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Comparative pattern learning experiments investigate how different species find regularities in sensory
input, providing insights into cognitive processing in humans and other animals. Past research has
focused either on one species’ ability to process pattern classes or different species’ performance in rec-
ognizing the same pattern, with little attention to individual and species-specific heuristics and decision
strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a par-
rot species), on visual patterns using touch-screen technology. Patterns were composed of several
abstract elements and had varying degrees of structural complexity. We developed a model selection
paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies
and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable
differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also
exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on match-
ing learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of
strategies that included local transition probabilities and global string similarity. Although performance
was above chance and quite high for kea, no individual of either species provided clear evidence of learn-
ing exactly the rule used to generate the training stimuli. Our results show that similar behavioral out-
comes can be achieved using dramatically different strategies and highlight the dangers of combining
multiple individuals in a group analysis. These findings, and our general approach, have implications
for the design of future pattern learning experiments, and the interpretation of comparative cognition
research more generally.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Processing of sensory regularities by humans and other animals

Humans are strongly inclined to discover and process structure
in sensory stimuli (Gombrich, 1984). Appreciating the overall sym-
metry of a building or painting, delighting in themes and variations
in music, or parsing a sentence in our native language are all exam-
ples of tasks that require sophisticated structural processing.
Whether natural or man-made, complex visual, auditory or tactile
inputs are usually categorized by humans using relations estab-
lished between their constituent components (Conway &
Christiansen, 2005). Such structure-based learning is an important
part of humans’ everyday sensory experience, regardless of
whether these learning processes are statistical or explicitly
rule-based (Peña, Bonatti, Nespor, & Mehler, 2002).

Some cognitive resources required to process structure are
shared across domains (e.g., music and language) and possibly
with other animal species. Aspects of human working memory
capacities, for example, appear to be both domain-general
(Chiappe & MacDonald, 2005; Janata, Tillmann, & Bharucha,
2002; Kirkham, Slemmer, & Johnson, 2002) and shared with a
broad range of animal species (Chiappe & MacDonald, 2005;
Kawai & Matsuzawa, 2001; Murphy, Mondragón, & Murphy,
2008). Similarly, several species can learn that some pairs of events
co-occur more often than others (see ten Cate & Okanoya, 2012 for
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an overview of how other animals process transitional probabili-
ties). However, some structural computations at the core of human
cognition may be difficult or even impossible for other animals to
process. Empirical investigations of human specificity require use
of the comparative method (Fitch, 2014; Fitch, Huber, & Bugnyar,
2010), where different species are tested on matched tasks to draw
biological inferences concerning a particular cognitive trait. This
method can, for example, be applied to estimate which cognitive
prerequisites for language or music emerged during recent human
evolution and which arose earlier in primate, mammal or verte-
brate evolutionary history (Fitch, 2005).

1.2. Processing ‘‘context-free’’ structures across species and domains

Pattern perception experiments can be formalized using quan-
titative frameworks. For example, formal language theory is a
branch of mathematics and computer science that offers analytical
tools to measure complexity of structural patterns (strings com-
posed of minimal holistic elements (Jäger & Rogers, 2012).
Formal language theory has recently been adopted in perceptual
experiments in humans and non-human animals (Fitch &
Friederici, 2012; ten Cate & Okanoya, 2012). Formal language the-
ory provides a rigorous mathematical framework and
non-ambiguous notation to clearly state hypotheses and to shar-
pen research questions (Fitch, 2014). Researchers choose some
abstract rule system or ‘‘grammar’’ of interest, and use it to pro-
duce visual or auditory test stimuli that either follow or violate
the rule(s) (Jäger & Rogers, 2012; Reber, 1969).

One controversial strand of comparative pattern learning
research concerns animals’ ability to process supra-regular (e.g.,
‘‘context-free’’) structures, which incorporate relationships
between multiple non-adjacent elements. Mastery of such
relationships is a necessary (but not sufficient) prerequisite for
using human language (Fitch & Friederici, 2012). An early study
compared pattern-learning abilities in humans and cotton-top
tamarins (Fitch & Hauser, 2004) using syllable streams that either
followed an alternating pattern (female–male–female–male, etc.,
notated as (AB)n), or a matched block pattern (female–female–. . .–
male–male. . ., notated AnBn). In terms of formal language theory,
processing the alternating stimulus requires weaker computa-
tional capabilities than the block pattern (see Fig. 1 for a visual
equivalent of these two types of pattern). While humans could
readily discriminate both syllable patterns, the monkeys only mas-
tered the less computationally demanding alternating pattern
(Fitch & Hauser, 2004). A further study, using operant testing,
investigated whether starlings could learn the same block pattern
(AnBn) composed of starling vocalizations (Gentner, Fenn,
Margoliash, & Nusbaum, 2006). After intensive training, the birds
discriminated such patterns from ill-formed variations, featuring
different combinations and orderings of the constituent starling
calls (Gentner et al., 2006). The apparently superior performance
of starlings over monkeys could represent a species difference
reflecting the complexity of starlings’ natural vocalization
Fig. 1. Example of training patterns. Top: an AABB (equivalent to A2B2, left) and ABAB (eq
birds were simultaneously presented with an AnBn and an (AB)n stimulus (with n = 2 or
group to which they were randomly assigned.
(although for counter-hypotheses see ten Cate & Okanoya, 2012;
van Heijningen, de Visser, Zuidema, & ten Cate, 2009). However,
starlings underwent an extensive training period, unlike the
monkeys, who received no feedback or training.

Similar patterning abilities were subsequently investigated in
zebra finches, a bird species that exhibits a relatively simple song
structure (van Heijningen et al., 2009). Although a group-level data
analysis suggested that, like starlings, zebra finches mastered the
intended ‘‘complex’’ pattern, a more detailed analysis of the perfor-
mance of individual birds revealed that each bird was using a sim-
ple rule, often only taking a tiny portion of the chosen stimulus
into account. van Heijningen et al. (2009) thus concluded that none
of their zebra finches actually learned the grammar, despite appar-
ent success at a group level, and suggested that the same reasoning
could be applied to the previous starling results (Gentner et al.,
2006). The dispute has not yet been resolved and has given rise
to debate (Gentner, Fenn, Margoliash, & Nusbaum, 2010; ten
Cate, van Heijningen, & Zuidema, 2010) and additional studies in
further species (Abe & Watanabe, 2011; Rey, Perruchet, & Fagot,
2012; Stobbe, Westphal-Fitch, Aust, & Fitch, 2012).

Thus, although a number of species can parse ‘‘computationally
simple’’ stimuli, corresponding to regular languages at the lowest
level of the formal language hierarchy (Abe & Watanabe, 2011;
Fitch & Hauser, 2004; Gentner et al., 2006; Herbranson & Shimp,
2008; Ravignani, Sonnweber, Stobbe, & Fitch, 2013; ten Cate &
Okanoya, 2012), perception of patterns at higher complexity levels
– supra-regular (Jäger & Rogers, 2012), i.e., beyond simple chaining
of contiguous perceptual tokens – has yet to be convincingly
demonstrated in non-human animals. Thus, there is still no con-
sensus on (a) which nonhuman species, if any, can master
supra-regular rules and (b) precisely how complex patterning rules
are learned and processed in cognitive experiments. The latter
question is the focus of the research described here.

