417 research outputs found

    Performance of Polarization-based Stereoscopy Screens

    Full text link
    The screen is a key part of stereoscopic display systems using polarization to separate the different channels for each eye. The system crosstalk, characterizing the imperfection of the screen in terms of preserving the polarization of the incoming signal, and the scattering rate, characterizing the ability of the screen to deliver the incoming light to the viewers, determine the image quality of the system. Both values will depend on the viewing angle. In this work we measure the performance of three silver screens and three rear-projection screens. Additionally, we measure the surface texture of the screens using white-light interferometry. While part of our optical results can be explained by the surface roughness, more work is needed to understand the optical properties of the screens from a microscopic model.Comment: almost identical to journal version, but better image qualit

    OberflÀchenquantifizierung an Schwarzpeliten unterschiedlicher Verwitterungsgrade

    Get PDF
    Die potentiell reaktive OberflĂ€che von Schwarzpeliten (hier: Alaunschiefer) wurde quantitativ abgeschĂ€tzt durch eine - in der rĂ€umlichen Auflösung skalenĂŒbergreifende - Analyse der inneren und Ă€ußeren GesteinsoberflĂ€che. Insbesondere wurden die FlĂ€chenanteile von organischem Material (OM) im Schwarzpelit und ihre Änderungen bei oxidativen Bleichungsprozessen betrachtet. Bleichung verursacht eine Verringerung des OM-Gehaltes im Alaunschiefer von ursprĂŒnglich 6-23 Gew. % auf weniger als etwa 1 Gew. %. Gleichzeitig verringert sich die innere GesteinsoberflĂ€che um mehrere m2/g. The reactive surface area of black shales during weathering was quantitatively assessed by scale spanning measurements of the internal and external rock surface area. This assessment focusses on organic matter (OM) rich alum shale surface changes caused by oxidative bleaching processes. Bleaching causes the decrease of OM in alum shale from primary 6-23 wt. % down to less than 1 wt. %. Synchronously, the decline of internal rock surface area of several m2/g occurs due to the deletion of microporous and mesoporous OM

    Small-scale diagenetic facies heterogeneity controls porosity and permeability pattern in reservoir sandstones

    Get PDF
    The fluvial-aeolian Upper Rotliegend sandstones from the Bebertal outcrop (Flechtingen High, Germany) are the famous reservoir analog for the deeply buried Upper Rotliegend gas reservoirs of the Southern Permian Basin. While most diagenetic and reservoir quality investigations are conducted on a meter scale, there is an emerging consensus that significant reservoir heterogeneity is inherited from diagenetic complexity at smaller scales. In this study, we utilize information about diagenetic products and processes at the pore- and plug-scale and analyze their impact on the heterogeneity of porosity, permeability, and cement patterns. Eodiagenetic poikilitic calcite cements, illite/iron oxide grain coatings, and the amount of infiltrated clay are responsible for mm- to cm-scale reservoir heterogeneities in the Parchim formation of the Upper Rotliegend sandstones. Using the Petrel E&P software platform, spatial fluctuations and spatial variations of permeability, porosity, and calcite cements are modeled and compared, offering opportunities for predicting small-scale reservoir rock properties based on diagenetic constraints

    Tailoring the frictional properties of granular media

    Full text link
    A method of modifying the roughness of soda-lime glass spheres is presented, with the purpose of tuning inter-particle friction. The effect of chemical etching on the surface topography and the bulk frictional properties of grains is systematically investigated. The surface roughness of the grains is measured using white light interferometry and characterised by the lateral and vertical roughness length scales. The underwater angle of repose is measured to characterise the bulk frictional behaviour. We observe that the co-efficient of friction depends on the vertical roughness length scale. We also demonstrate a bulk surface roughness measurement using a carbonated soft drink.Comment: 10 pages, 17 figures, submitted to Phys. Rev.

    Molecular Recognition and Cocrystallization of Methylated and Halogenated Fragments of Danicalipin A by Enantiopure Alleno-Acetylenic Cage Receptors

    Get PDF
    Enantiopure (P)₄⁻ and (M)₄-configured alleno-acetylenic cage (AAC) receptors offer a highly defined interior for the complexation and structure elucidation of small molecule fragments of the stereochemically complex chlorosulfolipid danicalipin A. Solution (NMR), solid state (X-ray), and theoretical investigations of the formed host–guest complexes provide insight into the conformational preferences of 14 achiral and chiral derivatives of the danicalipin A chlorohydrin core in a confined, mostly hydrophobic environment, extending previously reported studies in polar solvents. The conserved binding mode of the guests permits deciphering the effect of functional group replacements on Gibbs binding energies ΔG. A strong contribution of conformational energies toward the binding affinities is revealed, which explains why the denser packing of larger apolar domains of the guests does not necessarily lead to higher association. Enantioselective binding of chiral guests, with energetic differences ΔΔG_(293 K) up to 0.7 kcal mol⁻Âč between diastereoisomeric complexes, is explained by hydrogen- and halogen-bonding, as well as dispersion interactions. Calorimetric studies (ITC) show that the stronger binding of one enantiomer is accompanied by an increased gain in enthalpy ΔH but at the cost of a larger entropic penalty TΔS stemming from tighter binding

    Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: an overview

    Get PDF
    During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies

    Triggered telecom C-band single-photon source with high brightness, high indistinguishability and sub-GHz spectral linewidth

    Full text link
    Long-range, terrestrial quantum networks will require high brightness single-photon sources emitting in the telecom C-band for maximum transmission rate. Many applications additionally demand triggered operation with high indistinguishability and narrow spectral linewidth. This would enable the efficient implementation of photonic gate operations and photon storage in quantum memories, as for instance required for a quantum repeater. Especially, semiconductor quantum dots (QDs) have shown these properties in the near-infrared regime. However, the simultaneous demonstration of all these properties in the telecom C-band has been elusive. Here, we present a coherently (incoherently) optically-pumped narrow-band (0.8 GHz) triggered single-photon source in the telecom C-band. The source shows simultaneously high single-photon purity with g(2)(0)=0.026g^{(2)}(0) = 0.026 (g(2)(0)=0.014g^{(2)}(0) = 0.014), high two-photon interference visibility of 0.508 (0.664) and high application-ready rates of 0.75 MHz (1.45 MHz) of polarized photons. The source is based on a QD coupled to a circular Bragg grating cavity combined with spectral filtering. Coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation)
    • 

    corecore