134 research outputs found
An Imprint of Molecular Cloud Magnetization in the Morphology of the Dust Polarized Emission
We describe a morphological imprint of magnetization found when considering
the relative orientation of the magnetic field direction with respect to the
density structures in simulated turbulent molecular clouds. This imprint was
found using the Histogram of Relative Orientations (HRO): a new technique that
utilizes the gradient to characterize the directionality of density and column
density structures on multiple scales. We present results of the HRO analysis
in three models of molecular clouds in which the initial magnetic field
strength is varied, but an identical initial turbulent velocity field is
introduced, which subsequently decays. The HRO analysis was applied to the
simulated data cubes and mock-observations of the simulations produced by
integrating the data cube along particular lines of sight. In the 3D analysis
we describe the relative orientation of the magnetic field with
respect to the density structures, showing that: 1.The magnetic field shows a
preferential orientation parallel to most of the density structures in the
three simulated cubes. 2.The relative orientation changes from parallel to
perpendicular in regions with density over a critical density in the
highest magnetization case. 3.The change of relative orientation is largest for
the highest magnetization and decreases in lower magnetization cases. This
change in the relative orientation is also present in the projected maps. In
conjunction with simulations HROs can be used to establish a link between the
observed morphology in polarization maps and the physics included in
simulations of molecular clouds.Comment: (16 pages, 11 figures, submitted to ApJ 05MAR2013, accepted
07JUL2013
SPIDER: a balloon-borne CMB polarimeter for large angular scales
We describe SPIDER, a balloon-borne instrument to map the polarization of the
millimeter-wave sky with degree angular resolution. Spider consists of six
monochromatic refracting telescopes, each illuminating a focal plane of
large-format antenna-coupled bolometer arrays. A total of 2,624 superconducting
transition-edge sensors are distributed among three observing bands centered at
90, 150, and 280 GHz. A cold half-wave plate at the aperture of each telescope
modulates the polarization of incoming light to control systematics. Spider's
first flight will be a 20-30-day Antarctic balloon campaign in December 2011.
This flight will map \sim8% of the sky to achieve unprecedented sensitivity to
the polarization signature of the gravitational wave background predicted by
inflationary cosmology. The Spider mission will also serve as a proving ground
for these detector technologies in preparation for a future satellite mission.Comment: 12 pages, 6 figures; as published in the conference proceedings for
SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and
Instrumentation for Astronomy V (2010
Spider Optimization: Probing the Systematics of a Large Scale B-Mode Experiment
Spider is a long-duration, balloon-borne polarimeter designed to measure
large scale Cosmic Microwave Background (CMB) polarization with very high
sensitivity and control of systematics. The instrument will map over half the
sky with degree angular resolution in I, Q and U Stokes parameters, in four
frequency bands from 96 to 275 GHz. Spider's ultimate goal is to detect the
primordial gravity wave signal imprinted on the CMB B-mode polarization. One of
the challenges in achieving this goal is the minimization of the contamination
of B-modes by systematic effects. This paper explores a number of instrument
systematics and observing strategies in order to optimize B-mode sensitivity.
This is done by injecting realistic-amplitude, time-varying systematics in a
set of simulated time-streams. Tests of the impact of detector noise
characteristics, pointing jitter, payload pendulations, polarization angle
offsets, beam systematics and receiver gain drifts are shown. Spider's default
observing strategy is to spin continuously in azimuth, with polarization
modulation achieved by either a rapidly spinning half-wave plate or a rapidly
spinning gondola and a slowly stepped half-wave plate. Although the latter is
more susceptible to systematics, results shown here indicate that either mode
of operation can be used by Spider.Comment: 15 pages, 12 figs, version with full resolution figs available here
http://www.astro.caltech.edu/~lgg/spider_front.ht
Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope
We introduce the light-weight carbon fiber and aluminum gondola designed for
the SPIDER balloon-borne telescope. SPIDER is designed to measure the
polarization of the Cosmic Microwave Background radiation with unprecedented
sensitivity and control of systematics in search of the imprint of inflation: a
period of exponential expansion in the early Universe. The requirements of this
balloon-borne instrument put tight constrains on the mass budget of the
payload. The SPIDER gondola is designed to house the experiment and guarantee
its operational and structural integrity during its balloon-borne flight, while
using less than 10% of the total mass of the payload. We present a construction
method for the gondola based on carbon fiber reinforced polymer tubes with
aluminum inserts and aluminum multi-tube joints. We describe the validation of
the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
LEED Holography applied to a complex superstructure: a direct view of the adatom cluster on SiC(111)-(3x3)
For the example of the SiC(111)-(3x3) reconstruction we show that a
holographic interpretation of discrete Low Energy Electron Diffraction (LEED)
spot intensities arising from ordered, large unit cell superstructures can give
direct access to the local geometry of a cluster around an elevated atom,
provided there is only one such prominent atom per surface unit cell. By
comparing the holographic images obtained from experimental and calculated data
we illuminate validity, current limits and possible shortcomings of the method.