1.3. Artificial grammar learning: Common problems need a novel
solution

Previous research has shown that a number of factors can influ-
ence the overall outcome of pattern learning experiments.
Participants may achieve (partial) success in these experiments
by using simple heuristics and perceptual shortcuts, rather than
learning the intended abstract rules (van Heijningen et al., 2009).
During training, participants may learn some simple ‘‘heuristic’’
or ‘‘strategy’’, which although simpler than the ‘‘correct’’ rule,
nonetheless earns them rewards and results in above-chance per-
formance. When this heuristic is applied to novel test stimuli
where it does not fit, misclassification results. Detailed analysis
of individual participants’ responses to patterns of similar length,
but inconsistent with the generating rule, are necessary to deter-
mine which particular decision strategy was used by a participant
during the training phase. This type of analysis is particularly suit-
able for the large quantities of data resulting from operant condi-
tioning experiments like the ones described here.
uivalent to (AB)2, right) pattern; bottom: same patterns for n = 3. During the training,
3) and were rewarded for pecking on one of them, depending on the experimental



2 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
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When trained and tested on pattern perception experiments,
two species may perform differently because only one learned
the abstract rule, or found an efficient behavioral shortcut.
Alternatively, two species might show similar overall perfor-
mances, although with one mastering an abstract rule and the
other using a simpler but efficient shortcut. Individual differences
in strategy may be crucial in this, because merged group data often
describe a fictitious ‘‘average learner’’ that corresponds to no indi-
vidual participant (Zimmerer, Cowell, & Varley, 2011; Zuidema,
2013). For example, two complementary heuristic strategies, each
adopted by half of the experimental subjects, could give the
impression of mastery of the task, while in reality each participant
is only doing part of the required cognitive work. This makes the
analysis of individual behaviors crucial. Only once individual
strategies have been determined may data be combined to shed
light on the nature of learning and hypothesis formation in the spe-
cies (cf. Fagot, Gullstrand, Kemp, Defilles, & Mekaouche, 2013).
Differences within a species, but between groups with different
training experience, may also be examined in this way.

Effective analysis of species’ behavioral and cognitive differ-
ences may prove useful in experimental design. Theoretically,
grammar learning experiments must test a huge number of
rule-breaking stimuli in order to rule out all possible alternative
hypotheses. In practice this is not possible, and a selected subset
of strings must be used as controls, possibly influencing the strat-
egy learned by participants. Usually, different control strings are
used for each grammar, but if different grammars could be shown
to bias individuals toward specific heuristics, new strings that can-
not be learned with that specific heuristic could be incorporated to
push acquisition in the direction of the desired strategy (Chen, van
Rossum, & ten Cate, 2014; van Heijningen, Chen, van Laatum, van
der Hulst, & ten Cate, 2013).

In the current study we examined visual pattern learning.
Animal pattern learning experiments to date have mostly focused
on the auditory domain (Abe & Watanabe, 2011; Fitch & Hauser,
2004; Gentner et al., 2006; Murphy et al., 2008; Peña et al.,
2002; Ravignani et al., 2013; ten Cate & Okanoya, 2012; van
Heijningen et al., 2009; Wilson, Smith, & Petkov, 2015; Wilson
et al., 2013; Zuidema, 2013), with only a few studies in other
modalities (mostly visual, but also tactile sequence learning
(Conway & Christiansen, 2005, 2006; Herbranson & Shimp, 2008;
Ravignani, Sonnweber, & Fitch, unpublished results; Sonnweber,
Ravignani, & Fitch, 2015; Stobbe et al., 2012; Westphal-Fitch,
Huber, Gómez, & Fitch, 2012).

1.4. A new analytical framework for animal pattern learning

The present study was focused on the question of how complex
patterning rules are individually learned and processed in animal
cognitive experiments. Using visual patterns, we tested keas
(Nestor notabilis, a parrot species) and pigeons (Columba livia) on
(i) their ability to learn abstract rules (Fig. 1) and (ii) their predis-
position to develop individual decision heuristics. Testing animals
using a visual operant task is ideal for an analysis of individual
heuristics in pattern perception. Visual presentation allows simul-
taneous presentation of all elements of a string, and/or simultane-
ous presentation of multiple stimuli, minimizing limitations due to
short-term memory constraints which may vary across species.
The operant framework provides the large quantities of data
needed to reliably uncover individual heuristics.

Together, pigeons and kea constitute a good pair of model
species for visual pattern learning experiments. On the one hand,
the visual system of both pigeons and kea is highly developed,
providing an accurate representation of the three-dimensional
visual world, strongly shaped by the requirements of flight
(Martin, 2014). On the other hand, pigeons and kea differ in brain
size, ecological niche and cognitive performance in tasks
requiring social learning and technical intelligence (Huber &
Gajdon, 2006), suggesting that they may exhibit significant
cognitive differences.

Ten pigeons and ten kea were previously trained (see Methods,
and Stobbe et al. (2012) for details) on two widely-used artificial
grammar patterns. Five individuals per species were trained on
(AB)n, consisting of a varying number of concatenated AB pairs
and five individuals were trained on (AnBn), where a variable num-
ber of A constituents (henceforth ‘‘tiles’’) are followed by the same
number of B tiles (see Fig. 1). In other words, all birds were trained
with simultaneous exposure to (AB)n and (AnBn) patterns, but only
responses to one of these patterns resulted in a reward. Birds were
tested using touch screens in a two-alternative forced choice
(2AFC) paradigm, using pairs of stimuli grouped into five test
classes. Each test trial in a test class featured a positive ‘‘correct’’
stimulus, similar to the one reinforced during training, vs. an alter-
native, that consisted of some non-grammatical combination of As
and Bs.

Previous analyses showed that the birds failed to learn the
specific patterns that were used to generate these stimuli
(Stobbe et al., 2012); the current analysis, based on a much larger
dataset featuring all possible negative stimuli, is designed to deter-
mine what they did learn in these experiments. We analyzed the
data using a model selection approach to shed light on what drives
individual and species differences in performance in pattern learn-
ing experiments. Model selection has been a fruitful analytical
method in ecology, cognitive science, machine translation, compu-
tational linguistics, musicology, and other fields. It contrasts with
classical statistics in letting the data ‘‘select’’ the most appropriate
model from a pool of candidates, based on their consistency with
each model, instead of fitting data points to a single predetermined
model.

Our model selection technique addressed four key issues. We
aimed to ascertain whether (i) different individual animals used
different individual strategies to accept or reject stimuli, (ii) indi-
viduals adhered to one particular decision rule or employed a vari-
ety of rules, (iii) the particular training grammar would influence
the rule heuristics chosen, and (iv) different animal species might
adopt different strategies or rule types.

