The collider phenomenology of models with Universal Extra Dimensions (UED) is
surprisingly similar to that of supersymmetric (SUSY) scenarios. For each
level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic
(bosonic) analog in SUSY and thus UED scenarios are often known as bosonic
supersymmetry. The minimal version of UED (mUED) gives rise to a
quasi-degenerate particle spectrum at each KK-level and thus, can not explain
the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of
the Large Hadron Collider (LHC) experiment. However, in the non-minimal version
of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be
easily explained via the suitable choice of boundary localized kinetic (BLK)
terms for higher dimensional fermions and gauge bosons. BLK terms remove the
degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks
and gluons at the LHC gives rise to hard jets, leptons and large missing energy
in the final state. These final states are studied in details by the ATLAS and
CMS collaborations in the context of SUSY scenarios. We find that the absence
of any significant deviation of the data from the Standard Model (SM)
prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and
gluons.Comment: 19 page