In particular, we show that periodic vacancies such as cornerholes may inhibit
the correct detection of the atomic positions. By contrast, the extra
diffraction intensity due to slight substrate reconstructions, as for example
buckling, seems to have negligible influence on the images. Due to the spatial
information depth of the method the stacking of the cluster can be imaged down
to the fourth layer. Finally, it is demonstrated how this structural knowledge
of the adcluster geometry can be used to guide the dynamical intensity analysis
subsequent to the holographic reconstruction and necessary to retrieve the full
unit cell structure.Comment: 11 pages RevTex, 6 figures, Phys. Rev. B in pres
280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
We describe the construction and characterization of the 280 GHz bolometric
focal plane units (FPUs) to be deployed on the second flight of the
balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary
science goal of detecting or placing an upper limit on the amplitude of the
primordial gravitational wave signature in the cosmic microwave background
(CMB) by constraining the B-mode contamination in the CMB from Galactic dust
emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated
silicon feedhorns coupled to an array of aluminum-manganese transition-edge
sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the
three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial
pixels) optimized for the low loading environment in flight and read out by
time-division SQUID multiplexing. In this paper we describe the mechanical,
thermal, and magnetic shielding architecture of the focal planes and present
cryogenic measurements which characterize yield and the uniformity of several
bolometer parameters. The assembled FPUs have high yields, with one array as
high as 95% including defects from wiring and readout. We demonstrate high
uniformity in device parameters, finding the median saturation power for each
TES array to be ~3 pW at 300 mK with a less than 6% variation across each array
at one standard deviation. These focal planes will be deployed alongside the 95
and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo
Station in Antarctica in December 2018
Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus 1 region
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 mum maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 mum with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics---including secondary filaments that often run orthogonally to the primary filament---and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Quantum well state of self-forming 3C-SiC inclusions in 4H SiC determined by ballistic electron emission microscopy
High-temperature-processing-induced double-stacking-fault 3C-SiC inclusions in 4H SiC were studied with ballistic electron emission microscopy in ultrahigh vacuum. Distinctive quantum well structures corresponding to individual inclusions were found and the quantum well two-dimensional conduction band minimum was determined to be approximately 0.53 ?? 0.06 eV below the conduction band minimum of bulk 4H SiC. Macroscopic diode I-V measurements indicate no significant evidence of metal/semiconductor interface state variation across the inclusions.open292
An unbiased survey of 500 nearby stars for debris disks: A JCMT legacy program
We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA‐2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main‐sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral classes) to the 850 μm extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25, and 45 pc for M, K, G, F, and A stars, respectively, and all targets lie between the declinations of −40° to 80°. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type, or age. The survey will commence in late 2007 and will be executed over 390 hr, reaching 90% completion within 2 years. This will be the first unbiased survey for debris disks since the Infrared Astronomical Satellite. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. To fully exploit the order of magnitude increase in debris disks detected in the submillimeter, a substantial amount of complementary data will be required, especially at shorter wavelengths, to constrain the temperatures and masses of discovered disks. High‐resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories, including Herschel, ALMA, and JWST, to characterize their physical properties. For nondetected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (≈2 pc)
- …