-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The average height of binary trees and other simple trees
Philippe Flajolet, Andrew M. Odlyzko

» To cite this version:

Philippe Flajolet, Andrew M. Odlyzko. The average height of binary trees and other simple trees.
[Research Report] RR-0056, INRIA. 1981. inria-00076505

HAL Id: inria-00076505
https://hal.inria.fr /inria-00076505
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50448347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00076505
https://hal.archives-ouvertes.fr

e

Sl

o

IR

i

2

R P TN

T2

ARSI SN

Rapports de Recherche

N° 56

THE AVERAGE HEIGHT
OF BINARY TREES
AND OTHER SIMPLE TREES

Philippe FLAJOLET
Andrew ODLYZKO

Février 1981

o LD I G By R

SREETSES

A

Py oo

AR AT SRR T AT

T

255

EOTET

R e R L Sy T

F

ey



(o

[

THE AVERAGE HEIGHT OF BINARY TREES AND OTHER SIMPLE TREEST

Philippe FLAJOLET
INRIA

78150 Rocquencourt
FRANCE

Andrew ODLYZKO

Bell Laboratories

Murray Hill, New Jersey 07974
U.S.A.

Toa preliminary version of this work has been presented at the 2lst Annual

Symposium on Foundations of Computer Science, Syracuse, October 13-15, 1980.




Résumé :

La hauteur moyenné d'un arbre binaire vaut aymptotiquement 2vrn. Cette
quantité réprésente également 1a taille moyenne de 1a pile de récursion
de 1'algorithme de parcours récursif d'arbres. La méthode utilisée s 'applique
au parcours d'arbres unaires-binaires, d'arbres 2-3 non-équilibrés, d'arbres
t-aires et de nombreuses familles simples d'arbres. On obtient comme cas
particulier les deux résultats précédemment connus de hauteur moyenne d'arbres :
pour les arbres étiquetés, le résultat de Renyi et Szekeres ; pour les arbres
planaires, le résultat de Be Bruijn, Knuth et Rice. La méthode développée
ici qui repose sur une analyse de singularités des séries génératrices est

. de portée générale.

Abstract :

The average height of a binary tree with n internal nodes 1is shown
to be asymptotic to 2/wn. This represents the average stack height of the
simplest recusive tree traversal algorithm. The method used is also applicable
to the analysis of traversal algorithms of unary-binary trees, unbalanced
2-3 trees, t-ary trees for any t and other families of trees. It yields the
two previously known estimates about average height of trees, namely for
labelled non-planar trees a result due to Renyi and Szekeres and for planar
trees a resut of De Bruijn, Knuth and Rice. The method developped here, which
relies on a singularity analysis of intervening generating fuctions,is new
and of a wide applicability




INTRODUCT ION

We consider here the problem of the relation between height and size in

trees, for various types of trees.

Given a family F of trees w1'th.Fn the subset of those trees formed with
n nodes, the problem is to determine the average heights defined by

- 1 :
ﬁh(F) = EEFH"F; Eg;; height(t).

This paper solves the problem for the family B of binary trees, and we show :

THEOREM B : The average height of binary trees with n internal nodes Zs

asymptotically
H.(B) ~ 2/m as ne>o,

So far the only result avaibable about average height of planar trees
deals with the family G of general trees ; i.e. planar trees with unrestricted
node degrees [2] :

‘THEOREM G : [De Bruijn, Knuth, Ricel The average height of general planar

trees (of arbitrary node specification) with n nodes satisfies

R (6) ~ v as N>,

The similarities in the forms of Theorem P and Theorem B might induce the
reader to believe that Theorem B is only a simple modification of Theorem P.
However the methods differ in an essential way.

Theorem P is proved by first giving exact enumerations for the number of
trees of fixed height and fixed size ; these are expressed as certain sums of
binomial coefficients. The asymptotics are then performed by appéa]ing to
properties of the Mellin integral transform and this method is an important
starting point of a number of analyses [9] amongst which we mention : radix
exchange sort, digital search, Patricia trees, sorting networks and register

allocation.




The problem we encounter with binary trees is rather different : the difficulty
lies in that exact enumeration formulae are no longer available for the number
of trees of fixed size and height. The path we follow is quite general : it
relies on the principle that the coefficients of a generating function are
largely determined by the location and nature of its singularities. It is
also the only recourse when one has at one's disposal nothing but functional

equations over generating functions.

The power of the method is due to the fact that most enumeration problems
can be translated into functional equations of some sort over generating
functions. Locating singularities is achieved by applying approximations
and obtafning asymptotic expansions in the complex plane. Coefficients of
generating functions are then recovered from these expressions by means of
contour integration.

Despite its power this method has only been scarcely used in algorithmic
analyses. The work closest to ours is certainly the determination by 0dlyzko
of the number of balanced 2-3 trees [12]. We demonstrate the generality of
our approach by showing :

THEQREM S : For each simple family of trees S there exists an effectively
computable constant c(S) such that the average height of a tree
in S with n nodes is

H (S) v c(S) /.

A family of trees {s said to be simple if, esséntia11y, for each r there
is a finite set of allowable labels for nodes of degree r, Theorem S is of a
very general applicability. It contains as subcases the result by De Bruijn,
Knuth and Rice on the average height of planar trees, and -though it does
not immediately fits into our framework- a result by Renyi and Szekeres
about non planar labelled trees.

Since the height of a tree represents the stack size needed in recursively
traversing the tree, Theorem S also yields the analysis of the simplest
recursive tree traversal algorithm in a diversity of contexts. The reader should
however be warned that statistics on binary search trees represent a different
problem to be briefly discussed later.




To conclude this introduction, we should like to emphasize that the interest
of the paper is also, as we feel, largely methodological. Almost all “"classical”
analyses of algorithms follow a chain starting with exact enumeration formulae
derived by "direct" counting arguments continued by real approximations (usually
approximating discrete sums by integrals). There is a very clear stage at which
this approach fails to apply : either the nature of the problem leads to
combinatorial expression whose éstimation proves intractable, or even more
plainly -as is the case here- no combinatorial expression is available at all.
In both cases, studying the analytical properties of the corresponding
generating function -especially their singularities- leads to solution of
problems intrisically not tractable by more elementary methods.

The plan of the paper is as follows :

In the binary case, a certain generating function of the Hﬁ, H(z), is
shown to be the sum of quantities defined by a quadratic recurrence (section 2).
Recovering the Hh from H(z) requires a detailed analytical investigation of
the behaviour of H(z) and in particular necessitates continuirg H(z) outside
its circle of convergénce (section 3) and studying the nature of H(z) around
its singularity at z=1/4 (séction 4),

It is then shown that in an appropriate neighbourhood of 1/4, H(z) is the
sum of a logarithmic term and of a remainder term with smaller order. Most
of the difficulty of the proBlem comes from deriving this expansion.

The coefficients Hﬁ are then obtained from H(z) by means of the Cauchy
residue theorem (section 5) with the choice of an adequate contour of
integration similar to the one used in the study of balanced 2-3 trees by
Odlyzko [12]. The contour i$ taken to give predominance to the behaviour of the
function around its singularity.

We indicate how to extend the method to any simple family of
trees (section 6). This includes all previously known results about the height
of trees and provides the very general result stated in Theorem S. Last
(section 7) we discuss the limits of the present approach and some of its
extensions to estimates of higher moments and 1imit distributions.




I - TREE TRAVERSAL

We shall limit ourselves here to a short algorithmic discussion of tree
traversal, refering the reader to 8] for more details.

Perhaps one of the simplest recursive algorithms is the algorithm for
visiting -one also says traversing or exploring- nodes of a planar Eggg, The
algorithm occurs in a number of contexts in compiling, program transformation,
term rewriting systems, optimization... . Loosely déscribéd, this simple

algorithm looks like

procedure VISIT(T:tree)
do-something-with(root(T)) ;
for U subtree-of-root-of T do
VISIT (V)
rof

erudecorp

In specific applications, the treéStinput to the algorithm usually obey some
particular format. For instance one may encounter : expression trees involving
nullary symbols (variab]és), unary symbols (log,sin,/) and binary symbols
(+,-5%,¢) ; syntax trees of various types with nodes of possibly unbounded
degrees (as in list-of-instruction nodés) ; trees to represent terms in

formal manipulation systems... .

We are interested here in the behayiour of the tree exploration procedure
in such various contexts.

