The Airy distribution function describes the probability distribution of the
area under a Brownian excursion over a unit interval. Surprisingly, this
function has appeared in a number of seemingly unrelated problems, mostly in
computer science and graph theory. In this paper, we show that this
distribution also appears in a rather well studied physical system, namely the
fluctuating interfaces. We present an exact solution for the distribution
P(h_m,L) of the maximal height h_m (measured with respect to the average
spatial height) in the steady state of a fluctuating interface in a one
dimensional system of size L with both periodic and free boundary conditions.
For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L
where the function f(x) is the Airy distribution function. This result is valid
for both the Edwards-Wilkinson and the Kardar-Parisi-Zhang interfaces. For the
free boundary case, the same scaling holds P(h_m,L)=L^{-1/2}F(h_m L^{-1/2}),
but the scaling function F(x) is different from that of the periodic case. We
compute this scaling function explicitly for the Edwards-Wilkinson interface
and call it the F-Airy distribution function. Numerical simulations are in
excellent agreement with our analytical results. Our results provide a rather
rare exactly solvable case for the distribution of extremum of a set of
strongly correlated random variables. Some of these results were announced in a
recent Letter [ S.N. Majumdar and A. Comtet, Phys. Rev. Lett., 92, 225501
(2004)].Comment: 27 pages, 10 .eps figures included. Two figures improved, new
discussion and references adde