Fig. 2 provides an overview of the rationale behind our analyt-
ical approach. During the training, individuals focus on common
properties of reinforced stimuli, e.g., commonalities in patterns of
color and shape (Fig. 2a). In particular, all stimuli feature two
green/red tiles on the left edge (denoted by the orange rhomboid)
and two purple2/gray tiles on the right edge (denoted by the blue
rhomboid). From these commonalities, the bird can potentially gen-
eralize to a number of abstract features, leading to different decision
strategies. By analogy, if all trials’ positive stimuli consisted of draw-
ings on glass slides, superimposing all the slides would enhance their
common properties and cancel out their differences, as in the gener-
alization phase (Fig. 2a). For example, one possible strategy for a bird
trained to choose AnBn would be an ‘‘AA’’ primacy rule focusing on
the first part of a stimulus to distinguish it from others (Fig. 2b).
Alternatively, a bird might adopt a ‘‘BB’’ recency rule and focus on
the rightmost part of the stimulus (Fig. 2c). Each strategy will be
consistent or inconsistent with some novel test stimuli, leading to
its acceptance or rejection in the test phase. A bird’s pattern of
choices on these stimuli is compared with the model prediction for
every reasonable heuristic (Fig. 2d), and the strategy closest to the
prediction is judged to be the most likely. In this example, a primacy
rule would be the more likely strategy of the two.



Fig. 2. Model selection applied to avian visual pattern learning. The depicted perception, generalization and abstraction steps are crucial in pattern learning experiments in
humans and other species. Our model selection approach ‘‘reverse-engineers’’ the outcome of these cognitive processes by comparing the likelihood of many possible
hypotheses on how pattern learning occurs in different individuals. (See main text for details.) The generalization phase (a) gives rise to a number of hypothetical alternative
strategies (b and c), which are compared using relative likelihood (d).
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2. Materials and methods

2.1. Stimuli

Detailed materials and methods of data collection are published
in Stobbe et al. (2012). In this section we report the differences
between the present study and Stobbe et al. (2012) in detail, and
provide a short overview of the methodological aspects common
to both studies.

Our experimental stimuli consisted of visual patterns made up
of a varying number of complex colored square elements (‘‘tiles’’)
arranged horizontally. Tiles could contain various visual features,
e.g., triangles, squares, circles (see Fig. 1 for an example of two
stimuli composed of four tiles each, and two stimuli composed of
six tiles each). There were two categories of tiles (As and Bs) that
could be easily distinguished by multiple cues within the tiles,
such as color and geometry. We created 12 different tiles for each
of the two categories (A and B). Visual strings were generated by
applying two different production rules, each derived from one of
two rule systems (‘‘grammars’’). The first grammar, (AB)n, con-
sisted of a concatenation of a varying number of AB pairs, that is,
alternating A and B elements. The second category (AnBn), con-
sisted of a varying number of A tiles, followed by the same number
of B tiles. Both stimulus classes always began with an ‘‘A’’ tile,
ended with a ‘‘B’’ tile and consisted of equal numbers of As and
Bs. For both categories, no tile appeared more than once in a stim-
ulus. We used custom scripts in Python and Nodebox (www.node-
box.net) to generate stimuli.

The birds had previously been trained to reliably distinguish
AnBn and (AB)n stimuli with n = 2 and n = 3, and had completed
tests that investigated generalization to new colours, grayscale
versions and to changes in stimulus orientation. The most crucial
generalizations involved novel arrangements of familiar tiles,
extensions of the grammar to n = 4 and n = 5, and ‘‘ungrammatical
extensions’’ (foils containing a different number of As and Bs). The
results of these tests are published in Stobbe et al. (2012). Here, we
report on the decision strategies that the birds used in the follow-
ing five tests (see Table 2): extensions, foils (two of the eight tests
presented and analyzed in Stobbe et al., 2012), string reversals,
stimuli that contained A or B tiles exclusively (‘‘pure’’ stimuli)
and a large number of possible permutations (novel data).
Extensions were shown to the birds in AnBn and (AB)n pairs,
whereas in all the other tests a novel stimulus (from one of the five
classes) was paired with a correct example of the grammar for
which the birds received a reward during the training (see
Supplementary Information for a full list of stimuli):

� Extensions: In this test the stimuli were longer (n = 4 and n = 5)
than in training, in order to investigate generalization beyond
the previously presented stimulus length. Hence, the stimuli
contained either 8 elements (4 A, 4 B) or 10 elements (5 A, 5 B).
� Nonmatching: Nonmatching stimuli were obtained by removing

one element from grammatical stimuli of length 6 and 8 (corre-
sponding to 3 and 4 tiles per category). Hence, these stimuli had
a non-matching number of A- and B-tiles (AnBm, where n – m).
To generate these stimuli, we omitted either the first or the last
element of a positive stimulus, obtaining strings of the form
B(AB)2, (AB)2A, B(AB)3, (AB)3A for one group and A2B3, A3B2,
A3B4, A4B3, for the other.
� Reversals: In these trials, the A and B tiles were arranged in a

reversed order (e.g., BBAA or BABA). In other words, every A tile
was substituted for a B tile and vice versa.

http://www.nodebox.net
http://www.nodebox.net
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� Pure: Pure stimuli consisted of 4 or 6 tiles each and were com-
posed of either only A or only B tiles.
� Permutations: Combinations of A and B elements were shown

that had not previously been used in other tests. These were
all possible permutations of A and B tiles which had the same
length (4 and 6) as the training stimuli. For instance, the
sequence AABABA has length 6 (hence cannot belong to the ‘‘ex-
tensions’’ and ‘‘non-matching’’ categories), and is neither a
‘‘pure’’ nor a ‘‘reversal’’ stimulus. Therefore AABABA falls in this
last ‘‘permutation’’ category.

2.2. Subjects and experimental procedures

2.2.1. Subjects
We compared performance of ten keas (Nestor notabilis) and ten

pigeons (Columba livia) using the same stimuli and grammars. At
the onset of the experiment all birds were already familiar with
2AFC experiments on touch screens. For each species, 5 birds were
assigned to the AnBn group and 5 to the (AB)n group. Birds of both
species were group-housed in outdoor aviaries. Kea resided at the
Haidlhof Research Station, Bad Vöslau, (Lower Austria) and
received additional food three times a day. Pigeons were housed
at the University of Vienna and had free access to water and grit,
but did not receive further food apart from occasional additional
feeding directly after the experimental sessions and ad libitum
feeding on weekends. Animal housing and experimental setup fol-
lowed the Animal Behavior Society Guidelines for the Use of
Animals in Research, the legal requirements of Austria and all insti-
tutional guidelines.

2.2.2. Materials
For the tests described here, birds had to peck on a 1500 TFT com-

puter screen. Pecks were detected with an infrared touch frame
(Carroll Touch, 1500), mounted in front of the screen. The experi-
ment was controlled by CognitionLabLight, version 1.9 (�M.
Steurer), which also acquired and recorded the data (Steurer,
Aust, & Huber, 2012).

All birds were tested individually: keas in an experimental
chamber open on one side, pigeons in closed Skinner boxes. Food
rewards were 1/8 of a peanut dispensed via a small chute for the
keas, and, for the pigeons, a small amount of grain, delivered to
the birds by a piston. In both cases, the birds accessed the food
directly below the horizontal center of the screen.