The analysis of the time of the VISIT proceduré is not difficult since
the complexity is clearly linear in the size of the input tree. The main
problem is to evaluate storage utilization, i-e to determine the average stack
size -equivalently recursion depth- requiréd for exploring a trée, as a
function of the size of the tree. For a given tree, the stack size required
by the visit is equal to the height of the tree. Average case analysis of the
algorithm applied to a family F of input trees thus reduces to determining
average heights of trees in F.




[

The available results about average heights of planar trees, old and new,
have been described in the introduction. Results of this paper thus completely
solve the average case analysis of tree traversal applied to any simple
family of inputs. In particular, Theorem B can be rephrased as :

THEOREM B' : The recursive traversal procedure applied to binary trees of

size N, has average storage complexity

an(B) ~ 2/m as ns>o,

It is to be mentionned here that the result by De Bruijn, Knuth and Rice
relative to the family S of general planar trees, namely that

1
R (6) = ym - 5+ 0(1)
gives some information on the height of binary trees, as well as on binary

tree traversal.

Indeed the rotation correspondence (81, section 2.3.2) transforms a general
tree with n nodes into a binary tree containing (n-1) internal (binary) nodes,
hence n external (nullary) nodes. Let p be this correspondence examplified
on Figure 1. The reader can convince himself easily that

height(t) = height™(p(t)) + 1

where height® denotes the one-sided height of binary trees, defined as
the maximum number of (internal) left branching nodes on any branch of the
tree. Since for any binary tree

height(u) > height™(u) + 1
it follows for the family B of binary trees that

EFﬁB)zH“GL




Figure 1 : The Rotation Correspondence transforms a general tree into a
binary tree : thie leftmost-son relation becomes the left-son
relation and the right-brother relation becomes the right-son
relation ; the root of the general tree is dropped. External
nodes of the binary tree are not represented.

Thus the estimation of the average height of general planar trees a priori shows
Hh(B) to be of order v7n at least.

The result about height of general trees is also of interest in another
context. It is possible 8,91 to optimize the recursiye visit procedure in
the case of binary trees by eliminating end-recursion. The resulting iterative
algorithm keeps at each stage a 1list of right subtrees that still remain to
be explored ; the storage complexity of this optimized iterative algorithm
is easily seen to correspond exactly to one-sided height. Hence, Theorem G
can be expressed as :

THEOREM G' : The iterative traversal procedure for binary trees of size N has
average storage complexity

Hm_l(G) N~ /TN as nhroo




-

Thus the expected memory complexity of the optimized iterative exploration
algorithm is asymptotically (for large sizes of trees) half the expected
complexity of recursive exploration.

To conclude this brief algorithmic discussion, let us mention that if the
left-to-right order in the exploration need not be képt, then exploration
can be reduced to a pebbling game on trees which is equivalent to register
allocation. The analysis of optimal registér allocation applies there, and
rephrasing results of [3,5,111 one gets

THECREM O TOptimal exploration of binary trees] : The mnimal stack size for

exploring binary trees with n internal nodes when the left-to-right

order is irrelevant, has average value

Uﬁ = Togyn + P(Tog,n) + o(1),

where P is a continuous function with period 1,

This estimation applies for instance in the context of preprocessing
(allowing one bit per node).

Some comments are now in order about the relevance of our statistics :
we perform analyses of tree traversal by averaging over all possible trees.
The results are thus of some méaning only when inputs do not satisfy any
further conditions. Basically our analyses apply to input trees with an
independent labelling of nodes ; such is the case at least for expression trees
in compiling, or term trees in formal manipuiation systems.

As a first approximation, our treatment can also be applied to term trees
in heterogeneous a]gébra, j-e several types of objects are present and .
operators have type restrictions : this corresponds to syntax trees of various
sorts ; counting of trees then leads to similar statistics with generating
functions that are still algebraic, and an exact treatment along our lines
should be feasible (for the particular case of syntax trees of linear

grammars, see [61).

However an analysis of this type does not apply when trees occur as
components of more complex structures, as appears in binary search trees or
tournament trees.....For instance binary search trees have monotonous labellings,
and the probability distribution induced on shapes of trees by random




insertions is known [9] and far from uniform. Indeed for binary search trees,
the average height for size n is 0(logn) corresponding to a logarithmic
search, and Robson [16] has shown the following bounds :

THEOREM BST : Let Kﬁ be the average height of binary search trees generated by

n independent random insertions, then
c1.1ogn + o(logn) < Kh < :2.109n + o(logn).
with ¢{>3.6 and €,=4.31170... .

K

The precise ésymptotic behaviour of TB%H is not yet known.

To conclude this presentation of alternative statistics, let us mention
the result of Yao [17] relative to the height of index trees in dynamic
hashing, which also applies to digital search trees (tries) :

THEOREM D : Let L_n be the average height of a digital search tree constructed
over n keys uniformly drawm on [0,1], then there exists constants

q and ¢y such that :

€ logn < [h < ¢ Togn, for n22.

Some considerations about height in combinatorial structures are developped
in our final section. We have not addressed in this paper the somewhat
different problem of path length in trees, (seé rg,91) and the related question
of levels of nodes in trees (which can be used to :derive ubper bounds on
height). For this last problem the reader is referred to the excellent paper
of Meir and Moon [10].

IT - THE HEIGHT OF BINARY TREES : BASIC RECURRENCES

We consider the set B of binary trees in the sense of Knuth [8] : every
node has either 0 or 2 successors and left and right successors are
distinguished. The size of a tree in B is the number of its internal binary
nodes, i-e the number of nodes with two successors ; we let |t]| denote the

size of t. We also define

Bn = card{teB : |t]=n}.




The height of a binary tree is the number of nodes along the longest branch
from the root and is given inductively by

1
1+ max{height(tl),height(tz)} where t,=left(t) and
' ty=right(t).

{height(D)
height(t)

Figure 2 shows the distribution of height on trees of size 4.
i’<:f<j<:\\:if;:f?\\ :::2;;\ //f;%:>\\ ,/;;;:E?\\ /;:;Ei::: ’/izfzzi\\\ //i::t:%:>*\\
KN R Row AR A

Figure 2 : Amongst the 14 trees of size 4, there are 8 trees of height 5 (a),
and 6 trees of height 4 (b),

We introduce the quantitiés

Br™) = card{teB : It|=n and height(t)sh},

and the average height of all trees of size n, Hﬁ, is

H -
L L _ rhl _ .Ch-1]
Hn = E; with Hn = Eé% h(én Bn ) . (1a)




h] =B if h>n. Reorganizing

From the definition, we clearly have that Bg n

the sum in (la), we thus get

H = 5%% 8 - 8"y . (1b)

The first values of these quantities are displayed in Figure 3.

n Bn An,l ‘An,z An,3 An,4 ifAn;S"'An;7 An,7 'Hh

1 1 1

2 0 2 2

3 0 1 4 2.6
4 14 0 0 6 8 3.57
5 42 0 0 6 20 16 4.24
6 | 132 0 0 4 40 56 32 4.87
7 | 429 0 0 1 68 152 144 64 5.47

Figure 3 : The distpibution of height in trees of size <7 with

o pgChY _ o[R-1]
An,h Bn Bn *
We now introduce the genérating functions relatiye to the Bn’ Bﬁhj
and Hn : ‘

B(z) = 2, B 2",

n=0 "
sChI(z) - > glhl,n
n=0 "

H(z) = 2 02"

n=>0 n




The inductive definition of binary trees shows that the Bn satisfy the

recurrence

Bn “n +nz;1—n Bn Bn

172 1 72

whence

B(z) = 1+2(B(2))°, (2a)
and _

_ _ 17174z _ 1 2n

B(2) -2z Bn T n+l (n) : (2b)

The Bn's are the Catalan numbers. From the Stirling formula follows the
classical approximation :

B, = 4" (1+0(%)) : (2¢)

1m3

The same decomposition principle that gives the equation for B applies
to the B[h] showing the recurrence

B M35y - 1+z(s-r-h3(z)>2 . 8"%(2) = 0. (3)

Chl coefficients and the first

No simple express1on is available for the B-
[h]
B

values of the (z) are given below :

BI0Vz) = 0 ;811 (z) = 15 B[P (2) = 142 ;

2.0.,3,..4,,.5

+52°4+62 "+62 6 7

B[3](z) 1+z+222+z3 ; B 4](z) = 1+z+2z +4z27+

-1, and th] = Bn for n<h,

Obviously degree (B[h](z)) = o1

Summarizing the recurrences, we can state

PROPOSITION 1 : In the ring of formal power series,

fz) = 2 (bca) - 6™ (2).

h=0

wheve B and the BI

B(2) = 1+Z(B(z)> ; B (g) = 1+z<B[h](z))2 with BLO3(z) = 0

satisfy :

11




We shall now proceed by proving that this expression for B(z) is also

valid analytically in some domain and is a way of continuing H(z) analytically

outside its circle of convergence,

PROPOSITION 2 : H(z) has radius of convergence %and the equality

H(z) = };; (B(z) - Bth](z))

is valid analytically inside the domain
: - 3 1 1
€y =z : lzl<z & gy},

the determination of V/1-4z in B(z) being positive for real Z<% . Moreover,
the sum for H(z) converges absolutely for z in CO‘

PROOF : For each non empty tree t, we have the obvious inequalities

1 < height(t) < |t],

which considering all trees of size n shows that

Bn < Hn < an .

