1,056 research outputs found

    Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice

    Get PDF
    Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy

    The effect of time constraint on anticipation, decision making, and option generation in complex and dynamic environments

    Get PDF
    Researchers interested in performance in complex and dynamic situations have focused on how individuals predict their opponent(s) potential courses of action (i.e., during assessment) and generate potential options about how to respond (i.e., during intervention). When generating predictive options, previous research supports the use of cognitive mechanisms that are consistent with long-term working memory (LTWM) theory (Ericsson and Kintsch in Phychol Rev 102(2):211–245, 1995; Ward et al. in J Cogn Eng Decis Mak 7:231–254, 2013). However, when generating options about how to respond, the extant research supports the use of the take-the-first (TTF) heuristic (Johnson and Raab in Organ Behav Hum Decis Process 91:215–229, 2003). While these models provide possible explanations about how options are generated in situ, often under time pressure, few researchers have tested the claims of these models experimentally by explicitly manipulating time pressure. The current research investigates the effect of time constraint on option-generation behavior during the assessment and intervention phases of decision making by employing a modified version of an established option-generation task in soccer. The results provide additional support for the use of LTWM mechanisms during assessment across both time conditions. During the intervention phase, option-generation behavior appeared consistent with TTF, but only in the non-time-constrained condition. Counter to our expectations, the implementation of time constraint resulted in a shift toward the use of LTWM-type mechanisms during the intervention phase. Modifications to the cognitive-process level descriptions of decision making during intervention are proposed, and implications for training during both phases of decision making are discussed

    Macroscopic fluctuation theory

    Get PDF
    Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these states have been the subject of several theoretical investigations, both analytic and numerical. The macroscopic fluctuation theory, based on a formula for the probability of joint space-time fluctuations of thermodynamic variables and currents, provides a unified macroscopic treatment of such states for driven diffusive systems. We give a detailed review of this theory including its main predictions and most relevant applications.Comment: Review article. Revised extended versio

    Mapping between dissipative and Hamiltonian systems

    Full text link
    Theoretical studies of nonequilibrium systems are complicated by the lack of a general framework. In this work we first show that a transformation introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the generalized application of the Helmholtz theorem in vector calculus. We then show that systems described by ordinary stochastic differential equations with white noise can be mapped to thermostated Hamiltonian systems. A steady-state of a dissipative system corresponds to the equilibrium state of the corresponding Hamiltonian system. These results provides a solid theoretical ground for corresponding studies on nonequilibrium dynamics, especially on nonequilibrium steady state. The mapping permits the application of established techniques and results for Hamiltonian systems to dissipative non-Hamiltonian systems, those for thermodynamic equilibrium states to nonequilibrium steady states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A: Math & Theo

    The Emerging Scholarly Brain

    Full text link
    It is now a commonplace observation that human society is becoming a coherent super-organism, and that the information infrastructure forms its emerging brain. Perhaps, as the underlying technologies are likely to become billions of times more powerful than those we have today, we could say that we are now building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II (FPCA-II) editors A. Heck and A. Accomazz

    Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players

    Get PDF
    Kinesio-tape® has been suggested to increase blood circulation and lymph flow and might influence the muscle's ability to maintain strength during fatigue. Therefore, the aim of this study was to investigate the influence of gluteal Kinesio-tape® on lower limb muscle strength in non-fatigued and fatigued conditions. A total of 10 male rugby union players performed 20-m sprint and vertical jump tests before and after a rugby-specific fatigue protocol. The 20-m sprint time was collected using light gates (SMARTSPEED). A 9-camera motion analysis system (VICON, 100 Hz) and a force plate (Kistler, 1000 Hz) measured the kinematics and kinetics during a counter movement jump and drop-jump. The effect of tape and fatigue on jump height, maximal vertical ground reaction force, reactivity strength index as well as lower limb joint work were analysed via a two-way analysis of variance. The fatigue protocol resulted in significantly decreased performance of sprint time, jump heights and alterations in joint work. No statistical differences were found between the taped and un-taped conditions in non-fatigued and fatigued situation as well as in the interaction with fatigue. Therefore, taping the gluteal muscle does not influence the leg explosive strength after fatiguing in healthy rugby players