2.2.3. Training and test
Two images were presented in a 2AFC procedure. Birds were

randomly assigned to one of two groups: for one group pecks on
the (AB)n images were rewarded, for the other group pecks on
AnBn were rewarded. Birds were first trained to criterion (following
the methods and parameters described in Stobbe et al., 2012), and
then tested over a series of sessions. Each session consisted of two
trial types: rewarded ‘‘training’’ trials and unrewarded ‘‘test’’ trials.
In training trials an AnBn and an (AB)n image were shown side by
side in fixed positions on a black background. Only choices of the
correct stimulus were rewarded. In test trials a regular instance
of the positive class (either an AnBn or an (AB)n stimulus, depending
on the experimental group) was presented together with a stimu-
lus that violated the rule that defined the positive class. In these
test trials, both stimuli were novel; neither choice was rewarded
and a touch immediately terminated stimulus presentation. For
both training and test trials, stimulus positions (left vs. right) were
randomized in every trial.

The birds usually completed one or two sessions (i.e., 40–80 tri-
als in total) per day, depending on individual motivation. Trials
were separated by an inter-trial interval of 4 s during which the
screen was black. If a 40 trial session was not completed, it was
resumed the next day at the point where it had been aborted the
day before. Test trials involved stimuli from the five tests classes
described above, whereas training trials were pairs of familiar
stimuli that were shown in order to maintain both the learned dis-
crimination and the birds’ motivation. Training trials also provided
a baseline with which test performance could be compared. In each
session, 20% of the trials (8/40) were non-rewarded test trials. The
test stimuli were interspersed among rewarded training trials in a
semi-random fashion, so that a session never began with a test trial
and there was always at least one training trial between test trials.

A correct choice in a training trial resulted in both stimuli dis-
appearing from the screen, playback of a positive feedback sound
(600 Hz, 0.5 s) and delivery of a food reward. If the bird pecked
on the incorrect image, the stimuli disappeared and a negative
feedback sound (200 Hz, 0.5 s) was played, along with 3 s of
red-colored screen. The same pair of images was shown again after
such failures, and the trial was repeated until the bird eventually
pecked on the correct stimulus and received a reward. In probe tri-
als, the bird’s first peck on either of the two stimuli caused the
images to disappear, without any feedback, food reward or subse-
quent correction trial. In both training and test trials, when birds
made multiple pecks only the first peck within a stimulus was
counted as a choice (and its time and location recorded, see
Supplementary Information). Pecks on the screen that were not
within a stimulus were recorded, but did not count as choices
and were not analyzed.

2.3. Statistical analysis

To find out which strategy individuals used to make their
choices, an extensive set of possible heuristic strategies was ana-
lyzed. Heuristics are defined here as structure-based templates
which allow their user to accept or reject a test stimulus.
Analysis of strategies is based on the assumption that birds were
choosing the reinforced stimulus (alternative assumptions, e.g.,
avoidance of the non-reinforced stimulus, are considered in the
Discussion section). These potential strategies were assigned to
four main classes (see Table 1 for details): local, when based on
only a few elements, global, if based on the stimulus in its entirety,
pattern-matching, when accounting for overall element-wise sim-
ilarity, and side strategies, if resulting from a bias to peck more fre-
quently on one side.

2.3.1. Local strategies
Local strategies are based on substrings of length 2 (i.e., bigrams)

appearing at the leftmost edge of the stimulus (primacy rules: AB*

and AA*), its rightmost side (recency rules: *AB and *BB) or some-
where at any non-edge position (interior rules: +AB+, *BA*, +AA*

and *BB+). The mathematical notations + and * stand for any possi-
ble sequence of elements extending the string preceding/following
it; * also includes empty sequences, while + must be replaced by at
least one element. For instance, *AB+ is a correct notation for
strings XYABZ and ABXY, but not for XYAB). The labels ‘‘primacy’’
and ‘‘recency’’, and ‘‘start’’ and ‘‘end’’ are used in the sense of the
European cultural convention of reading strings from left to right.
However, we had no a priori prediction that our birds would pref-
erentially parse the strings in one or the other direction.

2.3.2. Global strategies
Global strategies, in contrast, allow experimental subjects to

make their decisions based on overall visual properties of the stim-
uli (e.g., transition or non-transition similarity strategies). If sub-
jects focus on visual homogeneity or heterogeneity in the
training stimuli, they will continue to apply such a global choice
rule in test trials. While the heterogeneous (AB)n stimuli feature
the largest number of transitions (A M B), the more homogeneous



Table 1
Main strategies entered into the analysis. Note that each strategy in the first
experimental group has its equivalent in the second. AB⁄ corresponds to AA⁄ (primacy
rules) and ⁄AB corresponds to ⁄BB (recency rules); +AB+ and ⁄BA⁄ correspond to +AA⁄

and ⁄BB+ (interior rules); TS (transition similarity) is the inverse of NTS (non-
transition similarity). The last column includes the corresponding regular expression
in formal language theory terms (Jäger & Rogers, 2012; Sipser, 2006); the symbol #
denotes the absence of a possible regular expression for that strategy.

Group Rule
name

Conditions for stimulus acceptance
(‘‘accept stimulus which. . .’’)

Regular
expression

(AB)n startAB starts with the substring AB AB⁄

endAB ends with the substring AB ⁄AB
interiorAB contains AB at any non-edge position +AB+
interiorBA contains BA anywhere ⁄BA⁄

TS resembles the alternation in the training
stimuli (by maximizing the number of
transitions between A and B tiles, and vice
versa)

#

(AB)n consists of any non-zero number of AB
pairs

(AB)+

AnBn startAA starts with the substring AA AA⁄

endBB ends with the substring BB ⁄BB
interiorAA contains AA at any position (except the

beginning)
+AA⁄

interiorBB contains BB at any position (except the
end)

⁄BB+

NTS resembles the visual homogeneity in the
training stimuli (by minimizing the
number of transitions between A and B
tiles, and vice versa)

#

AnBn contains an equal number of A and B, and
all A tiles precede all B tiles

#

Both RR is on the right #
LL is on the left #

Table 2
Individual performance of the two tested species in all test classes. Shown are the
numbers of individuals in a subgroup that significantly mastered a particular stimulus
class (binomial test, p < 0.01) relative to the total number of individuals (5 for each
subgroup). In parentheses, the number of non-reinforced trials used for the
calculation (because of a technical problem, one pigeon (P12) had only 272 novel
non-reinforced test trials in the non-matching test). The 320 stimuli for the non-
matching test class break down into four sets of 80 stimuli: 3A2B, 2A3B, 4A3B and
3A4B. All possible remaining permutations after the four test classes amounted to
N = 216.

Test (N) Pigeons Kea

(AB)n AnBn (AB)n AnBn

Extensions (80) 3 4 5 5
Nonmatching (320) 0 0 0 0
Reversals (120) 0 1 5 5
Pure (120) 5 1 5 5
Permutations (216) 1 2 5 5
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AnBn strings contain only one AB transition. A successful discrimi-
nation could thus be made on the basis of either the absolute num-
ber of transitions in a stimulus or the number of transitions as a
fraction of its length. Hence, both relative transition strategies
(TS and NTS, based on the number of transitions divided by stimu-
lus length in tiles) and their absolute counterparts (aTS and aNTS,
based on the number of transitions) were entered in the analysis.

