopy of a ZnO (101 ⎯ ⎯ 0 101¯0 ) substrate with and without PbS quantum dots (QDs) chemically linked to the surface is performed, using laser photon energies resonant with and below the band gap energy of the substrate (λ = 372 and 640 nm, hν = 3.33 and 1.94 eV). Charge injection from the photoexcited QDs to ZnO is demonstrated through the change in the surface photovoltage of the ZnO substrate observed when the heterojunction is illuminated with 1.94 eV radiation. The measured carrier dynamics are limited by the persistent photoconductivity of ZnO, giving dark carrier lifetimes of the order of 200 μs in a depletion layer at the interface. The chemical specificity of soft X-rays is used to separately measure the charge dynamics in the quantum dots and the substrate, yielding evidence that the depletion region at the interface extends into the PbS QD layer
    corecore