134 research outputs found

    An Imprint of Molecular Cloud Magnetization in the Morphology of the Dust Polarized Emission

    Full text link
    We describe a morphological imprint of magnetization found when considering the relative orientation of the magnetic field direction with respect to the density structures in simulated turbulent molecular clouds. This imprint was found using the Histogram of Relative Orientations (HRO): a new technique that utilizes the gradient to characterize the directionality of density and column density structures on multiple scales. We present results of the HRO analysis in three models of molecular clouds in which the initial magnetic field strength is varied, but an identical initial turbulent velocity field is introduced, which subsequently decays. The HRO analysis was applied to the simulated data cubes and mock-observations of the simulations produced by integrating the data cube along particular lines of sight. In the 3D analysis we describe the relative orientation of the magnetic field B\mathbf{B} with respect to the density structures, showing that: 1.The magnetic field shows a preferential orientation parallel to most of the density structures in the three simulated cubes. 2.The relative orientation changes from parallel to perpendicular in regions with density over a critical density nTn_{T} in the highest magnetization case. 3.The change of relative orientation is largest for the highest magnetization and decreases in lower magnetization cases. This change in the relative orientation is also present in the projected maps. In conjunction with simulations HROs can be used to establish a link between the observed morphology in polarization maps and the physics included in simulations of molecular clouds.Comment: (16 pages, 11 figures, submitted to ApJ 05MAR2013, accepted 07JUL2013

    SPIDER: a balloon-borne CMB polarimeter for large angular scales

    Get PDF
    We describe SPIDER, a balloon-borne instrument to map the polarization of the millimeter-wave sky with degree angular resolution. Spider consists of six monochromatic refracting telescopes, each illuminating a focal plane of large-format antenna-coupled bolometer arrays. A total of 2,624 superconducting transition-edge sensors are distributed among three observing bands centered at 90, 150, and 280 GHz. A cold half-wave plate at the aperture of each telescope modulates the polarization of incoming light to control systematics. Spider's first flight will be a 20-30-day Antarctic balloon campaign in December 2011. This flight will map \sim8% of the sky to achieve unprecedented sensitivity to the polarization signature of the gravitational wave background predicted by inflationary cosmology. The Spider mission will also serve as a proving ground for these detector technologies in preparation for a future satellite mission.Comment: 12 pages, 6 figures; as published in the conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010

    Spider Optimization: Probing the Systematics of a Large Scale B-Mode Experiment

    Get PDF
    Spider is a long-duration, balloon-borne polarimeter designed to measure large scale Cosmic Microwave Background (CMB) polarization with very high sensitivity and control of systematics. The instrument will map over half the sky with degree angular resolution in I, Q and U Stokes parameters, in four frequency bands from 96 to 275 GHz. Spider's ultimate goal is to detect the primordial gravity wave signal imprinted on the CMB B-mode polarization. One of the challenges in achieving this goal is the minimization of the contamination of B-modes by systematic effects. This paper explores a number of instrument systematics and observing strategies in order to optimize B-mode sensitivity. This is done by injecting realistic-amplitude, time-varying systematics in a set of simulated time-streams. Tests of the impact of detector noise characteristics, pointing jitter, payload pendulations, polarization angle offsets, beam systematics and receiver gain drifts are shown. Spider's default observing strategy is to spin continuously in azimuth, with polarization modulation achieved by either a rapidly spinning half-wave plate or a rapidly spinning gondola and a slowly stepped half-wave plate. Although the latter is more susceptible to systematics, results shown here indicate that either mode of operation can be used by Spider.Comment: 15 pages, 12 figs, version with full resolution figs available here http://www.astro.caltech.edu/~lgg/spider_front.ht

    Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    Full text link
    We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    LEED Holography applied to a complex superstructure: a direct view of the adatom cluster on SiC(111)-(3x3)

    Get PDF
    For the example of the SiC(111)-(3x3) reconstruction we show that a holographic interpretation of discrete Low Energy Electron Diffraction (LEED) spot intensities arising from ordered, large unit cell superstructures can give direct access to the local geometry of a cluster around an elevated atom, provided there is only one such prominent atom per surface unit cell. By comparing the holographic images obtained from experimental and calculated data we illuminate validity, current limits and possible shortcomings of the method. In particular, we show that periodic vacancies such as cornerholes may inhibit the correct detection of the atomic positions. By contrast, the extra diffraction intensity due to slight substrate reconstructions, as for example buckling, seems to have negligible influence on the images. Due to the spatial information depth of the method the stacking of the cluster can be imaged down to the fourth layer. Finally, it is demonstrated how this structural knowledge of the adcluster geometry can be used to guide the dynamical intensity analysis subsequent to the holographic reconstruction and necessary to retrieve the full unit cell structure.Comment: 11 pages RevTex, 6 figures, Phys. Rev. B in pres

    280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter

    Get PDF
    We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be ~3 pW at 300 mK with a less than 6% variation across each array at one standard deviation. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018

    Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus 1 region

    Get PDF
    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 mum maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 mum with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics---including secondary filaments that often run orthogonally to the primary filament---and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Quantum well state of self-forming 3C-SiC inclusions in 4H SiC determined by ballistic electron emission microscopy

    Get PDF
    High-temperature-processing-induced double-stacking-fault 3C-SiC inclusions in 4H SiC were studied with ballistic electron emission microscopy in ultrahigh vacuum. Distinctive quantum well structures corresponding to individual inclusions were found and the quantum well two-dimensional conduction band minimum was determined to be approximately 0.53 ?? 0.06 eV below the conduction band minimum of bulk 4H SiC. Macroscopic diode I-V measurements indicate no significant evidence of metal/semiconductor interface state variation across the inclusions.open292

    An unbiased survey of 500 nearby stars for debris disks: A JCMT legacy program

    Get PDF
    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA‐2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main‐sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral classes) to the 850 μm extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25, and 45 pc for M, K, G, F, and A stars, respectively, and all targets lie between the declinations of −40° to 80°. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type, or age. The survey will commence in late 2007 and will be executed over 390 hr, reaching 90% completion within 2 years. This will be the first unbiased survey for debris disks since the Infrared Astronomical Satellite. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. To fully exploit the order of magnitude increase in debris disks detected in the submillimeter, a substantial amount of complementary data will be required, especially at shorter wavelengths, to constrain the temperatures and masses of discovered disks. High‐resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories, including Herschel, ALMA, and JWST, to characterize their physical properties. For nondetected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (≈2 pc)
    corecore