252 research outputs found

    Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In <it>Chlamydomonas reinhardtii </it>singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene <it>GPXH/GPX5 </it>during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in <it>C. reinhardtii</it>, a mutant screen was performed.</p> <p>Results</p> <p>Mutants with altered <it>GPXH </it>response were isolated from UV-mutagenized cells containing a <it>GPXH</it>-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in <it>GPXH </it>induction was isolated, whereas several clones showed constitutive high <it>GPXH </it>expression under normal light conditions. Many of these <it>GPXH </it>overexpressor (<it>gox</it>) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most <it>gox </it>mutants produced increased singlet oxygen levels correlating with high <it>GPXH </it>expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various <it>gox </it>mutants.</p> <p>Conclusions</p> <p>Screening for mutants with altered <it>GPXH </it>expression resulted in the isolation of many <it>gox </it>mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these <it>gox </it>mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and <it>GPXH </it>expression, which could either result from mutations in multiple loci or in a single gene encoding for a global regulator of cellular photoprotection mechanisms.</p

    Transcriptomics in ecotoxicology

    Get PDF
    The emergence of analytical tools for high-throughput screening of biomolecules has revolutionized the way in which toxicologists explore the impact of chemicals or other stressors on organisms. One of the most developed and routinely applied high-throughput analysis approaches is transcriptomics, also often referred to as gene expression profiling. The transcriptome represents all RNA molecules, including the messenger RNA (mRNA), which constitutes the building blocks for translating DNA into amino acids to form proteins. The entirety of mRNA is a mirror of the genes that are actively expressed in a cell or an organism at a given time. This in turn allows one to deduce how organisms respond to changes in the external environment. In this article we explore how transcriptomics is currently applied in ecotoxicology and highlight challenges and trends

    Differences in the quality of interpersonal care in complementary and conventional medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study was part of a nationwide evaluation of complementary and alternative medicine (CAM) in Swiss primary care. The aim of the study was to compare patient-physician relationships and the respective patient-reported relief of symptoms between CAM and conventional primary care (COM).</p> <p>Methods</p> <p>A comparative observational study in Swiss primary care with written survey completed by patients who visited a GP one month earlier. 6133 patients older than 16 years of 170 certified CAM physicians, of 77 non-certified CAM physicians and of 71 conventional physicians were included. Patients completed a questionnaire aimed at symptom relief, patient satisfaction, fulfilment of expectations, and quality of patient-physician interaction (EUROPEP questionnaire).</p> <p>Results</p> <p>CAM physicians treated significantly more patients with chronic conditions than COM physicians. CAM Patients had significant higher healing expectations than COM patients. General patient satisfaction was significantly higher in CAM patients, although patient-reported symptom relief was significantly poorer. The quality of patient-physician communication was rated significantly better in CAM patients.</p> <p>Conclusions</p> <p>The study shows better patient-reported outcomes of CAM in comparison to COM in Swiss primary care, which is related to higher patient satisfaction due to better patient-physician communication of CAM physicians. More effective communication patterns of these physicians may play an important role in allowing patients to maintain more positive outcome expectations. The findings should promote formative efforts in conventional primary care to improve communication skills in order to reach the same levels of favourable patient outcomes.</p

    Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia

    Get PDF
    BACKGROUND: Community-acquired pneumonia (CAP) is the most frequent infection-related cause of death. The reference standard to diagnose CAP is a new infiltrate on chest radiograph in the presence of recently acquired respiratory signs and symptoms. This study aims to evaluate the diagnostic and prognostic accuracy of clinical signs and symptoms and laboratory biomarkers for CAP. METHODS: 545 patients with suspected lower respiratory tract infection, admitted to the emergency department of a university hospital were included in a pre-planned post-hoc analysis of two controlled intervention trials. Baseline assessment included history, clinical examination, radiography and measurements of procalcitonin (PCT), highly sensitive C-reactive protein (hsCRP) and leukocyte count. RESULTS: Of the 545 patients, 373 had CAP, 132 other respiratory tract infections, and 40 other final diagnoses. The AUC of a clinical model including standard clinical signs and symptoms (i.e. fever, cough, sputum production, abnormal chest auscultation and dyspnea) to diagnose CAP was 0.79 [95% CI, 0.75–0.83]. This AUC was significantly improved by including PCT and hsCRP (0.92 [0.89–0.94]; p < 0.001). PCT had a higher diagnostic accuracy (AUC, 0.88 [0.84–0.93]) in differentiating CAP from other diagnoses, as compared to hsCRP (AUC, 0.76 [0.69–0.83]; p < 0.001) and total leukocyte count (AUC, 0.69 [0.62–0.77]; p < 0.001). To predict bacteremia, PCT had a higher AUC (0.85 [0.80–0.91]) as compared to hsCRP (p = 0.01), leukocyte count (p = 0.002) and elevated body temperature (p < 0.001). PCT, in contrast to hsCRP and leukocyte count, increased with increasing severity of CAP, as assessed by the pneumonia severity index (p < 0.001). CONCLUSION: PCT, and to a lesser degree hsCRP, improve the accuracy of currently recommended approaches for the diagnosis of CAP, thereby complementing clinical signs and symptoms. PCT is useful in the severity assessment of CAP

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing
    corecore