671 research outputs found

    Fem realitat l'escola del segle XXI

    Get PDF
    Si educar és fer homes i dones per a demà, avui caldrà transformar profundament l?escola. A Jesuïtes Educació, mitjançant el projecte Horitzó 2020, actualitzem l?escola i la posem en sintonia amb el món global i canviant del segle XXI. Per a nosaltres, la clau del nou paradigma és centrar-se en l?aprenentatge de l?alumnat i acompanyar-lo en el desenvolupament del seu propi projecte vital.If educating means shaping the men and women of tomorrow, it is necessary to achieve a far-reaching transformation of schools today. Through the Horizon 2020 project, at Jesuits for Education we are updating schools and attuning them to the changing global world of the 21st century. For us, the key to the new paradigm lies in focusing ourselves on our students? learning process and in accompanying them in the development of their own life projects

    Crystallization and preliminary X-ray analysis of NADP(H)-dependent alcohol dehydrogenases from Saccharomyces cerevisiae and Rana perezi

    Get PDF
    Different crystal forms diffracting to high resolution have been obtained for two NADP(H)-dependent alcohol dehydrogenases, members of the medium-chain dehydrogenase/reductase superfamily: ScADHVI from Saccharomyces cerevisiae and ADH8 from Rana perezi. ScADHVI is a broad-specificity enzyme, with a sequence identity lower than 25% with respect to all other ADHs of known structure. The best crystals of ScADHVI diffracted beyond 2.8 Å resolution and belonged to the trigonal space group P3121 (or to its enantiomorph P3221), with unit-cell parameters a = b = 102.2, c = 149.7 Å, γ = 120°. These crystals were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. Packing considerations together with the self-rotation function and the native Patterson map seem to indicate the presence of only one subunit per asymmetric unit, with a volume solvent content of about 80%. ADH8 from R. perezi is the only NADP(H)-dependent ADH from vertebrates characterized to date. Crystals of ADH8 obtained both in the absence and in the presence of NADP+ using polyethylene glycol and lithium sulfate as precipitants diffracted to 2.2 and 1.8 Å, respectively, using synchrotron radiation. These crystals were isomorphous, space group C2, with approximate unit-cell parameters a = 122, b = 79, c = 91 Å, β = 113° and contain one dimer per asymmetric unit, with a volume solvent content of about 50%

    Mechanisms of institutional continuity in neoliberal "success stories" : developmental regimes in Chile and Estonia

    Get PDF
    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nM range, as determined by surface plasmon resonance. The interface between the two partners was confined to the >enriched in aromatic and glycine residues> (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.This work was supported by Ministerio de Ciencia e Innovacion Grants BFU2012-36827 (to I. F.) and BFU2010-22209-C02-01 (to E. Q.), a grant from the Centre de Referencia de R+D de Biotecnologia (Generalitat de Catalunya, Spain) (to E. Q.), and by FEDER funds through the Operational Competitiveness Programme-COMPETE and by Portuguese national funds through FCT-Fundação para a Ciência e a Tecnologia under Project FCOMP-01-0124-FEDER-027581 (EXPL/BBB-BQB/0546/2012) (to B. C.). The NMR characterization was conducted through the FP7 Access to Research Infrastructures (Bio-NMR Contract 261863) and by Instruct, which is part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptionsPeer Reviewe

    A multiply substituted G-H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: A role for water molecules

    Get PDF
    The crystal structure of a 15 amino acid synthetic peptide, corresponding to the sequence of the major antigenic site A (G-H loop of VP1) from a multiple variant of foot-and-mouth disease virus (FMDV), has been determined at 2·3 resolution. The variant peptide includes four amino acid substitutions in the loop relative to the previously studied peptide representing FMDV C-S8c1 and corresponds to the loop of a natural FMDV isolate of subtype C1. The peptide was complexed with the Fab fragment of the neutralizing monoclonal antibody 4C4. The peptide adopts a compact fold with a nearly cyclic conformation and a disposition of the receptor-recognition motif Arg-Gly-Asp that is closely related to the previously determined structure for the viral loop, as part of the virion, and for unsubstituted synthetic peptide antigen bound to neutralizing antibodies. New structural findings include the observation that well-defined solvent molecules appear to play a major role in stabilizing the conformation of the peptide and its interactions with the antibody. Structural results are supported by molecular-dynamic simulations. The multiply substituted peptide developed compensatory mechanisms to bind the antibody with a conformation very similar to that of its unsubstituted counterpart. One water molecule, which for steric reasons could not occupy the same position in the unsubstituted antigen, establishes hydrogen bonds with three peptide amino acids. The constancy of the structure of an antigenic domain despite multiple amino acid substitutions has implications for vaccine design

    Conformations in crystals and solutions of d(CACGTG), d(CCGCGG) and d(GGCGCC) studied by vibrational spectroscopy

    Get PDF
    Crystals of self camplementary DMA hexamers dCCACGTG>, dCCCGCGG> and d were grown bf vapour dlffuslon technlque and studled by mlcroRaman and mlcroiR spectroscop es. The ollgonucleotldes were studled ln parallel ln solutlon by vlbratlonal spectroscopy. A B->Z transltlon was detected by Raman spectroscopy cl.lrlng the crystalllzatlon procese for dCCACGTG>. Vlbratlonal spectroscopy shows that the dCGGCGCC> crystals adopt a B geametry. On the contrary the d sequence whlch ls shown to be able to undergo ln solutlon or ln fllms qulte easlly the B->Z transltlon, remalns trapped ln crystals ln a geametry whlch may correspond to an lntermedlate conformatlon often proposed ln modele of the B->Z transltlon. The crystals used ln thls study were characterlzed by X-ray dlffractlon. The unlt cell and space group have been determlned
    corecore