From the estimate (2c) of B, follows that H(z) has radius of conyergence
equal to;lr . '

Notice first that the series giving B(z) is absolutely convergent when
lzls-} . Indeed B(z) converges as Zn'3/2 for all z with |21=21r. Let R

denote Z an", then from simple majorations, we have
nm

18(z) - B"™M(2)) < R,(121) when 1z1<),
and B[h](z) + B(z) for any z such that Izlszlr.

The nature of the convergence is obtained by writing :

B(z) - BE"™1(2) = 2(8(2) - 8™ (2))(8(2) + BIM(2)).

12
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Dividing by 2 B(z) and setting eh(z) = B(z%'g(z)(zl», this recurrence

is transformed into

epy1(2) = (1-/1-3z) ep(z)(1-e,(2)).

We shall also set e=e(z)=(1-4z)1/2, the determination of the square
root being as above. In this notation,

e ,1(2) = (1-6(2)) e (z)(1-e,(2)) with ey(z)=3 .

Assuming z to be in CO’ we have {1-e{<1 and the convergence of the

eh(z) to 0 is geometric with
1eh‘z)1<c(z) ll-’e(z)lh for some c(z) ;
thus }E: eh(z) is also convergent and the same holds true for the sum

h=0
2 02 - 8. 0

As will appear from considerations to be developed later, en(%yv% and
thus enc%) - 0 as n + =, but at this point (where |1-el=1) the series }E:en

. . . n>0
diverges as the harmonic series.

In the sequel we shall mostly work with the functions en(z). We shall
thus replace equations (3), (4) by the set :

eo(2)=7 e,1(2) = (1-e(2))e, (2) (1-¢,(2)) (5)
and
.
H(z) = poeray nzg e (2) ; ®

where €(2) = (1—42)1/2.

IIT - A FIRST ANALYTICAL:CONTINUATION OF H(z) OUTSIDE THE CIRCLE OF CONVERGENCE

We proceed to show that H(z), as given by the previous recurrence equations
(5), (6) is analytic in a domain larger than the circle of convergence. To
that purpose, we use an argument which is essentially topological and whose
principle is based on some continuity properties of a convergence.criterion.
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We take the complex plane cut along the axis z>~%, €(z) being as before
that branch of /1-4z which is positive for z real, z<%u Consider for fixed
z, the function of y :

f(y) = (1-e(2)) y(1-y),
in which z (or equivalently €) enters as a parameter.

From what we have seen en(z) = f(n)(%) where f(") is the n-th iterate of
f. We are interested in the area in which en(z) + 0 in a non degenerate way.
This can only occur if O is an attractive fixed point of f(y), i.e., if
f'(0) = (1-€) has modulus lezs than 1. In this case any sequence un+1=f(un)
converges provided its initial value is close enough to the fixed point.

We thus restrict attention to va]ues.bf z in the domain
Dy = {z : 11-e(z)1<1}.

Domain D0 is the inside of a cardioid-shaped contour that properly contains
CO. The domain of values of z for which en(z) + 0 as n » o thus lies somewhere
between C0 and Do.

The following lemma is a useful convergence criterion for the sequence

{em(z)}

m=0"°

LEMMA 1 : [Convergence criterion for en(z)]. A necessary and sufficient condition

for the sequence {en(z)} to comverge to 0 for zeDy Zs that for some m

n=0

' 1
T < =T 7
Furthermore, if this condition is satisfied, then the convergence of the

Ien(z)l for n2m Zs monotoniec.

PROOF : The condition of the lemma is trivially necessary. To obtain its
sufficiency, note that applying the triangular inequality to the recurrence
of the e, leads to
. , 2
len+ll < ll-Ellen! + |1-efle 1™,
hence

lepeq! = legl < le li1-el (lenl +1- '11’_1?]')
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. 1 . .
Thus if |enl < =T - 1, then 'len+1| < |en| and a fortiori 'Ien+1| < Tl—:-lET -1

so that the argument can be repeated. We have thus established : if for
some m 1

1em' <T1—'ET -1,
then for all nz2m :
1
Ien+11 < 'en' < Tm' -1,

It remains to prove that 1en| +~ 0 in this case. Assume a contrario
1en1 +L#0 as n > o,

Then, from the basic recurrence

€1 - (1-€) en(l-en) s

by continuity it follows that

1
11'en‘ '*-rl_—eT .

The conditions

1 1

entail that the only possible accumulation points of the sequence {en} are

points a satisfying
|d-|=L<Ti}—€r-1 and |1-a1;T1_}_€T

but these two conditions are clearly contradfctory. We must therefore have
L=0 which completes the proof of the proposition. 0

Using the first few values of the en(z) expressed in terms of £(z) :

eo(2) = 3 4 ey(2) = 7 (1), ey(2) = 55 (1+5)(1-¢)5,

we see for instance that e already satisfies the convergence criterion

for Ze[--g- ,g-].

Lemma 1 can be used to show that the domain of values of z in which
the sequence {en(z)}n>O converges is an open set, and thus properly contains Co.
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LEMMA 2 : [The open set property for the convergence domain of H(z)]. The

domain K of values of z in Do for which the sequence {en(z)} converges is

n20
an open set.

Furthermore the series Z e
n=0

n(z) 8 analytic in K.

PROOF : The proof is based on the continuity of the convergence criterion of
Lemma 1. If zeK, then for some m,

- 1 -
6(z) = T=e(z)T 1em(z)1 > 1.
Now clearly ¢(z) is a continuous function of z inside D0 ; thus there
exists a positive real h, such that for all z' satisfying

1z'-z1 < h,

we have ¢(z')>1. Hence em(z') also satisfies the conyergence criterion and
en(z') +>0asn > o,

To prove analyticity we observe that the convergence of en(z) to 0 is
geometric and uniform. Indeed since 11—s(z)|(1+1em(z)|) <d < 1 for some d,
there exists a real & such that for all z' satisfying {z'-z] < 6

11-5(2')1(1+1em(z')1) <d<1,

Since for nxm the quantities 1en(z')| decrease with n, we thus havé
| | n-m )
e (z")1 = d" 7 e (z')1

hence len(z')| < c.d" for some real ¢, uniformly in {z'-z] < §. This shows

en(z') to be uniformly convergent in |z'-z] < &, and the sum is analytic
n=0
in |z'-z] < 6. 0

We can apply this lemma to the points in the disk |z'|s% with zf%. For
each such z, there exists a §(z)>0 such that H(z) is analytic inside the
domain

D(z) = {z' : 1z'-z| < &(z)}.

The domain

, = L o(z)

ZECO

is open, properly contains Co and H(z) is analytic inside it.
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The point z= H’ is on the boundary of Dl’ but we do not know yet the
exact configuration of this boundary at K’ However from simple topological
considerations (essentially the Borel-Lebesgue lemma), we have :

PROPOSITION 3 : For each m, there exists a A>~% such that H(z) <8 analytic

in the indented crown

lArg(z)i >n and |z] < A.

IV - CONTINUATION OF H{z) AKOUND THE SINGULARITY

We now need to study the behaviour of the sequence {en(z)} when z lies in
a sector around-% situated inside Dy. To do so, we first show that, in part of
the domain, the initial values of en(z) decrease steadily ; we then prove
that, at some stage, they satisfy the conditions of the convergence criterion

(Lemma 1).

We start with the following obvious lemma.
LEMMA 3 : Let g(y)=y(l-y). If y satisfies
Iyl < 1 and 0 < Arg(y) < Arc cos l—,
q 8
then 19(y)l < lyland 0 < Arg g(y) =< Arg(y).

