6,041 research outputs found

    Sonification of experimental parameters as a new method for efficient coding of behavior

    No full text
    Cognitive research is often focused on experimental condition-driven reactions. Ethological studies frequently rely on the observation of naturally occurring specific behaviors. In both cases, subjects are filmed during the study, so that afterwards behaviors can be coded on video. Coding should typically be blind to experimental conditions, but often requires more information than that present on video. We introduce a method for blindcoding of behavioral videos that takes care of both issues via three main innovations. First, of particular significance for playback studies, it allows creation of a “soundtrack” of the study, that is, a track composed of synthesized sounds representing different aspects of the experimental conditions, or other events, over time. Second, it facilitates coding behavior using this audio track, together with the possibly muted original video. This enables coding blindly to conditions as required, but not ignoring other relevant events. Third, our method makes use of freely available, multi-platform software, including scripts we developed

    More than one way to see it: Individual heuristics in avian visual computation

    Get PDF
    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally

    Chorusing, synchrony, and the evolutionary functions of rhythm

    No full text
    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language

    Perceptual tuning influences rule generalization: Testing humans with monkey-tailored stimuli

    No full text
    Comparative research investigating how nonhuman animals generalize patterns of auditory stimuli often uses sequences of human speech syllables and reports limited generalization abilities in animals. Here, we reverse this logic, testing humans with stimulus sequences tailored to squirrel monkeys. When test stimuli are familiar (human voices), humans succeed in two types of generalization. However, when the same structural rule is instantiated over unfamiliar but perceivable sounds within squirrel monkeys’ optimal hearing frequency range, human participants master only one type of generalization. These findings have methodological implications for the design of comparative experiments, which should be fair towards all tested species’ proclivities and limitations

    Amplitude and frequency readout overlay

    Get PDF
    Amplitude and frequency readout overlay simplifies the interpretation of oscillograph traces for full scale deflections of one inch. The overlay increases accuracy in data interpretation and saves time in analyzing oscillograph records

    2009 International Trade Law Decisions of the Federal Circuit

    Get PDF

    Evidence of a structural anomaly at 14 K in polymerised CsC60

    Full text link
    We report the results of a high-resolution synchrotron X-ray powder diffraction study of polymerised CsC60_{60} in the temperature range 4 to 40 K. Its crystal structure is monoclinic (space group I2/m), isostructural with RbC60_{60}. Below 14 K, a spontaneous thermal contraction is observed along both the polymer chain axis, aa and the interchain separation along [111], d1d_1. This structural anomaly could trigger the occurrence of the spin-singlet ground state, observed by NMR at the same temperature.Comment: 8 pages, 5 figures, submitte

    Estimating the active space of male koala bellows: propagation of cues to size and identity in a Eucalyptus forest

    Get PDF
    Examining how increasing distance affects the information content of vocal signals is fundamental for determining the active space of a given species’ vocal communication system. In the current study we played back male koala bellows in a Eucalyptus forest to determine the extent that individual classification of male koala bellows becomes less accurate over distance, and also to quantify how individually distinctive acoustic features of bellows and size-related information degrade over distance. Our results show that the formant frequencies of bellows derived from Linear Predictive Coding can be used to classify calls to male koalas over distances of 1–50 m. Further analysis revealed that the upper formant frequencies and formant frequency spacing were the most stable acoustic features of male bellows as they propagated through the Eucalyptus canopy. Taken together these findings suggest that koalas could recognise known individuals at distances of up to 50 m and indicate that they should attend to variation in the upper formant frequencies and formant frequency spacing when assessing the identity of callers. Furthermore, since the formant frequency spacing is also a cue to male body size in this species and its variation over distance remained very low compared to documented inter-individual variation, we suggest that male koalas would still be reliably classified as small, medium or large by receivers at distances of up to 150 m
    corecore