480 research outputs found
Constraints on split-UED from Electroweak Precision Tests
We present strongly improved electroweak precision constraints on the
split-UED model. We find that the dominating effect arises from contributions
to the muon decay rate by the exchange of even-numbered W-boson Kaluza-Klein
modes at tree-level, which so far have not been discussed in the context of UED
models. The constraints on the split-UED parameter space are translated into
bounds on the mass difference of the first Kaluza-Klein mode of fermions and
the lightest Kaluza-Klein mode, which will be tested is the LHC.Comment: 4 pages, 2 figure
High Spin-Wave Propagation Length Consistent with Low Damping in a Metallic Ferromagnet
We report ultra-low intrinsic magnetic damping in
CoFe heterostructures, reaching the low
regime at room temperature. By using a broadband ferromagnetic resonance
technique, we extracted the dynamic magnetic properties of several
CoFe-based heterostructures with varying
ferromagnetic layer thickness. By estimating the eddy current contribution to
damping, measuring radiative damping and spin pumping effects, we found the
intrinsic damping of a 26\,nm thick sample to be \alpha_{\mathrm{0}} \lesssim
3.18\times10^{-4}(21\pm1)\,\mathrm{\mu m}_{\text{25}}_{\text{75}}$ heterostructure at room
temperature, which is in excellent agreement with the measured damping.Comment: Updated Versio
Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions
We consider Kaluza-Klein dark matter from latticized universal dimensions. We
motivate and investigate two different lattice models, where the models differ
in the choice of boundary conditions. The models reproduce relevant features of
the continuum model for Kaluza-Klein dark matter. For the model with simple
boundary conditions, this is the case even for a model with only a few lattice
sites. We study the effects of the latticization on the differential flux of
positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We
find that for different choices of the compactification radius, the
differential positron flux rapidly converges to the continuum model results as
a function of the number of lattice sites. In addition, we consider the
prospects for upcoming space-based experiments such as PAMELA and AMS-02 to
probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA
Dedicated versus mainstreaming approaches in local climate plans in Europe
Cities are gaining prominence committing to respond to the threat of climate change, e.g., by developing local climate plans or strategies. However, little is known regarding the approaches and processes of plan development and implementation, or the success and effectiveness of proposed measures. Mainstreaming is regarded as one approach associated with (implementation) success, but the extent of integration of local climate policies and plans in ongoing sectoral and/or development planning is unclear. This paper analyses 885 cities across the 28 European countries to create a first reference baseline on the degree of climate mainstreaming in local climate plans. This will help to compare the benefits of mainstreaming versus dedicated climate plans, looking at policy effectiveness and ultimately delivery of much needed climate change efforts at the city level. All core cities of the European Urban Audit sample were analyzed, and their local climate plans classified as dedicated or mainstreamed in other local policy initiatives. It was found that the degree of mainstreaming is low for mitigation (9% of reviewed cities; 12% of the identified plans) and somewhat higher for adaptation (10% of cities; 29% of plans). In particular horizontal mainstreaming is a major effort for local authorities; an effort that does not necessarily pay off in terms of success of action implementation. This study concludes that climate change issues in local municipalities are best tackled by either, developing a dedicated local climate plan in parallel to a mainstreamed plan or by subsequently developing first the dedicated and later a mainstreaming plan (joint or subsequent “dual track approach”). Cities that currently provide dedicated local climate plans (66% of cities for mitigation; 26% of cities for adaptation) may follow-up with a mainstreaming approach. This promises effective implementation of tangible climate actions as well as subsequent diffusion of climate issues into other local sector policies. The development of only broad sustainability or resilience strategies is seen as critical.We thank the many council representatives that supported the datacollection. Special thanks to Birgit Georgi who helped in setting up this large net work of researchers across the EU-28. We also thank the EU COST Action TU 0902 (ledbyRichardDawson) that established the core research network