PROOF : Let y=re'‘. Then
—_— i 2. 1/2 e f sin t
g(y) = r(1+r°-2r cost) exp (l(f Arc tan T?F_EBE—E)) .

The hypothesis implies that 2r cos t = r2 whence the bound for lg(y)l.
On the other hand, as is easy to see,

rsint

0 < Arc tan y——c5—F < Arc tan sin t < t,

whence the property for Ara g(y). 0



LEMMA 4 : TInitial decrease of 1em(z)|]. Suppose that ZEDO, Im 220, and

Arc cos B

let N(z) =1+ [ J Then for all n<N(z),

rg (I-e(z

1en+1(z)| < ley(2)! sv%

and 0 < Arg (en+1) (n+1) Arg (1-¢(2)).

PROOF : It immediately follows by iterative use of the preceeding lemma. 0O

The restriction that Im z > 0 in the above lemma and in the sequel
is made for notational convenience since

en(Z) = & (T , H(D)- F(TT ... .

We are now left with proving that for z in a certain sector around %3

eN(z) satisfies the conditions of Lemma 1.

Our treatment heavily relies on a trick used by De Bruijn [1,p. 1577 in
the context of non-linear recurrences of a similar type. We shall express
it as follows

LEMMA 5 : TAlternative recurrence on the en(z)]. If all the ej(z) for j=0,1...n-1
are different from 1 then the following relation holds :

1- 1-(1-
( ei) ( ), 2 + Jgn:-a—)- (1-e)Y. (7)

PROOF : We start again from the recurrence
ej+1 = (1-€) ej (l-ej),
and we take out the (l—e)J factor present in ej :

e

eJ.+l _ .
(1-e)3* (1-¢)3 oeg)-

The essential trick now is to take inverses

1-¢)3*1  (1-¢)d -1
(1-€) = ( ee) (l-ej)

€341 j




and use the expansion
2
-1_ u
(],U) —1+U+-ITG

valid provided u#l. Here we get

. . 2

(1-e)3*! _ (1-¢)] €5
e =% 1+e;+15-)>

j+1 i j

1- j+1 Y . e, T
( efil =) 1e)d 4+ L (1)
J J

_eyd
When we sum these identities for j=0..n-1, terms like ilEEl_ cancel out

and using the initial value éL-= 2, we get J
0
“’E) 2 e sz Z (1-e)~"l
®n j<n J<n
from which the lemma follows. 0

\

n
The relation of Lemma 5 suggests ‘—51155%7 as a good approximation
1-(1-¢)
to en and we are going to justify this view in the next few pages. Notice
also that this relation between enii and e, has the character that an upper
bound on the eJ 's for j<n is turned into a 1ower bound on the €+l 's and
vice versa. As an application, we study the sequence f =e (I) whose asymptotic

behaviour will be needed later.
The fn satisfy the recurrence
_ . 1
LI fn(l-fn) with fO =5
hence, from Lemma 5 :

! :E: 'T_?'
—=n+ 2+ (8
i jn 7T )

The fn's being positive, it follows that

%% > n+2 or fn <HE o

19
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Using this more precise estimate again in (8), we get

1 1
7 n+2 + :E: 37

<
n Jj<n
Continuing the process, we see that

_ 1

fo = n+Togn+0(I} °*

and more precise estimates can be derived by iteration .of the process.

LEMMA 6 : [Convergence in a sector around %J. There exist positive constants
Pgs8qg such that the sequence {en(z)} converges to 0 when Z ©s such that

ZeD0 3 le(z)1 < pg and -(g + eé) < Ara g(z} < —(} ~ 9q> .

PROOF : We only have to show that eN(z)(Z) is small enough to satisfy the
conditions of Lemma 1. For this purpose we use Lemma 5 to provide an upper
bound on leN(z)(z)l.

We set e(z)=pe19 and expand (l-e(z))N(z) in terms of p for small p
when 6 lies in some interval around —%} not containing 0.
The following expansions are valid for p small enough and Arg(e(z))#0.

They furthermore hold uniformly when 6 is in any interval of the form

[-%-A,-§+uwith0<x<%:
_ 2

11-e(z)!1 = 1 -p cos 6 + O(p )s

Arg(1-e(z)) = -p sin & + 0(p?),

N(z) = —2__ + 0(1) with a = Arc cos é,

11_8(2)1N(z) - o cot & 0(p).

In order to get an upper bound on eys Wwe shall derivenan asymptotic Tower

bound on the right hand side of the relation giving Lléil— in Lemma 5, which

we take as n

(1-e)"  1-(1-e)" , 8,1, > 8 (1-¢)
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: . 1 4 1
Since for 1<j<N(z), 1ej(z)1 < 7, we have 'I:EE . < §-and
1, > 5 il_1.,1 j
+ (1) | < % + 11-¢l
37 15N T8y 33 G
21 1-p1-gV
=3 T1-T-€]
1 1-e% cot 6
< 3 TpcosO + 0(1)
On the other hand
1-(1-e)"| | 1-pe"
€ €
o cot ©
. 1€ 5 + 0(1).

Thus for p small enough

>§-+

|1-(1-e)N
€

1, > 5 i
+ (1-€)
37 15 T8y

an inequality satisfied provided cos 6 >-% + & for some §>0, which we shall

now assume.

We have thus shown

N o cot © .
1- 1- 1
1—132—11— > S Cos © (COS‘ 6 - '3') (1+0(p)) s
or equivalently N
1e ,I < p COS 6 11"51 (1+0(p))
N (l_ea cot 6)

(cos 6 - %)

This estimate is to be compared to TT%ET - 1 which is

1 2



Thus the convergence criterion is satisfied for p small enough provided

ea cot 6 1

<1.
(cos 6 -:%)

Equality is achieved for -6= 0.819168... > % and inequality is
ensured for all smaller values of {6}, which completes the proof of the Lemma. O

Again the convergence under the conditions of Lemma 6 is geometric except
at z =-% and we can restate this lemma as :

PROPOSITION 4 : The function H(z) <s analytic in a sector around %—défined by

2#71; ; 12—21;‘l<a0 and 7 - B < 1Ar9(z-21;)1 <z+ BQ,

for some aO,BO > 0.

There does not seem to be eny more straightforward argument to prove conver-
gence of e (z) to 0 in the domain described in Propositions 3,4. Actually,
numerical computat1ons 1nd1cate that the convergence of e (z) is not monotonic
in the whole of the convergence region, and the e, 's d1sp1ay a fairly erratic
behaviour away from the point z=1/4.

V - ESTIMATES ON H(z) AND'THE'AVERAGE'HEIGHT'OF'BINARYVTREES

From the results of section 3,4 as summarized by Propositions 3,4, we
now know that H(z) is analytic in an indented crown shaped region depicted
on Figure 4. We proceed to evaluate the Taylor coefficient Hn of H(z) by
means of Cauchy's integral formula

| dz
ot §{>“(Z) el

selecting a contour inside that region which gives predominance to the behayiour
of the function around the singularity-% . To do so, further information is
required on the growth order of H(z) around %— After some preparation

(Lemma 7,8), we show that H(z) behaves there Tike a logarithm (Propos1t1on 5).
Once this is done, we are able to conclude with the proof of Theorem B.

22




Figure 4 : A diagram representing the relative posltlons of the boundaries
of Co(a), of Do(c) and of a convergence region guaranteed by
Propositions 3,4 (b).

LEMMA 7 : TUniform bounds for 1en(z)] around 1/41. There exist constants
s Bl and Cq such that
°1
le(2)1 <
1 .
when 12-21" < 0y and ]2[ - Bl < 1Arg(z-z)l < + Bl'

Moreover ijj'n > N(z), then

e (2)[< ¢ le(2)] 11-e(z)1".

PROOF : We may suppose without loss of generality that Im z20. Suppose
first that lsns<N(z). Let e(z)=pe e. Proceeding as in the proof of Lemma 6,

we find that

8, |1 il s 1 1o 1 2-11-¢)”
3 izt ;E: IT-e, (I-)"| =3 +3 T-TT=r 3 T cos 6 +0(1),

+ N(z) has been defined in Lemma 4.