2.3.3. Pattern-matching strategies
Pattern-matching strategies involve strategies mirroring the

rules used to generate the stimuli. Using an (AB)n rule, stimuli of
any length that consist only of AB pairs would be accepted by
pattern-matching. In contrast, under an AnBn strategy, only those
stimuli containing a cluster of A tiles followed by a cluster of B tiles
of precisely the same length would be accepted.

The Partial Block Matching strategy (BLOCK) captures choice
rules that lie halfway between complete pattern matching and
local processing and extends the classical Hamming distance
(Hamming, 1950) to strings of unequal length. This strategy
assumes that a participant will remember the class of shortest
stimuli induced during the training (AABB or ABAB, depending
on the experimental group) and look for it in the longer test stimuli
at any position within the string. If no such match is possible, the
participant will choose the stimulus containing the substring that
most closely resembles the training string (minimizing the amount
of ‘‘character’’ substitutions).

2.3.4. Side strategies
Finally, side strategies (left and right bias) capture a lower-level

behavior, namely the tendency to peck on one side of the screen
irrespective of the stimuli shown. Such side biases often play a role
in cognitive experiments, although the possibility of such biases is
not always acknowledged in pattern learning research
(Herbranson & Shimp, 2008).

2.3.5. Priors and error rates
Individual performance in all tests was evaluated using a

model-selection analysis based on maximum likelihood. A uniform
distribution was chosen as the prior over strategies (Johnson &
Omland, 2004); this neutral choice means that every strategy
entered into the model was treated a priori as equally likely
(Wasserman, 2000; Zucchini, 2000).

For each stimulus pair presented, we determined which percep-
tual cues were compatible (Bröder & Schiffer, 2003a, 2003b) with
each of the strategies detailed above, allowing us to predict the
choice of a stimulus based on a particular decision strategy.

For each bird, a specific error rate was estimated, based on that
individual’s median performance across five test sessions in the
reinforced training trials (examples of training patterns are shown
in Fig. 1) (Bröder & Schiffer, 2003a; van Heijningen et al., 2009).
Stimulus choices were used to calculate log-likelihoods and
Akaike weights for each hypothetical strategy (Wagenmakers &
Farrell, 2004). When relative likelihoods were close to 1, all strate-
gies up to a cumulative Akaike weight of 0.95 were included in the
confidence set (Johnson & Omland, 2004). Statistical analysis and
data processing were performed using custom written Python soft-
ware (www.python.org), following guidelines in Anderson (2008)
and Bröder and Schiffer (2003a).
3. Results

3.1. Overall performance

An analysis of individual performance by test class (using
two-tailed binomial tests) revealed some species-dependent and
possibly group-dependent differences in performance (Table 2).
All birds failed the key test featuring stimuli of non-matching
lengths between A and B, but kea succeeded overall in all other
tests (p < 0.01). The number of pigeons that performed above
chance varied for each test and differed between experimental
groups.

3.2. Individual performance and reaction time

Unsurprisingly, the birds performed worse on novel, unre-
warded test strings compared to familiar training stimuli. A
Wilcoxon signed-rank test, comparing the overall error rate
between training and test trials (Table S1, Supplementary
Information) showed a significant difference (n = 20, W = 1.0,
p < 0.001, normal approximation). However, the latency in
responding was not significantly different between training and
test trials. For each bird, test class (as in Table 2), and trial type

http://www.python.org
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(training vs. test trials), we calculated the median reaction time.
The median latency across conditions (Table S1) was compared
between training and test trials for each bird. A Wilcoxon
signed-rank test revealed no significant difference (n = 20,
W = 83.5, p = 0.469, normal approximation) in the latencies of
training and test trials and between correct and incorrect trials
(n = 20, W = 101.0, p = 0.881, normal approximation). Thus, latency
was not a predictor of certainty or of performance, as neither
pigeons nor keas showed a difference in reaction time between
training and test trials, or between correct and incorrect trials.
3.3. Strategies

Differences in strategies used to solve the tasks were found at
three levels: individual, species and experimental group. In general
(see Tables 3 and 4 for details), the keas’ choices in the (AB)n group
were all consistent with the same local strategy (⁄BA⁄, correspond-
ing to accepting strings which contained a ‘‘BA’’ bigram), while
pigeons in the (AB)n group employed a greater variety of strategies
(between two and five different strategies per bird). All pigeons
showed some evidence of having employed the global transition
similarity strategy (in its relative, TS, or absolute variant, aTS).
Additionally, all pigeons in this group used a pattern-matching
strategy. For one pigeon (P15), the (AB)n pattern strategy was the
second ranked in order of descending likelihood (corresponding to
the second most likely strategy, see Fig. 3). For all other pigeons in
the group, the BLOCK strategy was among the most likely strategies.

Turning to the AnBn grammar, all kea in this group employed an
‘‘edge’’ strategy, basing their choice behavior on either the last
(⁄BB) or the first two tiles (AA⁄). Each bird consistently followed
Table 3
Most likely strategies used by kea and pigeons in the (AB)n group when choosing
between two stimuli. Each cell contains the corresponding Akaike weight (multiplied
by 100 and truncated), up to a cumulative Akaike weight P0.95. The likelier a
strategy, the higher its Akaike weight. Akaike weights in bold denote the highest
value for that bird, and correspond to the most likely strategy. For a description of
each strategy, see Table 1.

Strategy Species/ID

Kea Pigeon

K3 K5 K7 K9 K14 P12 P13 P14 P15 P22

AB⁄ 4
⁄AB 14 6 25
+AB+ 33
⁄BA⁄ 99 99 99 99 99 12
TS/aTS 28 57 37 41 45
(AB)n 29
BLOCK 13 28 50 49
LL 7

Table 4
Most likely strategies used by kea and pigeons in the AnBn group when choosing
between two stimuli. See Table 3 caption for details.

Strategy Species/ID

Kea Pigeon

K2 K4 K6 K10 K11 P16 P17 P18 P19 P20

AA⁄ 99 4 16 10
⁄BB 99 99 76 99 32 16 84 10
+AA⁄ 29 33 98
⁄BB+ 8 29
NTS/aNTS 13
AnBn

BLOCK 23 24 15
RR 62 4
only one of the two strategies and did not switch between them.
One individual kea (K6) additionally made use of the BLOCK
sub-pattern matching rule. In contrast, individual pigeons in the
AnBn experimental group made use of a variable number of strate-
gies, ranging from one to six. Unlike in the (AB)n group where the
global strategy TS dominated, local strategies were often the most
likely for pigeons in the AnBn group. In some cases, these were
complemented by strategies based on a side bias, by the global
TS strategy or by the pattern-matching BLOCK rule. The intended
generative rule (i.e., AnBn or (AB)n) was not the most likely strategy
for any of the birds.

We calculated the overall performance for each strategy, as a
grand average of birds’ success rate (in reinforced trials) weighted
by the Akaike weight for each bird and strategy. The strategies
associated with the highest performance (>80%) were ⁄BB, AA⁄

and ⁄BA⁄. Strategies associated with the worst performances
(<65%) were aTS/aNTS (pooled together), ⁄BB+, ⁄AB and (AB)n.

