2,246 research outputs found

    Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements

    Get PDF
    Atmospheric water vapour is a major limitation for high precision Interferometric Synthetic Aperture Radar (InSAR) applications due to its significant impact on microwave signals. We propose a statistical criterion to test whether an independent water vapour product can reduce water vapour effects on InSAR interferograms, and assess the potential of the Medium Resolution Imaging Spectrometer (MERIS) near-infrared water vapour products for correcting Advanced SAR (ASAR) data. Spatio-temporal comparisons show c. 1.1mm agreement between MERIS and GPS/radiosonde water vapour products in terms of standard deviations. One major limitation with the use of MERIS water vapour products is the frequency of cloud free conditions. Our analysis indicates that in spite of the low global cloud free conditions (~25%), the frequency can be much higher for certain areas such as Eastern Tibet (~38%) and Southern California (~48%). This suggests that MERIS water vapour products show potential for correcting ASAR interferometric measurements in certain regions

    Closing yield gaps: how sustainable can we be?

    Get PDF
    Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented

    The physical basis of natural units and truly fundamental constants

    Full text link
    The natural unit system, in which the value of fundamental constants such as c and h are set equal to one and all quantities are expressed in terms of a single unit, is usually introduced as a calculational convenience. However, we demonstrate that this system of natural units has a physical justification as well. We discuss and review the natural units, including definitions for each of the seven base units in the International System of Units (SI) in terms of a single unit. We also review the fundamental constants, which can be classified as units-dependent or units-independent. Units-independent constants, whose values are not determined by human conventions of units, may be interpreted as inherent constants of nature.Comment: 17 pages, to be published in European Physical Journal-Plus, The final publication is available at www.epj.or

    Relativistic Kinetics of Phonon Gas in Superfluids

    Get PDF
    The relativistic kinetic theory of the phonon gas in superfluids is developed. The technique of the derivation of macroscopic balance equations from microscopic equations of motion for individual particles is applied to an ensemble of quasi-particles. The necessary expressions are constructed in terms of a Hamilton function of a (quasi-)particle. A phonon contribution into superfluid dynamic parameters is obtained from energy-momentum balance equations for the phonon gas together with the conservation law for superfluids as a whole. Relations between dynamic flows being in agreement with results of relativistic hydrodynamic consideration are found. Based on the kinetic approach a problem of relativistic variation of the speed of sound under phonon influence at low temperature is solved.Comment: 23 pages, Revtex fil

    Experimental determination of the effective strong coupling constant

    Get PDF
    We present a first attempt to experimentally extract an effective strong coupling constant that we define to be a low Q2 extension of a previous definition by S. Brodsky et al. following an initial work of G. Grunberg. Using Jefferson Lab data and sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants inferred from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constants and the calculations is not established it is interesting to note that their behaviors are similar.Comment: Published in Physics Letters B 650 4 24

    Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method

    Get PDF
    This paper presents the large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method (SEM) using the dynamic model. Two spectral filtering techniques suitable for these simulations have been implemented. Numerical results for Reynolds number Re=12′000\text{Re}=12'000 are showing very good agreement with other experimental and DNS results found in the literature

    IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation

    Get PDF
    We solve numerically the Schwinger-Dyson (SD hereafter) ghost equation in the Landau gauge for a given gluon propagator finite at k=0 (alpha_gluon=1) and with the usual assumption of constancy of the ghost-gluon vertex ; we show that there exist two possible types of ghost dressing function solutions, as we have previously inferred from analytical considerations : one singular at zero momentum, satisfying the familiar relation alpha_gluon+2 alpha_ghost=0 between the infrared exponents of the gluon and ghost dressing functions(in short, respectively alpha_G and alpha_F) and having therefore alpha_ghost=-1/2, and another which is finite at the origin (alpha_ghost=0), which violates the relation. It is most important that the type of solution which is realized depends on the value of the coupling constant. There are regular ones for any coupling below some value, while there is only one singular solution, obtained only at a critical value of the coupling. For all momenta k<1.5 GeV where they can be trusted, our lattice data exclude neatly the singular one, and agree very well with the regular solution we obtain at a coupling constant compatible with the bare lattice value.Comment: 17 pages, 3 figures (one new figure and a short paragraph added
    • …
    corecore