23



while

1-(1-e)"| . 1-11-¢]"
€ P

Hence if n2c2, then

n-1 . . | n
3+ :E: J; (l-e)J' < %.ll:il:il_,,

j=0 l-eJ €

and so

2leli1-el” _ _ 2
1-{1-¢]" 1-11-¢|"

<
Ienl._

Take first nsN(z) ; then

I1-¢{" exp(-np cos 6 + O(npz))

v

1 - 8np
for some &>0, and so
2
1en1 = In
Since le | = O(n'l) for n<c,, we find that

-1

le 1 =< cy M for n<N(z).

Let us next suppose that n>N(z). Since we already know that 1ej1 is
monotone decreasing forj>N(z) (Lemmas 1 and 6),

C

1ejl < NT%T for j=2N(z),

and therefore

n-1 e ) N(z) c n-1 3
342, - (1)< 3 ile 300 D0 1.
j=0 "% G| = 2r ey ;E} TG j=N(z)+1 Hoel
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On the other hand, ll-sl" < 1/2 for nz=N(z) and p small enough, so

1-11-e1" _ 1
> 5 > 75

|1-(1-e)"

(A

Since (20)_1 > 2 ¢y log p-l for p small enough,
legl < 4o 11-e1" = 4 lel 11-e1",

for n2N(z) if we make a, small enough. This proves the last part of Lemma 7.
To complete the proof of the first part, we note that for ¢ = pe19

78 < Arg(z-7) <346,

tel 11-e1" < p(1-5p)"
and the maximum of p(l-%{ﬁ" as a function of p occurs at p=2(n+1)"1 and

is < 2(n+1)'1. 0

LEMMA 8 : [Uniform bound for the convergence of en(z) to en(%)]. There exist
constants a,, B, and s such that

ea(2) = o] < e te(2)1

when1z-21r1<a2 and -12[-62<

PROOF : Applying the estimate of Lemma 7 to the expansion given by Lemma 5
yields

CES LA Se Co L OIS 11€|j)
en J=1
= 1'(2'5 " + 0(109(1-11-81)-1)

n
= 1:1%:51_ + 0(109161-1),

as well as the already known result

__lI_ =n + o(:Z: j'l =n + 0(log n).
enlz) J<n




Z0

Hence for ns<N(z)-:

(1-)"fe (1/4) - e} (1-e)" _ (1-¢)"

e, en(1/4) - e, en(174)

1-(1-€)" - ne(1-¢)"
€

+ 0(oglel ]

n

0(n?lel).

Therefore

len(174) - e = 0(nfe e e (1/4) (1-)™)

[}

0(1el)

which proves the lemma for nsN(z).

On the other hand, if n>N(z), then
le 1, e, (1/8)1 = o(n™!) = o({el),
so the lemma is trivial in this case. ]

With these Temmas, we proceed to determine the behayiour of H(z) around %n

Our previous developments suggest approximating }E: en(z) by
n20

in an appropriate region. To that purpose, we study the difference

D(z) = 25 e (2) - L(z) .

n=0
Using the expression for en(z) given in Lemma 5, we see that

Sn(z)

D(2) =3+ 2, €,(2) glhmy -

n=>1
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where

q(n,z) = -——(—,——l““;egz”"

and S (z) =3+ 2 al—e—(f)-(l-e(Z))J

1<j<n

We notice that D(Z) exists since the defining series converges as

log n
Z——ngz-— - We propose to show that D(z) = D(I) +0(1l) as z » -4- and need

an estimate of this o(1) term.

LEMMA 9 & (Fi rst approx1mat1on 1emma] For z in a neighbourhood of I’ with
lz-I|<a <Ar (z- )< + 8
s 37" 9 iz=7 3
1

D(z) = D(dy + o<(1-4 L n) 0
= Dz z) for any n>0.

PROOF : As in Lemma 8,

n-1 ©
e. . R
3+ E = o) - o@:j ! |1-e|3> = 0(Tog le1™).

However, we also have for n=3

n-1 e n-1
3+ Z T—%‘ (1-)d| = 0(3 + j'1 = 0(log n) .
j=1 h| j=1
Therefore
(1;e)" ) 1—(i-e)" .t
n
where

t o=t.(z) = 0(109 (min(n,lel-l))>.

Hence if n exceeds some fixed constant,

e, i e . 0 ( le™t | )
(1-e)"  1-(1-¢)" 1-(1-)"%)

: 2 n
i e - e(l-e)" i 0([8 t, [1-€| )

R (1e)" 11-(1-€)"1°




|-1/2

If e <nc< lel_l, then
d =0 'lezl'1o n). oflogn
n *‘gﬁ‘z - 2
11-(1-€)"1 n
If n > lel” L,
d. = 0(1el? 11-e1" 1og 1e17}) .
Therefore

Mond, d 0( :
n>|ell/2 n n>le|-1/2 n

log n 2 -1 Z n
—5—] +0{lel” log lel I1-e]
) ( 9 n=0 )

= 0(1e1 Y2 10g 16171

Since for all nx2.

1, _ log n
4@ = o(12%) .

we find

¢ - D, d () = 0(1e1Y2 10g 1e17}).
n>1e1<l/2 T nolerl/2

For lsn<|&:l-1/2 s

.e(l-e)n' 21

=+ 0(le]) .
1-(1-¢)" n * oteD)
Therefore
n
2 -adne 2 O(Ie,,-e,,&n»r—s‘ﬁ)—,,-%)
n<le|~1/2 n<le|-1/2 1-(1-¢)
- D ol = o(elYyy |
n<1€|‘1/2

which was to be shown. ]




The constant D(%) in Lemma 9 can be evaluated numerically as

D(3) = 3+ ;1 (e, -,

. 1
and we find Dn(z) = 1.60... .

To get the final expansion of H(z), we only need to estimate L(z). The
observation that

—e 1
1-(1-¢)" n

for fixed n, when e+0, suggests that L(z) behaves like

:Z:"Lliglﬂ = log €,

n=1 n
which we are now going to justify formally.
Notice alse that expanding in poweYs of (1-g) :
L(z) = e(z) 25 d(m)(1-e(2))"
m=1

with d(m) the divisor function of m : d(m) = :Z: 1.
dim

PROPOSITION 5 : [Main approximation lemma for H(z)]. For z in a sector around

12-%l<a and %-B< Arg(z--i—) <g—+6,

the following expansion holds for H(z) :

H(z) = -2 Tog(1 - 42) + K + 0(11-421") for any vei,

with K% -4.1, a constant.

PROOF : It only remains to approximate the function

E e(l-e}n

n=1 1-(1-¢)"

29
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where z is in the specified region. Setting (1-¢) = e-u, this amounts to

approximating

L(u) = 2 (-e™)  -nu

nx1 (1-e™MY)

when u is close to @ and Arg u is close to %-.

To approximate this sum, we consider it as a Riemann sum relative to

the integral

® -X
1-eX

u

X .

Since the integral from 0 to « is divergent, we split the sum according to

whether nlul < 1 or nful 2 1, and compute the error terms separately.

For n such that:nfu}l 2 1, we use the Taylor expansion

f(n+1)u

nu

and summing, we see that

for some constant c. Hence with n

2

nx1

=X . -nu 2 -X
e ue lul d e
dx - < max
-X -nu 2 . dx -X
1-e 1-e tel0;1] 1-e x=(n+t)u
-nu ® -X
Zl ue-nu = j £ — dx + 0(ul).
n={u]” 1-e ul]ul-l] l1-e
-X
For n such that nful < 1, on the other hand, we expand -= = - %
l-e
which is differentiable and of bounded derivative over r0;1] so that
(n+l)u
-nu -X
ue _l_f e __1_) dx <c1u12
1_ -nu n l_e'X X
nu
-1
0= lul , we have
nou o
-nu =X -X .
HE __ - Z l+f (e_-l)dx+f e_xdx+0(lu|).
1-e M 1 " , \-eX X - J o 1e

0
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Approximating the harmonic series by the logarithm and changing the bounds
of the integrals with only O(u) correcting terms, we see that (with y the

Euler constant) :
u

TaT o
-nu -X =X
Eu e_nu=-1og’|u1+y+f (e_x-l)dx+J e_xdx+0(|ul).
nzl1 1l-e 1-e X 1-e
0 u
Tul

Using the Cauchy residue theorem, we can change the path of integration
to the real axis, and we have

. -nu -X -X
Zue_nu -1og’|u1+y+j e_ -1 dx+f e_ dx
n>1 1-e o l-e X X ; l-e X

TaT
j = 4 o(tul)

1

= -log ful - i Arg (u) + & + O(lul)

= -log u + & + O(ful)
1

~X -X
with (S:f(e-x-?l() dx+f e-x dx + v.
0 1-e l-e

In fact the two integrals cancel each other and we have & = vy .