3.4. Pecking location

To make their choice, birds pecked on a touch screen anywhere
within the stimulus. To determine whether peck location was tied
to strategy, we analyzed each individual’s pecking location within
a chosen image. We found that individual strategy choice, as deter-
mined by our model selection approach, was mirrored by the peck-
ing location. Thus peck location appears to provide a behavioral
‘‘readout’’ for individual strategy.

Figs. 4 and 5 show the frequency of pecking at different hori-
zontal locations on the screen. The frequencies shown in the fig-
ures are the sum of all pecks within a 32 pixel window, a rough
approximation of the average tile size. (32 pixels is an even divisor
of 1024, the screen horizontal resolution, lying between 28 and 34
pixels, the two possible horizontal widths of tiles.) Fig. 4 shows
how one kea (K11, unbroken line) who used a primacy rule, pecked
on the left side of each stimulus, while the other (K4, dashed line)
who used a recency rule pecked on the right side. Fig. 5 shows
pecking frequencies of P19 (unbroken line, a bird that used 5 dif-
ferent strategies) and P16 (dashed, that used a mix of recency
and side bias strategies). P16 pecked relatively more often on the
right side than on the left of each stimulus (recency rule) and rel-
atively more frequently on the right side of the screen, rather than
the left (side bias). Individual differences were also present in the
distribution of pecks. (see Fig. S1 in Supplementary Information,
showing the distribution and variability in pecking location for
each bird and side of the screen.)

3.5. Transition similarities and error patterns

Transition similarity rules appear to partially explain overall
error patterns. Figs. 6–8 show the frequency of incorrectly chosen
test patterns as a function of the number of A M B transitions in
them. To analyze misclassifications based on global transition
properties of the stimuli, we only included trials where the two
stimuli had a different (relative or absolute) number of transitions.
(For a discussion on relative vs. absolute transition rules, see
Section 2.3.2.)

Fig. 6 refers to the experimental group (AB)n, for which birds
adopting the transition-similarity rule would choose the stimulus
with the largest absolute number of transitions. Even though
entries between 0 and 5 transitions show an increasing trend,
Kendall’s Tau correlations were not significant for either species
(p > 0.29). This may be driven by the sharp contrast between fre-
quencies of 4, 5 and 6 transitions, probably due to the fact that
the S+ for this group contained exactly 5 transitions. (Analyses
including relative transitions for this group produced identical
results.)



Fig. 3. Strategy-based enhancement of stimulus features. During the training, individuals are presented with an experimental stimulus (left), which is processed as described
in Fig. 1, producing a cognitive representation based on an individual heuristic (right). In this particular example (based on the analysis of pigeon P15), decisions on whether
to peck on the stimulus are based on its rightmost part (inflated in the figure), and the transitions between contiguous squares (enhanced).

Fig. 5. Pecking locations of two pigeons. P19 (unbroken line) used a mix of five
strategies. P16 (dashed) used a combination of recency and side bias strategies.

Fig. 6. Number of transitions in the (incorrectly) chosen stimulus (x-axis) and
frequency of choice for pigeons (dots) and kea (crosses) of the (AB)n group.

Fig. 4. Pecking locations of two keas, K11 (unbroken line), using a recency strategy,
and K4 (dashed), employing a primacy strategy. The shortest horizontal ‘‘step’’
corresponded to 32 pixels on the screen (approximately 9 mm) and approximates
the width of a single tile. Dark and light gray areas denote the minimum and
maximum stimulus size, respectively. The vertical axis measures the total number
of pecks per bird within the corresponding 32 pixel window.

Fig. 7. Number of transitions in the (incorrectly) chosen stimulus (x-axis) and
frequency of choice for pigeons (dots) and kea (crosses) of the AnBn group. Only
misclassifications due to a different number of absolute transitions are included.

Fig. 8. Number of transitions in the (incorrectly) chosen stimulus (x-axis) and
frequency of choice for pigeons (dots) and kea (crosses) of the AnBn group.
Misclassifications due to a different number of either absolute transitions or
relative transitions are included.
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Fig. 7 shows error patterns of birds in the AnBn group condi-
tional on stimuli having a different absolute number of transitions
(Kendall’s Tau correlations were not significant for either species,
p > 0.10). Fig. 8 shows error frequencies from the same birds,
including also trials with different relative number of transitions
(Kendall’s Tau: T = �0.64, p < 0.01 for both species). There is a
major difference between the two: incorrectly choosing AAABB
over AABB can be accounted for by (relative) TS and NTS strategies
(because the stimuli have a different number of elements) but not
by (absolute) aTS and aNTS strategies (because the number of tran-
sitions is 1 in both cases, so this strategy cannot be used to discrim-
inate this pair of stimuli). Figs. 7 and 8 together suggest two
potentially complementary hypotheses concerning the nature of
errors in the AnBn group. In terms of absolute transitions, birds
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misclassified stimuli with 4 transitions or less (Fig. 7). In particular,
almost half of kea’s erroneous choices contained 0 transitions:
these are the pure (all A or all B) stimuli, which are likely to be cho-
sen by edge-based strategies (primacy or recency). In terms of rel-
ative transition similarity, most misclassifications contained 1
transition (Fig. 8). These are often the non-matching stimuli, com-
posed of an A block and B block of unequal length. Choice of these
stimuli is consistent with both local and global strategies.
4. Discussion and conclusions

4.1. Differences in number, type and heterogeneity of strategies

Visual perception and discrimination are cornerstones of com-
parative cognitive research between humans and other animals.
This study presents a novel approach to analyzing individual-
level behavior, focused on uncovering cognitive heuristics and
sources of individual variation in visual pattern perception. Our
model selection approach revealed differences in the number, type
and heterogeneity of decision rules adopted in two bird species,
both at the individual and species level.

The main differences were seen between species rather than
between experimental groups. Overall, keas tended to focus on a
single local strategy, while pigeons typically employed an idiosyn-
cratic mix of several strategies of different types (global, local, bias,
and pattern-matching strategies). Keas used one, or at most two,
local strategies, regardless of training pattern. Pigeons in both
groups used many mixed strategies, some of which were global
or pattern-matching.

Analysis of error patterns provided evidence of between-
species’ similarities and within-species differences influenced by
experimental group. Analysis of error patterns for the (AB)n group
supports the hypothesis that individuals from both species were
focusing on the stimulus’ interior elements. A more uniform error
distribution for pigeons than for keas dovetails with the heteroge-
neous strategy set found in the former species. Error patterns of
both species in the AnBn group can mostly be explained by birds
choosing stimuli containing 0, 2, 3 or 4 transitions (peaks in
Fig. 7). Birds employing either local or global strategies could exhi-
bit this pattern. The most frequent error type (choosing 0 transi-
tions or all-A or all-B stimuli) might result from using a local
strategy (AA⁄ or ⁄BB), used by 9 out of 10 birds (Table 4). Fig. 8
shows a more uniform distribution for pigeons than for kea. The
peak at one transition is probably a result of kea choosing a mis-
matched AnBm stimulus with an extra A at the beginning or B at
the end (i.e., n – m). The broader peak for pigeons might result
from these animals using mainly local strategies and complement-
ing them with global ones to a lesser extent. Overall, the analyses
of error patterns seem to support and extend the results obtained
by model selection.
4.2. Learning rules or memorizing chunks?