    Incidence of emergency department presentations for traumatic brain injury in Indigenous and non-Indigenous residents aged 15–64 over the 9-year period 2007–2015 in North Queensland, Australia

    Get PDF
    Background: Traumatic brain injury (TBI) is a leading cause of disability worldwide. Previous studies have shown that males have a higher incidence than females, and Indigenous populations have a higher rate than non-Indigenous. To date, no study has compared the incidence rate of TBI between Indigenous and non-Indigenous Australians for any cause. Here we add to this rather sparse literature. Methods: Retrospective analysis of data from North Queensland Emergency Departments between 2007 and 2015 using Australian Bureau of Statistics population estimates for North Queensland residents aged 15-64 years as denominator data. Outcome measures include incidence rate ratios (IRR) for TBI presentations by Indigenous status, age, sex, year of presentation, remoteness, and socio-economic indicator. Results: Overall incidence of TBI presentations per 100,000 population was 97.8. Indigenous people had an incidence of 166.4 compared to an incidence in the non-Indigenous population of 86.3, providing an IRR of 1.93 (95% CI 1.77-2.10; p < 0.001). Males were 2.29 (95% CI 2.12-2.48; p < 0.001) times more likely to present than females. Incidence increased with year of presentation only in the Indigenous male population. Conclusions: The greater burden of ED presentations for TBI in the Indigenous compared with the non-Indigenous population is of concern. Importantly, the need to provide quality services and support to people living with TBI in remote and very remote areas, and the major role of the new National Disability Insurance Scheme is discussed.Adrian Esterman, Fintan Thompson, Michelle Fitts, John Gilroy, Jennifer Fleming, Paul Maruff, Alan Clough and India Bohann

    Design and Evaluation of Path Planning Decision Support for Planetary Surface Exploration

    Get PDF
    Human intent is an integral part of real-time path planning and re-planning, thus any decision aiding system must support human-automation interaction. The appropriate balance between humans and automation for this task has previously not been adequately studied. In order to better understand task allocation and collaboration between humans and automation for geospatial path problem solving, a prototype path planning aid was developed and tested. The focus was human planetary surface exploration, a high risk, time-critical domain, but the scenario is representative of any domain where humans path plan across uncertain terrain. Three visualizations, including elevation contour maps, a novel visualization called levels of equal costs, and a combination of the two were tested along with two levels of automation. When participants received the lower level of automation assistance, their path costs errors were less than 35% of the optimal, and they integrated manual sensitivity analysis strategies. When participants used the higher level of automation assistance, path costs errors were reduced to a few percentages, and they saved on average 1.5 minutes in the task. However, this increased performance came at the price of decreased situation awareness and automation bias.We would like to acknowledge the NASA Harriett G. Jenkins Predoctoral Fellowship and the Office of Naval Research for sponsoring this research

    Capturing and testing perceptual-cognitive expertise: A comparison of stationary and movement response methods

    Get PDF
    Numerous methods have been used to study expertise and performance. In the present article, we compare the cognitive thought processes of skilled soccer players when responding to film-based simulations of defensive situations involving two different experimental conditions. Participants either remained stationary in a seated position (n = 10) or were allowed to move (n = 10) in response to life-size film sequences of 11 versus 11 open-play soccer situations viewed from a player’s perspective. Response accuracy and retrospective verbal reports of thinking were collected across the two task conditions. In the movement-based response group, participants generated a greater number of verbal report statements, including a higher proportion of evaluation, prediction, and action planning statements, than did participants in the stationary group. Findings suggest that the processing strategies employed during performance differ depending on the nature of the response required of participants. Implications for behavioral methods and experimental design are discussed
    • …
    corecore