[s o]

1-e Y
u

Since € =u + U(1ul2) and =1+ 0(lul), we get

ZM= -log e + v + 0(le]) .

1-(1-¢)"

Combining this with the approximation in Lemma 9 yields the result, with
the constant K given by

_ 1
K= 4Dn('4') + 4Y. g
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To estimate the coefficients of H(z), we need to be able to translate
the approximation of H(z) into an approximation of its coefficients. This
is achieved through the translation lenma that follows. Since the result
is of independent interest, we state it in a slightly more general form
than strictly necessary here. The Temma is inspired by [12] and may be
compared to the classical Darboux me thod although the conditions of validity
differ appreciably.

PROPOSITION 6 : [Translation lemmal. Let G(z) be analytie in a domain

2tp 3 121 < py 5 1Arg(z-p)1 > 6 with P> e<,}.
Assume G(z) satisfies an expansion
. a.
6(z) = A Tog (1-2) + u+ 2o A, (1-Z) 1 4+ 0(1-Z)Y
P 1<i<m e e

with 0<0L1<0,2 se <0<V, valid inside the intersection of a neighbourhood of p
and the domain of analycity.
Then the n-th Taylor coefficient Gn of G(z) admits the asymptotic

expansion :

C..
_ -n A z ij 1
Gy =P [’ﬁ”" ot 0<n\)_+1')]
n

01,1.+j<\)

PROOF : The n-th Tayior coefficient can be computed using Cauchy's residue
theorem, as :

21 dz
Gn T 2im [+ G(z) Zn+I
0

where the contour simply encircles the origin and is inside the domain of

analycity of the function.
We take here the specific contour
r(w) = ro,(,l) U rl’w U '-2 k]
defined for some fired 61 and some fixed ry satisfying

m

8<61<—,2 and D<r1<pl,
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by :
low = {2 3 1z-pl=0 & IArg(z-p)] > 6,
Mw™ 2 lzpl 2w & |zl <T; & Arg(z-p)] ='el}
M, ={z : lzl=r; & IArg(z-p)l 2 6y} |

The contour is depicted on Figure 5.

"

Figure 5 : A diagram showing the contour I (w)

We first shown that we can let w shrink to zero. As w tends to zero, the

integral
1 d
H(w) = 2im f G(z) niI
r z

0,w

tends to zero, as can be seen from the inequality

(@)1 < (o-0)™ ! max{6(z) : Z P
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From the local expansion follows that the upperbound Vanishes with .
Letting [=(0) and [1=M1.0> we thus see that G can be computed as :

G = 1 dz
n - 2im zn+I
r

The same argument applies to the functions in the local expansion of G :
1og(1-§-) and the (1-%)"‘ , showing that

p_n 1 z
"T:m ]09(1--—5) dz

r
-1)" o™ (%) =T%f (1-2)% qz.
r

Hence :
-n A n % 1 dz
B = P ['ﬁ+ (-1) (n)] taw | R o
1<i<m [
with

R(z) = G(z) - A log (1-2) -y - DY (1-5)(1i .
P 1<i<m P

Now R(z) is analytic along Iy and is 0(1-%)\)around p. Consider first
the integral of R(z) along r2 ; we have the obvious upper bound

2—%} R(z) ;ﬁ—ir < max{R(z) : zel,} . rin .

P
R(z) being analytic along r2 is bounded, and this integral is exponentially
small compared to p-n, since ry>e. We are thus left with estimating integrals
of the form

z AY
I\)(n) = '1'3' il °
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i
We set z = p(1 + te ¢) with ¢ = tel and t real ; using the symmetry of the
contour, we have :

' o
v
I,(n) = 2.0 " J’ t1gtn+ for some o
0 [l+te 7|

<? p-n I t¢dt
: 11291001
o llste’ ™
Now |1+te1¢| = (1+t2+2t cos ¢)1/2 and since cos ¢ > 0, we have
(1+t2+2t cos ¢)1/2>1+At for some A>0 ; so that
tVdt

I (n) < 2.0
v 0 (1at)™]

-n xvdx
) 0(% 1+x)n+I
0

(
T 1
To conclude with the bound we only need to show that '_'"_%1T is 0(;T?§> .
(1+x) n

0
Indeed

. 1
xVdx _ x dx + 0(2-n .
o ()™ ) (1™ )

for x e [0;13, (1#x) > ex/z, so that

1 1 ~( X
xdx v —?_)
——n—+1— < X € dx
0 0
1

(1+x)
1
_(n+ ) x
< .[. x’ e ? dx
0

T(v+1) 2\)+1
(n+1)\)+
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Hence
oM
Iym = o1
Putting everything together, we have thus shown that
a. — - -
G, = e n [-.% + :E: (r:)(-l)n] +0(p ™™ 1).
1

<ism
To conclude the proof of the proposition, there only remains to examine
the asymptotics of coefficients of the form

(-1)" a(a-l)r.ﬂ. .(a-n+l)

_ 1 M{n-o
n rt-=a) r(n) °

Known properties of the gamma function show the existence of an asymptotic

-1" ()

expansion
IR LLL T Cj(a)
(-1) (n) v ;g; noa+J+] i

with, in particular,
-1
cola) = (F(-a))™" .

Plugging these expansions into the estimate for Gn thus completes the
proof of proposition 6 with

We have thus seen that adequate local information on a function G around
its singularity leads to corresponding asymptotic information on its Taylor
coefficients. The better the local approximation, the more terms the asymptotic

expansion contains.

We can now complete the proof of theorem B.
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Proposition 3 shows H(z) to be analytic outside the circle of convergence.
Proposition 4, together with proposition 5 provides the local expansion
around the singutarity %-(the expansion is actually also valid inside the
circle of convergence). Hence :

THEOREM B : The average height of binary trees with n internal nodes satisfies

Hn = 2/m + 0(n1/4+n) . for any n>0.

" Proposition 6 also shows that any improvement in the expansion of H(z)
will lead to a better error term.

n Hﬁ Hﬁ/ 2mn
10 7.07 0.631
20 11.29 0.712
50 19.97 0.797
100 29.98 0.846
200 44 .29 0.883
500 72.94 0.920
1000 - 105.42 0.940
2000 151.50 0.956
5000 243.17 0.970
10000 346.64 0.978
16000 440.31 0.982

Figure 6 : The average height of binary trees : Comparison of the exact
values to the asymptotic estimates.

Numerical results corresponding to theorem B are displayed on
Figure 6. We notice that the convergence of H‘ to v2m 1is initially qu1te
slow ; however for sizes of trees about 16000 the gap appears to be less
than 2 %. '
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VI - HEIGHT IN SIMPLE FAMILIES OF TREES

Following Meir and Moon, we now consider planar trees with labels
attached to nodes. A1l labels are taken from a fixed label set L

L = L0 u L1 U L2 U oo.

with Lr the set of labels that may be attached to a node of degree r. We
assume that each of the Lr is finite and we let € denote 'Lr' ; we can
also assume without loss of generality that all theer's are disjoint. A
family defined in this way is said to be simple (or simply generated [101]).
This definition obviously includes all families of unlabelled trees defined
by restriction on the set of allowed node degrees (in which case €. = 0 or
1). It also covers all families of term trees, i-e tree representations of
expressions over an arbitrary set of operators. As examples, we mention

(a) - the family of binary trees for which Cg = Cp = 1 and c. =0
for r # 0,2 ; these have been considered in the previous
sections ;

(B) - the family of general planar trees for which c,. = 1 for all
r20 : the analysis in [2] deals with these trees ;

(y) - the family of unary-binary trees for which Cp=C€1 =€ = 1 and
. = 0 for r>2 ; they appear as shapes of expression trees
when unary as well as binary operations are allowed ; the trees
are counted by the Motzkin numbers ;

(8) - the family of 2-3 trees (unbalanced) for which Cp =Cp =Cg = 1
and C. = 0 otherwise ; their balanced counterparts are a useful
data structure and have been counted by 0diyzko [12] ;

(e) - the family of t-ary trees (which also appear in digital search) ;
for these trees C, = 1ifr=0o0rt and c, = 0 otherwise,

As in the above examples, we shall restrict attention to those simple
families for which there exists an absolute.constant M such that

although our treatment essentially generalises to sequences {Cr} with a growth

rate Timited by an exponential.