Neither of the exact grammars used to generate the training
stimuli was adopted (Stobbe et al., 2012) as the most likely strat-
egy for any pigeon (although a single pigeon, trained on instances
of (AB)n, may have actually adopted this abstract pattern as one of
its decision rules). Using only single bigram-based strategies, keas
were able to attain very high levels of performance in all tests,
except those featuring a non-matching number of As and Bs.
These keas, and some pigeons in the AnBn group, behaved similarly
to occasional humans who fail to learn the abstract generating pat-
tern in similar experiments (Hochmann, Azadpour, & Mehler,
2008; Zimmerer et al., 2011): in such cases, the incorrectly chosen
stimuli with highest frequency contain one transition, that is,
correspond to AnBm or BmAn. Although most humans trained on this
grammar reject mismatches of n and m (Stobbe et al., 2012), show-
ing that they noted and generalized the match between A and B
chunks, a single-transition decision rule is sometimes found in a
subset of human participants (Zimmerer et al., 2011). This supports
the idea that a model selection approach, focused on individual
performance in humans (Zuidema, 2013) might reveal further
interesting similarities between humans and other species.

Our findings confirm some results of previous grammar learn-
ing studies in pigeons (Herbranson & Shimp, 2008). Pigeons in
Herbranson and Shimp (2008) had a left/right bias toward one of
the strings, analogous to a side bias, which explained some of
our pigeons’ choices. Moreover, pigeons seem to have used two
possible strategies to accomplish the task (Herbranson & Shimp,
2008): training-based (‘‘memorize chunks’’) vs. grammar-based
(‘‘learn underlying rules’’). Our results seem to point toward
related ‘‘training-based’’ strategies: with our training, pigeons
memorized chunks rather than rule-based properties of the stimuli
(see Kürten, De Vries, Kowal, Zwitserlood, and Flöel (2012) for a
human perspective).

4.3. Within- and between-species variation

Our results do, however, differ from previous results from
pigeons and keas in some other respects. Previous cognitive studies
have characterized kea as explorative, seeking optimal solutions by
trial and error. Our analyses, by contrast, suggested that most keas
chose a single strategy and stuck with it. However, kea might have
first explored multiple options before lighting upon a satisfactory
strategy during the training sessions, and then subsequently
adhered to it, producing a stable behavior in the later test sessions
analyzed here.

In pigeons, a local bias has repeatedly been observed, which has
become known as a ‘‘local precedence effect’’ (Cavoto & Cook,
2001; Cerella, 1980; Gibson, Wasserman, Gosselin, & Schyns,
2005), in contrast to the global bias often found in humans
(Navon, 1977). However, solid evidence has emerged that this ‘‘pi-
geon: local; humans: global’’ generalization may be an oversimpli-
fication. Indeed, in humans (Pomerantz, 1983) as well as in pigeons
(Aust & Huber, 2001; Cook, 1992; Goto, Wills, & Lea, 2004; E. A.
Wasserman, Kirkpatrick-Steger, Van Hamme, & Biederman,
1993), either local or global information (or both) can influence
performance, and attention can be flexibly shifted between parts
and wholes. Previous work examined (i) whether structural,
syntactic-like rules have an influence on the level of processing
(global vs. local) and (ii) where different species stand along this
global–local continuum. Our results support a ‘‘shifting’’ hypothe-
sis for pigeons: both local and global information were used in our
pattern learning experiments. The strategies that our pigeons
adopted were not as local as expected: much of their behavior
could be explained through a mix of global and other decision rules
(for instance, see pigeon P19, Fig. 5), but they nonetheless per-
formed poorly using such ‘‘mixed strategies’’. Keas, in contrast,
appeared to employ only local information when choosing a stim-
ulus, and in general, outperformed pigeons in both training trials
and test trials. Because high performance, test species, and adop-
tion of local strategies are all inter-related, it is difficult to establish
any clear causal relation among these different factors based on the
current data.

The species differences we observed might be due to differences
in ecological backgrounds (Mettke-Hofmann, Winkler, & Leisler,
2002). Keas are a New Zealand parrot species famed for their
highly-developed technical cognition and visual discrimination
abilities (Auersperg, Gajdon, & Huber, 2009; Auersperg, von
Bayern, Gajdon, Huber, & Kacelnik, 2011; Huber & Gajdon, 2006;
O’Hara, 2011; Schloegl et al., 2009), suggesting the existence of
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good abstract pattern recognition in this species. For instance, sea-
sonally foraging on about 200 different plants and cryptic plant
parts requires these birds to learn specific natural patterns
(Brejaart, 1994). Kea are flexible foragers and problem-solvers
(Diamond & Bond, 1991): In their natural environment, and when
tested on physical cognition tasks, kea often quickly come up with
novel, insightful solutions without the need of a trial-and-error
phase (Huber & Gajdon, 2006; Miyata, Gajdon, Huber, & Fujita,
2011). This may also have happened in our experiments.

Pigeons’ mixture of small brain size and high visual competence
makes them an interesting model species for comparative research
(Cook, 1992). Their vision is well studied, and pigeons excel rela-
tive to humans in some visual capacities. Pigeons seem able to cope
with sophisticated visual tasks, as long as they can find a superfi-
cial perceptual anchor for their decisions. This often involves using
perceptual rules and similarities, when present, to provide a
response. However, pigeons often fail in abstract tasks that require
categorization beyond a superficial perceptual level (i.e., recogniz-
ing abstract relations, although pigeons can learn some artificial
grammars: see e.g., Herbranson & Shimp, 2008). But both the limits
of pigeons’ abstract categorization abilities and the precise cogni-
tive mechanisms used to accomplish visual tasks remain a matter
of ongoing debate. Our pigeon subjects, in contrast to keas, never
actually found a good working approach to the specific problem
posed, and some of them kept trying alternative possibilities.

It is also worth noting that the Akaike weights reflect statistical
confidence that a given strategy was employed. Many selected
strategies with corresponding low Akaike weights could either
mean that the bird was behaving erratically, or that the analysis
is not fully confident of any single strategy, but rather provides a
set of them as best guesses. Also, a bird switching between fixed
strategies over time would appear in this framework as a bird
maintaining one mixed-strategy behavior over time. We did do
additional analyses on subsamples of the data to test this switching
vs. mixed strategy hypotheses (see Supplementary Information). It
seems that both kea groups, and probably the (AB)n pigeon group,
started the experiments with a larger strategy set and converged
toward a smaller strategy set toward the end of the experiment.
Pigeons in the AnBn group kept a fixed core of strategies throughout
the testing, and replaced some other strategies over time. This sug-
gests that most birds had already found some of their final strate-
gies at the beginning of the experiment.

An additional source of the observed species differences could
involve initial learning performance differences. Although both
species reached criterion (corresponding to 70% or more first cor-
rect choices per session in six consecutive sessions, Stobbe et al.,
2012, pg. 1999) during the initial training, the performance asymp-
tote reached by pigeons was much lower than by kea (as suggested
by error rates between 1% and 5% for keas, and between 19% and
40% for pigeons in repetition training trials, see Table S1 in
Supplementary Information).

