407 research outputs found

    Scalable Hierarchical Instruction Cache for Ultralow-Power Processors Clusters

    Get PDF
    High performance and energy efficiency are critical requirements for Internet of Things (IoT) end-nodes. Exploiting tightly coupled clusters of programmable processors (CMPs) has recently emerged as a suitable solution to address this challenge. One of the main bottlenecks limiting the performance and energy efficiency of these systems is the instruction cache architecture due to its criticality in terms of timing (i.e., maximum operating frequency), bandwidth, and power. We propose a hierarchical instruction cache tailored to ultralow-power (ULP) tightly coupled processor clusters where a relatively large cache (L1.5) is shared by L1 private (PR) caches through a two-cycle latency interconnect. To address the performance loss caused by the L1 capacity misses, we introduce a next-line prefetcher with cache probe filtering (CPF) from L1 to L1.5. We optimize the core instruction fetch (IF) stage by removing the critical core-to-L1 combinational path. We present a detailed comparison of instruction cache architectures' performance and energy efficiency for parallel ULP (PULP) clusters. Focusing on the implementation, our two-level instruction cache provides better scalability than existing shared caches, delivering up to 20% higher operating frequency. On average, the proposed two-level cache improves maximum performance by up to 17% compared to the state-of-the-art while delivering similar energy efficiency for most relevant applications

    A numerical elastoplastic model for rough contact

    Get PDF

    Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A

    Get PDF
    Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome

    Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element†

    Get PDF
    The interaction between human immunodeficiency virus type 1 (HIV-1) and RNA silencing pathways is complex and multifaceted. Essential for efficient viral transcription and supporting Tat-mediated transactivation of viral gene expression, the trans-activation responsive (TAR) element is a structured RNA located at the 5′ end of all transcripts derived from HIV-1. Here, we report that this element is a source of microRNAs (miRNAs) in cultured HIV-1-infected cell lines and in HIV-1-infected human CD4+ T lymphocytes. Using primer extension and ribonuclease (RNase) protection assays, we delineated both strands of the TAR miRNA duplex deriving from a model HIV-1 transcript, namely miR-TAR-5p and miR-TAR-3p. In vitro RNase assays indicate that the lack of a free 3′ extremity at the base of TAR may contribute to its low processing reactivity in vivo. Both miR-TAR-5p and miR-TAR-3p down-regulated TAR miRNA sensor activity in a process that required an integral miRNA-guided RNA silencing machinery. miR-TAR-3p exerted superior gene downregulatory effects, probably due to its preferential release from HIV-1 TAR RNA by the RNase III Dicer. Our study suggests that the TAR element of HIV-1 transcripts releases functionally competent miRNAs upon asymmetrical processing by Dicer, thereby providing novel insights into viral miRNA biogenesis

    A Many-body Problem with Point Interactions on Two Dimensional Manifolds

    Get PDF
    A non-perturbative renormalization of a many-body problem, where non-relativistic bosons living on a two dimensional Riemannian manifold interact with each other via the two-body Dirac delta potential, is given by the help of the heat kernel defined on the manifold. After this renormalization procedure, the resolvent becomes a well-defined operator expressed in terms of an operator (called principal operator) which includes all the information about the spectrum. Then, the ground state energy is found in the mean field approximation and we prove that it grows exponentially with the number of bosons. The renormalization group equation (or Callan-Symanzik equation) for the principal operator of the model is derived and the β\beta function is exactly calculated for the general case, which includes all particle numbers.Comment: 28 pages; typos are corrected, three figures are adde

    Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode

    Get PDF
    The Internet-of-Things (IoT) requires endnodes with ultra-low-power always-on capability for a long battery lifetime, as well as high performance, energy efficiency, and extreme flexibility to deal with complex and fast-evolving near-sensor analytics algorithms (NSAAs). We present Vega, an IoT endnode system on chip (SoC) capable of scaling from a 1.7- μW fully retentive cognitive sleep mode up to 32.2-GOPS (at 49.4 mW) peak performance on NSAAs, including mobile deep neural network (DNN) inference, exploiting 1.6 MB of state-retentive SRAM, and 4 MB of non-volatile magnetoresistive random access memory (MRAM). To meet the performance and flexibility requirements of NSAAs, the SoC features ten RISC-V cores: one core for SoC and IO management and a nine-core cluster supporting multi-precision single instruction multiple data (SIMD) integer and floating-point (FP) computation. Vega achieves the state-of-the-art (SoA)-leading efficiency of 615 GOPS/W on 8-bit INT computation (boosted to 1.3 TOPS/W for 8-bit DNN inference with hardware acceleration). On FP computation, it achieves the SoA-leading efficiency of 79 and 129 GFLOPS/W on 32- and 16-bit FP, respectively. Two programmable machine learning (ML) accelerators boost energy efficiency in cognitive sleep and active states

    The opposite of Dante's hell? The transfer of ideas for social housing at international congresses in the 1850s–1860s

    Get PDF
    With the advent of industrialization, the question of developing adequate housing for the emergent working classes became more pressing than before. Moreover, the problem of unhygienic houses in industrial cities did not stop at the borders of a particular nation-state; sometimes literally as pandemic diseases spread out 'transnationally'. It is not a coincidence that in the nineteenth century the number of international congresses on hygiene and social topics expanded substantially. However, the historiography about social policy in general and social housing in particular, has often focused on individual cases because of the different pace of industrial and urban development and is thus dominated by national perspectives. In this paper, I elaborate on transnational exchange processes and local adaptations and transformations. I focus on the transfer of the housing model of SOMCO in Mulhouse, (a French house building association) during social international congresses. I examine whether cross-national networking enabled and facilitated the implementation of ideas on the local scale. I will elaborate on the transmission and the local adaptation of the Mulhouse-model in Belgium. Convergences, divergences, and different factors that influenced the local transformations (personal choice, political situation, socioeconomic circumstances) will be taken into accoun

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes

    Get PDF
    BACKGROUND: Early clinical trials, mostly in the setting of melanoma, have shown that dendritic cells (DCs) expressing tumor antigens induce some immune responses and some clinical responses. A major difficulty is the extension to other tumors, such as breast carcinoma, for which few defined tumor-associated antigens are available. We have demonstrated, using both prostate carcinoma and melanoma as model systems, that DCs loaded with killed allogeneic tumor cell lines can induce CD8(+ )T cells to differentiate into cytotoxic T lymphocytes (CTLs) specific for shared tumor antigens. METHODS: The present study was designed to determine whether DCs would capture killed breast cancer cells and present their antigens to autologous CD4(+ )and CD8(+ )T cells. RESULTS: We show that killed breast cancer cells are captured by immature DCs that, after induced maturation, can efficiently present MHC class I and class II peptides to CD8(+ )and CD4(+ )T lymphocytes. The elicited CTLs are able to kill the target cells without a need for pretreatment with interferon gamma. CTLs can be obtained by culturing the DCs loaded with killed breast cancer cells with unseparated peripheral blood lymphocytes, indicating that the DCs can overcome any potential inhibitory effects of breast cancer cells. CONCLUSION: Loading DCs with killed breast cancer cells may be considered a novel approach to breast cancer immunotherapy and to identification of shared breast cancer antigens

    Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia

    Get PDF
    Graphical Abstract Highlights d Derivation of human neocortical and spinal cord neuroepithelial stem (NES) cells d Zika virus (ZIKV) infects NES cells and radial glia, impairing mitosis and survival d ZIKV induces mitochondrial sequestration of centrosomal phospho-TBK1 d Nucleoside analogs inhibit ZIKV replication, protecting NES cells from cell death In Brief Onorati et al. establish neuroepithelial stem (NES) cells as a model for studying human neurodevelopment and ZIKV-induced microcephaly. Together with analyses in human brain slices and microcephalic human fetal tissue, they find that ZIKV predominantly infects NES and radial glial cells, reveal a pivotal role for pTBK1, and find that nucleoside analogs inhibit ZIKV replication, protecting NES cells from cell death
    corecore