Up to isomorphism, a simple family of trees is described by the sequence
{cr}rZO' Given a simple family F, we let Yn denote the number of trees of
total size n - i-e the number of trees formed with a total of n nodes. The
generating function

w(z2) = 2, y, 2"
nx1

satisfies an equation of the form

y(2) = z 6(y(2)) where o(y) = D cy".

n=0

Also, if we qefine

NI

n # trees of size n and height <h,

with height measured by the number of nodes along the longest branch, then
the generating functions

¥z - ]%3 yiM(z)

are given by

yOizy =0 Yy = 2 o(yMM(2)).

The functions ¢ corresponding to case a-c¢ above are thus respectively :

2 2,.3 .

1+y2 H (l—y)'1 y Ley+ry”™ 5 1ayTHyT 1+yt .

[h](z)

In the case of general planar trees, the y appear as convergents

of a continued fraction, and additional algebraic information is available
leading to explicit expressions for the y[h](z) ; this is the basis of the
treatment in [2].

In the binary case, there is a slight difference between the equation we
get here, namely

y(z) = z(1+(y(2))?),

and the equation for B(z) which is

B(z) =1 + z(B(z))Z.
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The two functions are related by
_ 2
y(Z) =2 B(Z )’
which reflects the fact that in this section we consider total size measured

by the total number of nodes (both nullary and binary).

The case of non planar labelled trees (with distinct labels)
does not fall into our category of simple trees. It can however be subjected
to the same analytical treatment since the exponential generating function

. n .
y(z) = :E: Yq %T with y =# trees of size n,

satisfies the equation

y(z) = z exp (§(2)),

with simi1ar(expressions relative to trees of bounded height. We shall
thus obtain the Renyi and Szekeres result [14] as a consequence of our
theorem S.

We now indicate the Tines along which the method employed for binary trees
can be extended to these simple families of trees.

let  H = D h(yth? - yfh-13
N hxp M n

denote the total height of trees of size n, with the generating function

H(z) = D2 an".
n=0

We are interested in the average heights defined by
H Hn
noy,
provided Yq # 0. We proceed by proving that y(z) has algebraic singularities
on its circle of convergence [10], and that H(z) has corresponding logarithmic
singularities.
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We have to distinguish two cases based on the value of
d = GCD {r | cr#O}.

The situation where d=1 (planar trees, unary-binary ...) is the simplest one
since, then, y has only one singularity on its circle of convergence ; in
this case, ynfO for all nzNg.The situation where d#1 (binary trees, t-ary
trees ...) requires combining results relative to each of the d singularities
of y on its circle of convergence ; in that case y,=0 if n#l(mod d).

Case 1 : Unicity of singularity

We start again with the equation

¥(z) =z o(y(z))

and look for the point where the implicit function theorem ceases to apply.
This occurs when

ady (ﬂyw) 0, i-e 6(y) =y é'(y).

Let T be the value of smallest modulus such that ¢(t) = 1 ¢'(1). The GCD
condition implies that T is unique and real ; let p = ¢'2 be the corresponding
value of z. For (z,y) in a neighbourhood of (p,t) satisfyingy = z ¢(y), a

local expansion shows that
(z-p) = ~(y-1)? ("’—é—fﬁ) +0((y-1)3).
- 2¢°(1)
Hence around z = p, y behaves as
1/2 |
_ [ 2¢(T _z,1/2
N (¢"(T)) -3)

and its n-th Taylor coefficient is asymptotic to

clp—n n~32 ith ¢, = <?ﬂ$(TT )

1/2




This is essentially the Darboux-Polya theorem applied to tree enumerations
(see [10]).

Starting from the two equations
9(2) =z 0(y(2)) 5 Y™ (2) = 2 o(y™M(2)),
and substracting, we get
(v(2) - ¥ H(2)) = 2080v(2)) - o(yM(2)).

Using the Taylor expansion of the right hand side of this equality
around y(z), we see that

(y—f””)=uy-f“)wW)P-(rﬁ“)%#%+ouwfmfﬂ-

When z=p, z¢'(y) = 1;expanding z¢'(y) around p, we get

1+ (y-1)1 %&%51 + O(y-1)°

" 1/2
1- (1»-%)1/2 T (§%r§§i> + 0(y-1)2.

Thus setting eh(z) = y(z) - y[h](z), and 1 - z¢'(y) = €(z), we see
that

z¢'(y)

ere (1) = (1(2)) e (2) ( - itk ep@) v oela) ¢ e(2) (y-r))) ,

where

1/2

172 " . '
@ = (-5 T (B0 oy,

The situation is then quite similar to what we had before. Taking inverses
and applying De Bruijn's trick leads to the approximate expression

e(z)(1-¢(2))"
1-(1-e(z))"

en(z) v oC
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with C, = 2 $ (: . Hence H(z) = :E: en(z) behaves around its singularity

n20
z =p like cy log €(z)
and
1 -n -1

H'\"é‘czp )
or equivalently A

T .1 %2 172

Hn’\l—fqn .

Case 2 : Multiple singularities

We now assume that d = GCD{n | n # 0} is non-trivial (d#l). The
equation

z¢(y)

y

can then be put in the form

zw(yd)

) a power series in u.

y
with y(u) = ¢(ul/d

The previous computations apply here : if T is the smallest positive
root of the equation

¢(1) = T ¢'(7),

then y(z) has an algebraic singularity at . Now, since ¢(y) depends only on
yd, we see that y(z) also has singularities at the points

= wv'T for §j=0,1,...,d-1,

where w is a primitive d-th root of unity. Setting as before

_ T
P TR
these singularities correspond to values of z
p. = me.

Local expansions for y can also be carried out around the pj showing

that
0.) = -3 (y-r.)2 £'(0) 43
(Z pj) w (_Y TJ) 2 (T)T + 0(()’ Tj) )-
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Hence, around z = pj, the approximation of y is

oo () 0%

J

1/2

The n-th Taylor coefficient of this approximation is approximated by
) 1/2
-n -j(n-1) -3/2 . _ ¢(T)

and provided n=1 (mod d) - which is to be assumed since ¥,=0 if n#l (mod d) -

these terms add up to
d ¢4 oM n¥2

The same phenomenon occurs for H(z) which has also d singularities on its
circle of convergence. Around 2z = Ps H(z) behaves as

1 J z
7 Ch W Tog (} - 57) s
J
so that for nz=l1 (mod d)

hence again
We can thus state :

THEOREM S : For simple families of trees corresponding to the equation y=z¢(Yy),
and for n=1 (mod d) with d = GCD {r : c, # 0}, the average heights

satisfy :
Hh v x.nl/z R
where 1/2
A $' (1)
o(T)o" (1) y

and 1 is the smallest positive root of the equation

¢(t) - 1¢'(1) = 0.



COROLLARY :

(1) The average height of a wnary-binary tree with n nodes is asymptotically

v3mn.

(i1) The average height of an unbalanced 2-3 tree with n nodes is

I’W 2+3t n
1437

where T is the positive root of the equation 2t

asymptotically
3412-1 = 0.
(i11) The average height of a t-ary tree with n intermal {t-ary) nodes
s asymptotically
t
2m ="

(iv) The average height of a (planar rooted) tree with n nodes [2] is
asymptotically

yin

(v) The average height of a labelled non planar tree with n nodes [14]
18 asymptotically

/Zmn .

VIT - DISTRIBUTION RESULTS AND OTHER EXTENSIONS

In this section, we show that our methods can be extended to derive

information about the distribution of height in simple families of trees. We
shall deal with the binary case giving asymptotic equivalents for moments of

higher order (variance...) . The distribution of height in trees appears to
obey a limiting theta distribution. A similar result has been proved by
Renyi and Szekeres [14] in the case of labelled non planar trees using a

rather different method, and in the case of general planar trees by Kemp [7]

using the explicit enumeration results available in that particular case.
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We propose to prove :

THEOREM MB : [Moments of the distribution of height in binary trees] :
The r-th moment of the distribution of height in binary trees
of size n satisfies
s
Mf,n v 2 r(r-1) r(%)c(r) "2 s naw

PROOF : The r-th moment of the distribution of height in trees of size n is
given by :

M
. Fh]  ,Ch-1]
W = L with M__ =D h' <_B~ - B- )

The quantities Mr o are estimated from their generating function :

with
M (z) = 2o n (B”‘J(z) - B”"”(z))

h>1

We only need to consider here the case when r>1, Expressing Mr in terms of the
en's and €, we get :

MA2) = Ty }; M (e.1(2) - € (2))

2 ()"

4 r
T+e(2) h=0 - h) eh(z)

using summation by parts. Hence setting

S,.(2) = hzz:l h' e (2) »

we see that

Mr(z) = ng [}Sr-l + (;) Sr-2 + (g) Sr-3 ...]
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The problem thus reduces (for each r) to estimating the order of Mr(z)
around the singularity 1/4. From this information, the asymptotic behaviour
of the M is recovered by methods similar to Proposition .

