63 research outputs found

    Physically active academic lessons; Acceptance, barriers and facilitators for implementation

    Get PDF
    Background To improve health and academic learning in schoolchildren, the Active School programme in Stavanger, Norway has introduced physically active academic lessons. This is a teaching method combining physical activity with academic content. The purpose of this paper was to evaluate the response to the physically active lessons and identify facilitators and barriers for implementation of such an intervention. Methods Five school leaders (principals or vice-principals), 13 teachers and 30 children from the five intervention schools were interviewed about their experiences with the 10-month intervention, which consisted of weekly minimum 2 × 45 minutes of physically active academic lessons, and the factors affecting its implementation. All interviews were transcribed and analysed using the qualitative data analysis program NVivo 10 (QSR international, London, UK). In addition, weekly teacher’s intervention delivery logs were collected and analysed. Results On average, the physically active academic lessons in 18 of the 34 weeks (53%) were reported in the teacher logs. The number of delivered physically active academic lessons covered 73% of the schools’ planned activity. Physically active lessons were well received among school leaders, teachers and children. The main facilitators for implementation of the physically active lessons were active leadership and teacher support, high self-efficacy regarding mastering the intervention, ease of organizing physically active lessons, inclusion of physically active lessons into the lesson curricula, and children’s positive reception of the intervention. The main barriers were unclear expectations, lack of knowledge and time to plan the physiclly active lessons, and the length of the physically active lessons (15–20 min lessons were preferred over the 45 min lessons). Conclusion Physically active academic lessons were considered an appropriate pedagogical method for creating positive variation, and were highly appreciated among both teachers and children. Both the principal and the teachers should be actively involved the implementation, which could be strengthened by including physical activity into the school’s strategy. Barriers for implementing physically active lessons in schools could be lowered by increasing implementation clarity and introducing the teachers to high quality and easily organized lessons.publishedVersio

    Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges

    Get PDF
    Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches

    School Effects on the Wellbeing of Children and Adolescents

    Get PDF
    Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being

    Constructing “Packages” of Evidence-Based Programs to Prevent Youth Violence: Processes and Illustrative Examples From the CDC’s Youth Violence Prevention Centers

    Get PDF
    This paper describes the strategic efforts of six National Centers of Excellence in Youth Violence Prevention (YVPC), funded by the U.S. Centers for Disease Control and Prevention, to work in partnership with local communities to create comprehensive evidence-based program packages to prevent youth violence. Key components of a comprehensive evidence-based approach are defined and examples are provided from a variety of community settings (rural and urban) across the nation that illustrate attempts to respond to the unique needs of the communities while maintaining a focus on evidence-based programming and practices. At each YVPC site, the process of selecting prevention and intervention programs addressed the following factors: (1) community capacity, (2) researcher and community roles in selecting programs, (3) use of data in decision-making related to program selection, and (4) reach, resources, and dosage. We describe systemic barriers to these efforts, lessons learned, and opportunities for policy and practice. Although adopting an evidence-based comprehensive approach requires significant upfront resources and investment, it offers great potential for preventing youth violence and promoting the successful development of children, families and communities

    Further results on the relationship between mu-invariant measures and quasi-stationary distributions for absorbing continuous-time Markov chains

    No full text
    This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved

    Discovering hydrothermalism from Afar: In Situ methane instrumentation and change-point detection for decision-making

    No full text
    Seafloor hydrothermalism plays a critical role in fundamental interactions between geochemical and biological processes in the deep ocean. A significant number of hydrothermal vents are hypothesized to exist, but many of these remain undiscovered due in part to the difficulty of detecting hydrothermalism using standard sensors on rosettes towed in the water column or robotic platforms performing surveys. Here, we use in situ methane sensors to complement standard sensing technology for hydrothermalism discovery and compare sensors on a towed rosette and an autonomous underwater vehicle (AUV) during a 17 km long transect in the Northern Guaymas Basin in the Gulf of California. This transect spatially intersected with a known hydrothermally active venting site. These data show that methane signalled possible hydrothermal-activity 1.5–3 km laterally (100–150 m vertically) from a known vent. Methane as a signal for hydrothermalism performed similarly to standard turbidity sensors (plume detection 2.2–3.3 km from reference source), and more sensitively and clearly than temperature, salinity, and oxygen instruments which readily respond to physical mixing in background seawater. We additionally introduce change-point detection algorithms—streaming cross-correlation and regime identification—as a means of real-time hydrothermalism discovery and discuss related data supervision technologies that could be used in planning, executing, and monitoring explorative surveys for hydrothermalism.</jats:p

    Discovering hydrothermalism from afar: in situ methane instrumentation and change-point detection for decision-making

    No full text
    Seafloor hydrothermalism plays a critical role in fundamental interactions between geochemical and biological processes in the deep ocean. A significant number of hydrothermal vents are hypothesized to exist, but many of these remain undiscovered due in part to the difficulty of detecting hydrothermalism using standard sensors on rosettes towed in the water column or robotic platforms performing surveys. Here, we use in situ methane sensors to complement standard sensing technology for hydrothermalism discovery and compare sensing equipment on a towed rosette and autonomous underwater vehicle (AUV) during a 17 km long transect in the Northern Guaymas Basin. This transect spatially intersected with a known hydrothermally active venting site. These data show that methane signaled possible hydrothermal activity 1.5-3 km laterally (100-150m vertically) from a known vent. Methane as a signal for hydrothermalism performed similarly to standard turbidity sensors (plume detection 2.2-3.3 km from reference source), and more sensitively and clearly than temperature, salinity, and oxygen instruments which readily respond to physical mixing in background seawater. We additionally introduce change-point detection algorithms---streaming cross-correlation and regime identification---as a means of real-time hydrothermalism discovery and discuss related data monitoring technologies that could be used in planning, executing, and monitoring explorative surveys for hydrothermalism.NSF OCE OTIC: #1842053 Woods Hole Oceanographic Institution: Innovative Technology Award NOAA Ocean Exploration: #NA18OAR0110354 Schmidt Marine Technology Partners: #G-21-62431 NASA: #NNX17AB31G NSF OCE: #0838107 Gordon and Betty Moore Foundation: #9208 NDSEG: Graduate Fellowship MIT Martin Family Society of Fellows: Graduate Fellowship Microsoft: Graduate Research Fellowship DOE/National Nuclear Security Administration: #DE-NA000392 MIT EAPS: Houghton Fun
    • …
    corecore