396 research outputs found

    Controlled non uniform random generation of decomposable structures

    Get PDF
    Consider a class of decomposable combinatorial structures, using different types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the random generation of such structures with respect to a size nn and a targeted distribution in kk of its \emph{distinguished} atoms. We consider two variations on this problem. In the first alternative, the targeted distribution is given by kk real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 < \TargFreq_i < 1 for all ii and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We aim to generate random structures among the whole set of structures of a given size nn, in such a way that the {\em expected} frequency of any distinguished atom \At_i equals \TargFreq_i. We address this problem by weighting the atoms with a kk-tuple \Weights of real-valued weights, inducing a weighted distribution over the set of structures of size nn. We first adapt the classical recursive random generation scheme into an algorithm taking \bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw mm structures from the \Weights-weighted distribution. Secondly, we address the analytical computation of weights such that the targeted frequencies are achieved asymptotically, i. e. for large values of nn. We derive systems of functional equations whose resolution gives an explicit relationship between \Weights and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in \bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies associated with a given kk-tuple \Weights of weights, and an optimized version in \bigO{k n^2} in the case of context-free languages. This allows for a heuristic resolution of the weights/frequencies relationship suitable for complex specifications. In the second alternative, the targeted distribution is given by a kk natural numbers n1,,nkn_1, \ldots, n_k such that n1++nk+r=nn_1+\cdots+n_k+r=n where r0r \geq 0 is the number of undistinguished atoms. The structures must be generated uniformly among the set of structures of size nn that contain {\em exactly} nin_i atoms \At_i (1ik1 \leq i \leq k). We give a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating mm structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for regular specifications

    Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata

    Full text link
    Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0, such that the increments εj:=XjXj1\varepsilon_{j}:=\mathbf{X}_{j}-\mathbf{X}_{j-1} take values ±1\pm1 and satisfy P(εj+1=1εj=1,Xj=k)=P(εj+1=1εj=1,Xj=k)=akP(\varepsilon_{j+1}=1|\varepsilon_{j}=1, |\mathbf{X}_{j}|=k)=P(\varepsilon_{j+1}=-1|\varepsilon_{j}=-1,|\mathbf{X}_{j}|=k)=a_k, all j1j\ge 1, where ak=aa_k=a if 0kf1 0\le k\le f-1, and ak=ba_k=b if fk<Nf\le k<N. Here 0<a,b<10<a, b <1 denote persistence parameters and f,NN f ,N\in \mathbb{N} with f<Nf<N. The process starts at X0=m(N,N)\mathbf{X}_0=m\in (-N,N) and terminates when Xj=N|\mathbf{X}_j|=N. Denote by RN{\cal R}'_N, UN{\cal U}'_N, and LN{\cal L}'_N, respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler's ruin process. Define XN:=(LN1ab(1a)(1b)RN1(1a)(1b)UN)/NX_N:=\left ({\cal L}'_N-\frac{1-a-b}{(1-a)(1-b)}{\cal R}'_N-\frac{1}{(1-a)(1-b)}{\cal U}'_N\right )/N and let fηNf\sim\eta N for some 0<η<10<\eta <1. We show limNE{eitXN}=φ^(t)\lim_{N\to\infty} E\{e^{itX_N}\}=\hat{\varphi}(t) exists in an explicit form. We obtain a companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been streamlined, with references added, including reference to a companion document with details of calculations via Mathematica. The 3rd version has 2 new figures and improved presentatio

    Target annihilation by diffusing particles in inhomogeneous geometries

    Full text link
    The survival probability of immobile targets, annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points, as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behaviour at large times can still be expressed in terms of the spectral dimension d~\widetilde {d}, and its exact analytical expression is given. The results show that the asymptotic survival probability is site independent on recurrent structures (d~2\widetilde{d}\leq2), while on transient structures (d~>2\widetilde{d}>2) it can strongly depend on the target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication

    Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces

    Full text link
    The Airy distribution function describes the probability distribution of the area under a Brownian excursion over a unit interval. Surprisingly, this function has appeared in a number of seemingly unrelated problems, mostly in computer science and graph theory. In this paper, we show that this distribution also appears in a rather well studied physical system, namely the fluctuating interfaces. We present an exact solution for the distribution P(h_m,L) of the maximal height h_m (measured with respect to the average spatial height) in the steady state of a fluctuating interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the function f(x) is the Airy distribution function. This result is valid for both the Edwards-Wilkinson and the Kardar-Parisi-Zhang interfaces. For the free boundary case, the same scaling holds P(h_m,L)=L^{-1/2}F(h_m L^{-1/2}), but the scaling function F(x) is different from that of the periodic case. We compute this scaling function explicitly for the Edwards-Wilkinson interface and call it the F-Airy distribution function. Numerical simulations are in excellent agreement with our analytical results. Our results provide a rather rare exactly solvable case for the distribution of extremum of a set of strongly correlated random variables. Some of these results were announced in a recent Letter [ S.N. Majumdar and A. Comtet, Phys. Rev. Lett., 92, 225501 (2004)].Comment: 27 pages, 10 .eps figures included. Two figures improved, new discussion and references adde

    Multiplicative anomaly and zeta factorization

    Full text link
    Some aspects of the multiplicative anomaly of zeta determinants are investigated. A rather simple approach is adopted and, in particular, the question of zeta function factorization, together with its possible relation with the multiplicative anomaly issue is discussed. We look primordially into the zeta functions instead of the determinants themselves, as was done in previous work. That provides a supplementary view, regarding the appearance of the multiplicative anomaly. Finally, we briefly discuss determinants of zeta functions that are not in the pseudodifferential operator framework.Comment: 20 pages, AIP styl

    Counting, generating and sampling tree alignments

    Get PDF
    Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis.In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by mean of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees SS and TT. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016, Jun 2016, Trujillo, Spain. 201

    Page usage in quadtree indexes

    Get PDF
    Résumé disponible dans le fichier PD

    The average height of binary trees and other simple trees

    Get PDF
    Résumé disponible dans les fichiers attaché
    corecore