3,124 research outputs found
from decays: contour-improved versus fixed-order summation in a new QCD perturbation expansion
We consider the determination of from hadronic decays, by
investigating the contour-improved (CI) and the fixed-order (FO)
renormalization group summations in the frame of a new perturbation expansion
of QCD, which incorporates in a systematic way the available information about
the divergent character of the series. The new expansion functions, which
replace the powers of the coupling, are defined by the analytic continuation in
the Borel complex plane, achieved through an optimal conformal mapping. Using a
physical model recently discussed by Beneke and Jamin, we show that the new
CIPT approaches the true results with great precision when the perturbative
order is increased, while the new FOPT gives a less accurate description in the
regions where the imaginary logarithms present in the expansion of the running
coupling are large. With the new expansions, the discrepancy of 0.024 in
between the standard CI and FO summations is reduced to
only 0.009. From the new CIPT we predict , which practically coincides with the result of the
standard FOPT, but has a more solid theoretical basis
The online inverted classroom model (oICM): a blueprint to adapt the inverted classroom to an online learning setting in medical and health education [version 2]
This article was migrated. The article was marked as recommended.
The idea of this paper is to offer a blueprint, to guide educators setting up a complete digital teaching scenario according to the latest insights of educational research.
The COVID-19 pandemic forced higher education institutions all around the world to radically shift their curricula from a mix of face-to-face and remote teaching methods to a fully remote curriculum. Though challenging, this time provides opportunities to implement new educational methods and to improve the quality of digital teaching. The concept of the inverted classroom was modified to meet the special needs of the new online settings. The proposed online Inverted Classroom Model (oICM) includes the following phases: (1) pre-phase, (2) self-learning-phase, (3) synchronous online phase, (4) transfer-phase, and (5) evaluation. Recommendations and potential tools are provided for each phase. The oICM is an innovative and easy to use approach to shape digital teaching and learning processes during and after the COVID-19 pandemic. This blueprint is developed by the committee “Digitalization” of the German Association for Medical Education (GMA), mainly for educators who are familiar with the Inverted Classroom Model (ICM) or similar blended learning formats
On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory
We study the nature of the confinement phase transition in d=3+1 dimensions
in various non-abelian gauge theories with the approach put forward in [1]. We
compute an order-parameter potential associated with the Polyakov loop from the
knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and
Sp(2) we find a first-order phase transition in agreement with general
expectations. Moreover our study suggests that the phase transition in E(7)
Yang-Mills theory also is of first order. We find that it is weaker than for
SU(N). We show that this can be understood in terms of the eigenvalue
distribution of the order parameter potential close to the phase transition.Comment: 15 page
Scale-dependent metric and causal structures in Quantum Einstein Gravity
Within the asymptotic safety scenario for gravity various conceptual issues
related to the scale dependence of the metric are analyzed. The running
effective field equations implied by the effective average action of Quantum
Einstein Gravity (QEG) and the resulting families of resolution dependent
metrics are discussed. The status of scale dependent vs. scale independent
diffeomorphisms is clarified, and the difference between isometries implemented
by scale dependent and independent Killing vectors is explained. A concept of
scale dependent causality is proposed and illustrated by various simple
examples. The possibility of assigning an "intrinsic length" to objects in a
QEG spacetime is also discussed.Comment: 52 page
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
We study the strong-coupling limit beta=0 of lattice SU(2) Landau gauge
Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all
momenta in physical units are infinitesimally small. Hence, the infrared
behavior can be assessed at sufficiently large lattice momenta. Our results
show that at the lattice volumes used here, the Gribov ambiguity has an
enormous effect on the ghost propagator in all dimensions. This underlines the
severity of the Gribov problem and calls for refined studies also at finite
beta. In turn, the gluon propagator only mildly depends on the Gribov
ambiguity.Comment: 14 pages, 22 figures; minor changes, matches version to appear in
Eur. Phys. J.
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target
Multiplicities of charged pions and unidentified hadrons produced in
deep-inelastic scattering were measured in bins of the Bjorken scaling variable
, the relative virtual-photon energy and the relative hadron energy .
Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and
an isoscalar target (LiD). They cover the kinematic domain in the photon
virtuality > 1(GeV/c, , and . In addition, a leading-order pQCD analysis was performed using the
pion multiplicity results to extract quark fragmentation functions
Participatory Workshops are Not Enough to Prevent Policy Implementation Failures: An Example of a Policy Development Process Concerning the Drug Interferon-beta for Multiple Sclerosis
A possible explanation for policy implementation failure is that the views of the policy’s target groups are insufficiently taken into account during policy development. It has been argued that involving these groups in an interactive process of policy development could improve this. We analysed a project in which several target populations participated in workshops aimed to optimise the utilisation of an expensive novel drug (interferon beta) for patients with Multiple Sclerosis. All participants seemed to agree on the appropriateness of establishing a central registry of Multiple Sclerosis patients and developing guidelines. Nevertheless, these policy measures were not implemented. Possible explanations include (1) the subject no longer had high priority when the costs appeared lower than expected, (2) the organisers had paid insufficient attention to the perceived problems of parties involved, and (3) changes within the socio-political context. The workshops in which representatives of the policy’s target populations participated did not provide enough interactivity to prevent policy implementation failure
Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials
6 pags., 5 figs.In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials AgInSbTe and GeSb at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.F.Q., A.K., M.N., and K.S.T. gratefully acknowledge financial support
from the German Research Council through the Collaborative
Research Center SFB 1242 project 278162697 (“Non-Equilibrium
Dynamics of Condensed Matter in the Time Domain”), project C01
(“Structural Dynamics in Impulsively Excited Nanostructures”),
and individual grant So408/9-1, as well as the European Union
(7th Framework Programme, grant no. 280555 GO FAST). M.J.S.,
R.M., and M.W. acknowledge financial support from the German
Research Council through the Collaborative Research Center
SFB 917 (“Nanoswitches”) and individual grant Ma-5339/2-1.
M.J.S., I.R., and R.M. also acknowledge the computational resources
granted by JARA-HPC from RWTH Aachen University under project
nos. JARA0150 and JARA0183. M.T., A.M.L., and D.A.R. were
supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, through the Division of Materials
Sciences and Engineering under contract no. DE-AC02-76SF00515.
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. J.L. acknowledges support
from the Swedish Research Council. J.S. acknowledges financial
support from the Spanish Ministry of Science, Innovation and
Universities through research grant UDiSON (TEC2017-82464-R).
P.Z. gratefully acknowledges funding by the Humboldt Foundatio
Metastable States in Spin Glasses and Disordered Ferromagnets
We study analytically M-spin-flip stable states in disordered short-ranged
Ising models (spin glasses and ferromagnets) in all dimensions and for all M.
Our approach is primarily dynamical and is based on the convergence of a
zero-temperature dynamical process with flips of lattice animals up to size M
and starting from a deep quench, to a metastable limit. The results (rigorous
and nonrigorous, in infinite and finite volumes) concern many aspects of
metastable states: their numbers, basins of attraction, energy densities,
overlaps, remanent magnetizations and relations to thermodynamic states. For
example, we show that their overlap distribution is a delta-function at zero.
We also define a dynamics for M=infinity, which provides a potential tool for
investigating ground state structure.Comment: 34 pages (LaTeX); to appear in Physical Review
- …