4.4. Individual strategies

Our results confirm and extend previous work applying a model
selection approach to auditory pattern perception that indicated
the use of local strategies (primacy, recency and interior rules)
by zebra finches (van Heijningen et al., 2009). Here we show that
similar local strategies were used by two further unrelated bird
species, even when tested in a different modality (visual instead
of auditory) and setup (2AFC here, instead of go/no-go).
However, any direct comparisons of zebra finches, pigeons and
kea need to take into account methodological and analytical differ-
ences between these studies. Our stimuli were always presented in
pairs, and our analysis thus includes an effect of context on
decision-making (the appearance and structure of the two stimuli
relative to each other). Such context effects in animal pattern
learning experiments are well known (Herbranson & Shimp, 2008).

Keeping this methodological difference in mind, we found that
some individuals used novel non-local strategies, not analyzed in
the van Heijningen study. By including global and
pattern-matching strategies, our results suggest that individual
birds’ and species’ decision rules may occupy a multidimensional
strategy space. At two extremes of this ideal space we would find
purely local or global strategies. Our local strategies were based on
bigrams (the shortest possible stimuli parts allowing an effective
decision rule, since strategies based on single tiles would not have
distinguished even the training stimuli). Keas in both experimental
groups seem to have focused exclusively on such bigram strategies.
Global strategies, in contrast, were based on overall visual proper-
ties of the stimulus with respect to transition structure between
tiles. Pigeons’ choices in both experimental groups, and some of
the error patterns in the AnBn group, were best explained by the
adoption of such global rules. Global strategies corresponded to
visual homogeneity (few transitions) or heterogeneity (several
transitions), and could be easily reformulated in terms of
entropy-based decisions (see for instance (Pothos, 2010)).
Between these two extremes, our Hamming distance-based
BLOCK rule captures an intermediate level of information process-
ing: although the entire stimulus is not considered globally, its
subparts must resemble a predetermined overall template. Some
pigeons appeared to have employed such an intermediate-level
strategy, suggesting that pigeons tested in other visual experi-
ments might employ strategies lying between local and global (like
BLOCK) rather than a mixture of global and local strategies per se.
BLOCK was, in fact, the most likely strategy for two of ten tested
pigeons. Given the importance of the long-running local/global
debate in avian visual cognition, we suggest that new insights
could be gained by using BLOCK and related metrics in analysis
of data from other pigeon experiments. Rather than providing an
alternative to previous theories, the metrics and model selection
approach we propose could integrate and complement previous
theoretical frameworks, such as the Modified Feature Theory of
visual categorization (Huber & Aust, 2006).

Finally, independent of the stimulus choice itself, assessment of
individual pecking locations provided an additional source of con-
firmation for the individually variable heuristics inferred using the
model selection process, showing agreement between spatial
information in the behavioral data, and supporting statistical infer-
ences about the underlying cognitive processes. Pecking location
thus seems to provide an online behavioral read-out of an individ-
ual bird’s current strategy and perceptual focus: a fact that could
be employed during training to break bad habits before they are
formed.

4.5. Future work

It is important to note that, although we utilized a large number
of possible strategies in our initial model set, the set is not exhaus-
tive. An even larger (in principle infinite) number of strategies
could have been tested. Some strategies have been excluded for
implausibility (e.g., reject all stimuli with a prime number of Bs),
or because they were unlikely to have developed during training
(e.g., accept only pure-A stimuli). Several more complex and com-
posite strategies (e.g., accept stimuli starting with an AB, contain-
ing few transitions and possibly displayed on the left side of the
screen) did not need to be explicitly represented because our
model-fitting procedure could still output them as a weighted set
composed of simpler strategies (in this example, startAB, low TS
and left bias). However, some plausible strategies were not entered
in the analyses. Our model set features local (i.e., bigram), global
and pattern-matching strategies, but it does not contain larger
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n-gram (e.g., trigram) strategies. Although heuristics captured by
n-grams and pattern matching partially overlap, larger n-grams
could have entered some of the birds’ Akaike set if evaluated by
the model. Alternatively, in our 2AFC paradigm some of the birds
could have followed avoidance-based rules instead of
acceptance-based strategies. In other words, birds in the (AB)n

group could follow e.g., an ‘‘avoid a startAA stimulus’’ (the opposite
of the ‘‘accept startAA’’ from AnBn), instead of ‘‘accept a startAB
stimulus’’. More generally, using logical negation, all strategies pre-
scribing stimulus acceptance in the (AB)n group could be used as
stimulus avoidance strategies for the AnBn group, and vice versa.
Future research might enlarge the strategy set evaluated, e.g.,
including n-gram and/or avoidance-based strategies in the analy-
ses, thus potentially providing an even more nuanced picture of
individual pattern learning.

Our results help clarify the ongoing debate concerning which
non-human animal species can master the AnBn grammar, a pat-
tern used as a proxy for the supra-regular cognitive abilities under-
lying language. In light of our own and previous related findings, it
is crucial that whenever possible future animal pattern learning
experiments analyze individual participants’ strategies, since
merged group data can be misleading. The model selection
approach we use here seems particularly well suited for experi-
ments testing participants on a large number of trials and in an
operant setup in the visual or auditory modalities (as opposed to
habituation/discrimination methods, which produce far less data
(Ravignani & Fitch, 2012; ten Cate & Okanoya, 2012).

4.6. Conclusions

Artificial grammar learning is a topic of active research, with
recent findings informing language, music and visual cognition
(Christiansen, Louise Kelly, Shillcock, & Greenfield, 2010;
Conway, Pisoni, Anaya, Karpicke, & Henning, 2011; Culbertson &
Adger, 2014; Fitch & Friederici, 2012; François & Schön, 2014;
Loui, Wessel, & Kam, 2010; Ravignani et al., 2013; Rohrmeier, Fu,
& Dienes, 2012; Rohrmeier, Rebuschat, & Cross, 2011; Smith &
Wonnacott, 2010; Sonnweber et al., 2015; Spierings & ten Cate,
2014; ten Cate, 2014; Westphal-Fitch et al., 2012; Wilson et al.,
2015; Zimmerer, Cowell, & Varley, 2014). A model-selection
approach to pattern learning and animal cognition can inform
and refine not only the scientific inferences we draw from such
experiments, but also future experimental designs. This is true
both for comparative pattern learning studies and comparative
cognition research in general.

Our results suggest that different species may adopt radically
different strategies to make sense of incoming sensory patterns,
and to infer their structures and possibly compress the relevant
information. That is, an approach that seems simple or ‘‘natural’’
to one species may not be so obvious to another. Moreover, our
findings emphasize the need to take individual behavior into
account before reaching conclusions about species variability.
Only if species differences reflect consistent individual behavior
in multiple individuals (as for our keas) does it seem appropriate
to compare behavioral data with information about neural or
genetic differences between species. This approach will enrich
the more general research program attempting to uncover how
neural structures map onto cognitive abilities and behavioral
strategies both on an individual and species level (Chittka,
Rossiter, Skorupski, & Fernando, 2012; Fitch, 2014; Ravignani,
Martins, & Fitch, 2014).
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