1,197 research outputs found

    Large-scale collective motion of RFGC galaxies in curved space-time

    Full text link
    We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table

    Absence of a True Vortex-Glass Phase above the Bragg Glass Transition Line in Bi-2212

    Full text link
    In magnetic measurements on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi-2212) single crystals, a general peak with a dynamical feature on both SHS-H and STS-T curves was found with S the magnetic relaxation rate. At higher fields, the characteristic exponent μ\mu becomes negative, together with the positive curvature of logElogE vs. logj logj and the scaling based on the 2D vortex glass theory or plastic creep theory, we conclude that the vortex motion above the second peak is plastic when j0j\to 0 and there is no vortex glass phase at finite temperatures in Bi-2212. The peak of S is then explained as the crossover between different meta-stable vortex states.Comment: 10 pages, 5 figures, To appear in Physica

    Flux Creep and Flux Jumping

    Full text link
    We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, BjB_j, that determines the superconducting state stability criterion. We calculate the dependence of BjB_j on the external magnetic field ramp rate, B˙e\dot B_e. We demonstrate that under the conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\it i.e.}, the value of BjB_j. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of B˙e\dot B_e.Comment: 7 pages, ReVTeX, 2 figures attached as postscript file

    Anisotropic magnetization, specific heat and resistivity of RFe2Ge2 single crystals

    Get PDF
    We have grown RFe2Ge2 single crystals for R = Y and ten members of the lanthanide series (Pr, Nd, Sm, Gd-Tm, Lu) using Sn flux as the solvent. The method yields clean, high quality crystal plates as evidenced by residual resistivities and RRR values in the range of 3-12 uOhm cm and 20-90 respectively. The crystals are also virtually free of magnetic impurities or secondary phases, allowing the study of the intrinsic anisotropic magnetic behavior of each compound. Characterization was made with X-Ray diffraction, and temperature and field dependent magnetization, specific heat and resistivity. Very strong anisotropies arising mostly from CEF effects were observed for all magnetic rare earths except Gd. Antiferromagnetic ordering occurred at temperatures between 16.5 K (Nd) and 1.1 K (Ho) that roughly scale with the de Gennes factor for the heavy rare earths. For some members there is also a lower temperature transition associated with changes in the magnetic structure. Tm did not order down to 0.4 K, and appears to be a van Vleck paramagnet. All members which ordered above 2 K showed a metamagnetic transition at 2 K for fields below 70 kOe. The calculated effective moments per rare earth atom are close to the expected free ion values of R^3+ except for Sm which displays anomalous behavior in the paramagnetic state. The non-magnetic members of this series (Y, Lu) are characterized by an unusually large electronic specific heat coefficient (gamma ~ 60 mJ/mol K^2) and temperature-independent susceptibility term (chi_0 ~ 0.003 emu/mol), indicative of a relatively large density of states at the Fermi surface.Comment: 34 pages, 13 figures, 1 table, submitted to J. Magn. Magn. Mate

    Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition.The addition of a parallel ground plane in proximity to the film changes the character of the transition.Although the screening effects expected from "dirty-boson" theories are not evident,there is evidence that the ground plane couples a certain type of dissipation into the system,causing a dissipation-induced phase transition.The dissipation due to the phase transition couples similarly into quantum phase transition systems such as superconductor-insulator transitions and Josephson junction arrays.Comment: 4 pages, 4 figure

    Crossover and scaling in a two-dimensional field-tuned superconductor

    Full text link
    Using an analysis similar to that of Imry and Wortis, it is shown that the apparent first order superconductor to metal transition, which has been claimed to exist at low values of the magnetic field in a two-dimensional field-tuned system at zero temperature,can be consistentlyinterpreted as a sharp crossover from a strong superconductor to an inhomogeneous state, which is a weak superconductor. The true zero-temperature superconductor to insulator transition within the inhomogenous state is conjectured to be that of randomly diluted XY model. An explaination of the observed finite temperature approximate scaling of resistivity close to the critical point is speculated within this model.Comment: 5 pages, 2 figures, corrected and modified according to referee Report

    Transport Properties near the z=2 Insulator-Superconductor Transition

    Full text link
    We consider here the fluctuation conductivity near the point of the insulator-superconductor transition in a system of regular Josephson junction arrays in the presence of particle-hole asymmetry or equivalently homogeneous charge frustration. The transition is characterised by the dynamic critical exponent z=2z=2, opening the possibility of the perturbative renormalization-group (RG) treatment. The quartic interaction in the Ginzburg-Landau action and the coupling to the Ohmic heat bath, giving the finite quasiparticle life-time, lead to the non-monotonic behavior of the dc conductivity as a function of temperature in the leading logarithmic approximation.Comment: Revised version for publication. To appear in PR

    Feynman's Propagator Applied to Network Models of Localization

    Full text link
    Network models of dirty electronic systems are mapped onto an interacting field theory of lower dimensionality by intepreting one space dimension as time. This is accomplished via Feynman's interpretation of anti-particles as particles moving backwards in time. The method developed maps calculation of the moments of the Landauer conductance onto calculation of correlation functions of an interacting field theory of bosons and fermions. The resulting field theories are supersymmetric and closely related to the supersymmetric spin-chain representations of network models recently discussed by various authors. As an application of the method, the two-edge Chalker-Coddington model is shown to be Anderson localized, and a delocalization transition in a related two-edge network model (recently discussed by Balents and Fisher) is studied by calculation of the average Landauer conductance.Comment: Latex, 14 pages, 2 fig

    Dimensional Crossover of Vortex Dynamics Induced by Gd Substitution on Bi2212 Single Crystals

    Full text link
    The vortex dynamics of Bi2_2Sr2_2Ca1x_{1-x}Gdx_xCu2_2O8+δ_{8+\delta} single crystals is investigated by magnetic relaxation and hysteresis measurements. By substituting CaCa with GdGd, it is found that the interlayer Josephson coupling is weakened and the anisotropy is increased, which leads to the change of vortex dynamics from 3D elastic to 2D plastic vortex creep. Moreover, the second magnetization peak, which can be observed in samples near the optimal doping, is absent in the strongly underdoped (with 2D vortex) region.Comment: 16 Pages, 6 Figures, To appear in Physica

    The Nature of the Hall Insulator

    Full text link
    We have conducted an experimental study of the linear transport properties of the magnetic-field induced insulating phase which terminates the quantum Hall (QH) series in two dimensional electron systems. We found that a direct and simple relation exists between measurements of the longitudinal resistivity, ρxx\rho_{xx}, in this insulating phase and in the neighboring QH phase. In addition, we find that the Hall resistivity, ρxy\rho_{xy}, can be quantized in the insulating phase. Our results indicate that a close relation exists between the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure
    corecore