L]

We first compare Sr(z) with the simpler function
T.(z) Z o’ £(l-e)
r n=1 1-(1-¢)"

To do so, we study the difference S T using the tools of Lemma 9. The
summation giving Sr'T is sphtted 1nto

fe Do X e
SrTr' Z nd, + n'dn+ann

r<]e|”1/2 tel™ Y 2en<tet nzle]”!

U1+U2+U3

with n
d = e - E_(]'__-E)__
n n 1_(1_8)11

With the estimates for dn previously derived, we find :

(1)ul=o( Do oar l‘ﬁ’zﬂ)

n<|€|-1/2 n
n
using Eﬂf—E—Ln -1y 0(e) and t, = 0(log min(n,lel-l)) .
1-(1-¢) n
.. _ r logn
(1) U2 » 0( -I)ZZ _fll —nz—) s
lel <lel
. N log n . -
using dn =0 (—nz—) in this range . Hence
U = 0(loglel™ . 1e1 ™™y |



(1§1) Uy

O(Ie|2 Tog 1e1™l 3 n”(1-e)") .

n>lef”

0(log le1™! 1e17"*Yy,

]

using dn = 0(|e|2 11-e1" Tog IEI-I).

We have thus shown

s, - T | = 0(log lel™ 1e1™*y ,

r

a difference of a smaller order than Tr’ as we now prove.

Notice first in expanding Tr that

e Sar (1e)"

T n
r nx1 1-(1-¢)

L[]

e Zor(n) (1-¢)"
n=1

where or(n) is the sum of the k-th powers of the divisors of n :
o (n) = :E: a’ .
r din

with corresponding Dirichlet generating function z(s) z(s-r).

A function like

F.(u) = :E:or(n) e MU

can be evaluated asymptotically, for real u —~ O appealing to properties of
the Mellin transform as in [2]. The Mellin transform is readily found to
be

Fr(s) = z(s) t(s-r) T(s)

whose rightmost pole is at s = r+l . From there follows by inversion, through
a computation by residues
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1, 0(u'1),

F(u) = g(r+l) (r+l) u "
from which Tr(z) can be estimated when € is real.

To extend this evaluation to complex z and e, we use the method of lemma 10.
We set again e = (1-¢), and

-nu
. :z: nt e

T =
r n>1 1-e™MY
' - -nu
= el :E:,(nu)r e_n o u
n=1 1-e" MY

The sum is a Riemann sum relative to the integral

e o]
cr=fxr e-x dx ,
1-e

the integrand being of bounded derivative over the interval. We thus have :

T, = ceu™ (10(1un)

and translating back in terms of €, we get :

_ -r -r+l
Tr(z) =cEe 4+ 0(lel )

To compute ¢, it suffices to expand (l-e-x)-l, and determine separately each

integral. One finds :

c, = M(r+l) z(r+l) .

Returning to Mr’ we have thus obtained the local expansion :

M (z) = 4r g(r) [(r) e™L 4 0(1oglel.1e1TT?) |

To conclude on the asymptotic growth of the Mr e We again need a translation
lemma analogous to proposition 6. In fact, it is readily checked using

adequate contour integration, that the bound
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za
o2 =0 (1-3") a0
implies for the n-th Taylor coefficient g of g the estimate+
n

g, = 0(p™" nly |

Applying this to the error term in the expansion of Mr(z), and using the
explicit expressions for the coefficients of E-r, we obtain

1-r

Men = arg(r) T(r) 4" (TE_) + 0(a" nr/2-5/2-n) .

for any n>0. Since for fixed non integral o

1 -0- 1
(z) = ﬂ—_‘a‘)‘“al (1“'0(?{)),
we find : -1

M.~ arg(r) T(r) (T(5H)

n _r/2-3/2
v, 4" n .

Dividing by B,» we finally get :

0 o~oard/2 I e(r)  r/2,
r,n -

M5

which using the duplication formula for the gamma function yields

r r/2
M o~ 2" r(r-1) T(5) &(r) n /2 O

For n = 10.000, the asymptotic estimates of the 2nd, 3rd .and 4th moment
are within 10% of the actual values.

Now , we consider on binary trees, the "normalised height" defined for a

tree of size n by » .
2/n

The r-th moment ﬁr o of Bon trees of size n satisfies
’

ﬁr,n - r(r-l).r(g) z(r) asn >,

T One can use 4 contour that circles to the left of p at distance %, then continues
vertically away from p and closes itself at a finite distance of the circle

of radius p.



with error terms essentially in 0(%). (The formula is seen to be still valid
for r=1). We thus see that normalized height converges to a distribution
whose r-th moment is given by

r(r-1) 1(z) z(r). ,

The 1imit distribution is identified by comparing these quantities with
the moments of the theta distribution 141 whose cumulative distribution
function is

' 22,2
H(x) = ax3 TTS/Z-Z k2 g7k /x
k=0

22
- 2 XX add
—co<k <40

with corresponding density

2,2
h(x) = 4x Zk(Zk 2.3) ek'X

The r-th moment of this distribution is precisely

W, = r(r-1) T(z) z(r) .

We have thus proved :

COROLLARY : The normalized height

'ﬁ(t) _ height(t)
2/n
on trees of stze N admits a limiting theta distribution with density fumction

2 2
h(x) = 4x 2 k2(2k®x2-3) e KX
S|

as n +» «,

The same principle applies to simple families of trees, and one finds
for the r-th moment relative to trees of size n an asymptotic expression

of the form
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which again shows that, suitably normalized, the distributions of height
tend to a theta distribution.

THEOREM MS : [Moments of the distribution of height in simple trees] For simple

families of trees corresponding to the equation y=2¢(y), the r-th

moment of height in trees of size n is asymptotic to

] 2
r/2nr/2 with £ = ¢2$ érgT )

The distribution of the normalized height in trees of size n

R(t) = height(t)
v/En

tends to the limiting theta distribution of density h(x).

r(r-1) 1(3) &(r) £

As a matter of conclusion we would Tike to mention that many combinatorial
problems -especially tree enumerations- have generating functions associated
to functional equations of the form

f(z) = o(z,f(z))

where & is a functional reflecting the structural definition of the objects.
The approximations provided by the iterative scheme

0%z =0 5 M) < az,sM(2))

are often of combinatorial significance, representing a partition of the
objects according to some form of "height”. We have dealt previously with,

equations of the form

f(z) = z $(f(2))

corresponding to simple families of trees.

The enumeration of non planar unlabelled rooted trees corresponds to

equations of the form

f(z) + 5 f(2F) + 3 f(2°

f(z) = ze

) I
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as appears from developments in Polya theory. The present approach is
“applicable since the occurrence of f(zz) H f(z3) ... is known not to affect
singularities too much and ¥(z) still has an alaebraic singularity on its
circle of convergence (see Polya [131).

On the other hand the statistic about binary search trees and

tournament trees represent equations of a.different nature with probable

singularities of the type of T%E log I%E . We mention here the two equations

z
1 +f T2(z) dz
0

z
expf T(z) dz,
0

whose approximations provided by the iterative scheme are associated with

T(z)

and

T(z)

respectively height and one-sided height. Methods developped here do not
seem to apply to these problems.

Another Tine of extension of our methods is by looking at different limit
distributions. In another work, the authors have shown that the limit
distribution of binary trees of given height by size is Gaussian. The
proof is there achieved by applying the saddle point method and investigating
the analytical properties of the B[h](z) outside the circle of convergence
where they display a double exponential growth.

Finally we mention that the search of methods applicable, in a
fairly general framework, to large classes of trees has already received
some attention : Meir and Moon [10] have shown that path ]éngthin simple
families of trees is essentially n anvi 5 Odlyzko [12] has dealt with
functional equations of a general nature relative to balanced trees ;
Flajolet, Steyaert [4] have shown that the simple backtracking algorithm
for tree matching has linear average time when inputs are taken from any
simple family of trees.
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