11,940 research outputs found
Two-fluid magnetic island dynamics in slab geometry: I - Isolated islands
A set of reduced, 2-D, two-fluid, drift-MHD equations is derived. Using these
equations, a complete and fully self-consistent solution is obtained for an
isolated magnetic island propagating through a slab plasma with uniform but
different ion and electron fluid velocities. The ion and electron fluid flow
profiles around the island are uniquely determined, and are everywhere
continuous. Moreover, the island phase-velocity is uniquely specified by the
condition that there be zero net electromagnetic force acting on the island.
Finally, the ion polarization current correction to the Rutherford island width
evolution equation is evaluated, and found to be stabilizing provided that the
anomalous perpendicular ion viscosity significantly exceeds the anomalous
perpendicular electron viscosity
Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure
Within the last 10 years, strong, narrow Na I absorption has appeared at
v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued
to strengthen, by a factor 2-3, over the past three years. The line of sight
appears to be moving into/through a relatively cold, quiescent intermediate
velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the
variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with
the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo
cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K)
for the portion of the IV cloud sampled at that time. The relatively high
fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be
partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the
variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ
New Ultraviolet Extinction Curves for Interstellar Dust in M31
New low-resolution UV spectra of a sample of reddened OB stars in M31 were
obtained with HST/STIS to study the wavelength dependence of interstellar
extinction and the nature of the underlying dust grain populations. Extinction
curves were constructed for four reddened sightlines in M31 paired with closely
matching stellar atmosphere models. The new curves have a much higher S/N than
previous studies. Direct measurements of N(H I) were made using the Ly
absorption lines enabling gas-to-dust ratios to be calculated. The sightlines
have a range in galactocentric distance of 5 to 14 kpc and represent dust from
regions of different metallicities and gas-to-dust ratios. The metallicities
sampled range from Solar to 1.5 Solar. The measured curves show similarity to
those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy
Method was used to investigate the dust composition and size distribution for
the sightlines observed in this program finding that the extinction curves can
be produced with the available carbon and silicon abundances if the metallicity
is super-Solar.Comment: ApJ, in press, 9 pages, 5 figure
The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV2274
The distance to the Large Magellanic Cloud (LMC) is crucial for the
calibration of the Cosmic Distance Scale. We derive a distance to the LMC based
on an analysis of ground-based photometry and HST-based spectroscopy and
spectrophotometry of the LMC eclipsing binary system HV2274. Analysis of the
optical light curve and HST/GHRS radial velocity curve provides the masses and
radii of the binary components. Analysis of the HST/FOS UV/optical
spectrophotometry provides the temperatures of the component stars and the
interstellar extinction of the system. When combined, these data yield a
distance to the binary system. After correcting for the location of HV2274 with
respect to the center of the LMC, we find d(LMC) = 45.7 +/- 1.6 kpc or DM(LMC)
= 18.30 +/- 0.07 mag. This result, which is immune to the metallicity-induced
zero point uncertainties that have plagued other techniques, lends strong
support to the ``short'' LMC distance scale as derived from a number of
independent methods.Comment: 6 pages, including 2 pages of figures. Newly available optical (B and
V) photometry has revealed -- and allowed the elimination of -- a systematic
error in the previously reported determination of E(B-V) for HV2274. The new
result is E(B-V) = 0.12 mag (as compared to the value of 0.083 reported in
the original submission) and produces a DECREASE in the distance modulus of
HV2274 by 0.12 mag. ApJ Letters, in pres
Integrated care and the working record
By default, many discussions and specifications of electronic health records or integrated care records often conceptualize the record as a passive information repository. This article presents data from a case study of work in a medical unit in a major metropolitan hospital. It shows how the clinicians tailored, re-presented and augmented clinical information to support their own roles in the delivery of care for individual patients. This is referred to as the working record: a set of complexly interrelated clinician-centred documents that are locally evolved, maintained and used to support delivery of care in conjunction with the more patient-centred chart that will be stored in the medical records department on the patient’s discharge. Implications are drawn for how an integrated care record could support the local tailorability and flexibility that underpin this working record and hence underpin practice
A model for microinstability destabilization and enhanced transport in the presence of shielded 3-D magnetic perturbations
A mechanism is presented that suggests shielded 3-D magnetic perturbations
can destabilize microinstabilities and enhance the associated anomalous
transport. Using local 3-D equilibrium theory, shaped tokamak equilibria with
small 3-D deformations are constructed. In the vicinity of rational magnetic
surfaces, the infinite-n ideal MHD ballooning stability boundary is strongly
perturbed by the 3-D modulations of the local magnetic shear associated with
the presence of nearresonant Pfirsch-Schluter currents. These currents are
driven by 3-D components of the magnetic field spectrum even when there is no
resonant radial component. The infinite-n ideal ballooning stability boundary
is often used as a proxy for the onset of virulent kinetic ballooning modes
(KBM) and associated stiff transport. These results suggest that the achievable
pressure gradient may be lowered in the vicinity of low order rational surfaces
when 3-D magnetic perturbations are applied. This mechanism may provide an
explanation for the observed reduction in the peak pressure gradient at the top
of the edge pedestal during experiments where edge localized modes have been
completely suppressed by applied 3-D magnetic fields
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Assessing the level of spatial homogeneity of the agronomic Indian monsoon onset
Over monsoon regions, such as the Indian subcontinent, the local onset of persistent rainfall is a crucial event in the annual climate for agricultural planning. Recent work suggested that local onset dates are spatially coherent to a practical level over West Africa; a similar assessment is undertaken here for the Indian subcontinent. Areas of coherent onset, defined as local onset regions or LORs, exist over the studied region. These LORs are significant up to the 95% confidence interval and are primarily clustered around the Arabian Sea (adjacent to and extending over the Western Ghats), the Monsoon Trough (north central India), and the Bay of Bengal. These LORs capture regions where synoptic scale controls of onset may be present and identifiable. In other regions, the absence of LORs is indicative of regions where local and stochastic factors may dominate onset. A potential link between sea surface temperature anomalies and LOR variability is presented. Finally, Kerala, which is often used as a representative onset location, is not contained within an LOR suggesting that variability here may not be representative of wider onset variability
Orbital electron capture by the nucleus
The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases
- …