and the positive engagement and interaction of th emembers of this group. OH is Fellow of the Tyndall Centre for Climate Change Research and was funded by the UK EPSRC LC Transforms: Low Carbon Transitions of Fleet Operations in Metropolitan Sites Project (grant number EP/N010612/1). EKL was supported by the Ministry of Education, Youth and Sports, Czechia, within the National Sustainability Program I (NPU I) (grant number LO1415). DG ac-knowledges support by the Ministry of Education, University and Research (MIUR), Italy ("Departments of Excellence" grant L. 232/2016). HO was supported by the Ministry of Education and Research, Estonia (grantnumberIUT34-17). MO acknowledges funding from the Ministry of Economy and Competitiveness (MINECO), Spain (grant number IJCI-2016-28835). SS acknowledges that CENSE's research is partially funded by the Science Foundation, Portugal (grant number UID/AMB/04085/2019). The paper reflects only the views of the authors. The European Union, the European Environment Agency or other supporting bodies are not liable for any use that may be made of the information that is provided in this manuscript
FCNC Top Quark Decays in Extra Dimensions
The flavor changing neutral top quark decay t -> c X is computed, where X is
a neutral standard model particle, in a extended model with a single extra
dimension. The cases for the photon, X= \gammaR_\xi gauge. We find that
the branching ratios can be enhanced by the dynamics originated in the extra
dimension. In the limit where 1/R >> ->, we have found Br(t -> c \gamma) \simeq
10^{-10} for 1/R = 0.5 TeV. For the decay t -> c H, we have found Br(t -> cH)
\simeq 10^{-10} for a low Higgs mass value. The branching ratios go to zero
when 1/R -> \infty.Comment: Accepted to be published in the Europ. Phys. Jour. C; 16 pages, 2
figure
Warped Kaluza-Klein Dark Matter
Warped compactifications of type IIB string theory contain natural dark
matter candidates: Kaluza-Klein modes along approximate isometry directions of
long warped throats. These isometries are broken by the full compactification,
including moduli stabilization; we present a thorough survey of Kaluza-Klein
mode decay rates into light supergravity modes and Standard Model particles. We
find that these dark matter candidates typically have lifetimes longer than the
age of the universe. Interestingly, some choices for embedding the Standard
Model in the compactification lead to decay rates large enough to be observed,
so this dark matter sector may provide constraints on the parameter space of
the compactification.Comment: 37pp; v2. references, minor clarificatio
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Low-Energy Probes of a Warped Extra Dimension
We investigate a natural realization of a light Abelian hidden sector in an
extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we
consider a second warped space containing a bulk U(1)_x gauge theory with a
characteristic IR scale of order a GeV. This Abelian hidden sector can couple
to the standard model via gauge kinetic mixing on a common UV brane. We show
that if such a coupling induces significant mixing between the lightest U(1)_x
gauge mode and the standard model photon and Z, it can also induce significant
mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be
possible to probe several KK modes in upcoming fixed-target experiments and
meson factories, thereby offering a new way to investigate the structure of an
extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as
journal versio
Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data
The collider phenomenology of models with Universal Extra Dimensions (UED) is
surprisingly similar to that of supersymmetric (SUSY) scenarios. For each
level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic
(bosonic) analog in SUSY and thus UED scenarios are often known as bosonic
supersymmetry. The minimal version of UED (mUED) gives rise to a
quasi-degenerate particle spectrum at each KK-level and thus, can not explain
the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of
the Large Hadron Collider (LHC) experiment. However, in the non-minimal version
of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be
easily explained via the suitable choice of boundary localized kinetic (BLK)
terms for higher dimensional fermions and gauge bosons. BLK terms remove the
degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks
and gluons at the LHC gives rise to hard jets, leptons and large missing energy
in the final state. These final states are studied in details by the ATLAS and
CMS collaborations in the context of SUSY scenarios. We find that the absence
of any significant deviation of the data from the Standard Model (SM)
prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and
gluons.Comment: 19 page
- …
