50 research outputs found

    A historical and future impact assessment of mining activities on surface biophysical characteristics change : A remote sensing-based approach

    Get PDF
    Mining activities and associated actions cause land-use/land-cover (LULC) changes across the world. The objective of this study were to evaluate the historical impacts of mining activities on surface biophysical characteristics, and for the first time, to predict the future changes in pattern of vegetation cover and land surface temperature (LST). In terms of the utilized data, satellite images of Landsat, and meteorological data of Sungun mine in Iran, Athabasca oil sands in Canada, Singrauli coalfield in India and Hambach mine in Germany, were used over the period of 1989-2019. In the first step, the spectral bands of Landsat images were employed to extract historical LULC changes in the study areas based on the homogeneity distance classification algorithm (HDCA). Thereafter, a CA-Markov model was used to predict the future of LULC changes based on the historical changes. In addition, LST and vegetation cover maps were calculated using the single channel algorithm, and the normalized difference vegetation index (NDVI), respectively. In the second step, the trends of LST and NDVI variations in different LULC change types and over different time periods were investigated. Finally, a CA-Markov model was used to predict the LST and NDVI maps and the trend of their variations in future. The results indicated that the forest and green space cover was reduced from 9.95 in 1989 to 5.9 Km(2) in 2019 for Sungun mine, from 42.14 in 1999 to 33.09 Km(2) in 2019 for Athabasca oil sands, from 231.46 in 1996 to 263.95 Km(2) in 2016 for Singrauli coalfield, and from 180.38 in 1989 to 133.99 Km(2) in 2017 for Hambach mine, as a result of expansion and development of of mineral activities. Our findings about Sungun revealed that the areal coverage of forest and green space will decrease to 15% of the total study area by 2039, resulting in reduction of the mean NDVI by almost 0.06 and increase of mean standardized LST from 0.52 in 2019 to 0.61 in 2039. our results further indicate that for Athabasca oil sands (Singrauli coalfield, Hambach mine), the mean values of standardized LST and NDVI will change from 0.5 (0.44 and 0.4) and 0.38 (0.38, 0.35) in 2019 (2016, 2017) to 0.57 (0.5, 0.47) and 0.33 (0.32, 0.28), in 2039 (2036, 2035), respectively. This can be mainly attributed to the increasing mining activities in the past as well as future years. The discussion and conclusions presented in this study can be of interest to local planners, policy makers, and environmentalists in order to observe the damages brought to the environment and the society in a larger picture.Peer reviewe

    Evaluation of Seasonal, Drought, and Wet Condition Effects on Performance of Satellite-Based Precipitation Data over Different Climatic Conditions in Iran

    Get PDF
    The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) are the most important and widely used data sources in several applications—e.g., forecasting drought and flood, and managing water resources—especially in the areas with sparse or no other robust sources. This study explored the accuracy and precision of satellite data products over a span of 18 years (2000–2017) using synoptic ground station data for three regions in Iran with different climates, namely (a) humid and high rainfall, (b) semi-arid, and (c) arid. The results show that the monthly precipitation products of GPM and TRMM overestimate the rainfall. On average, they overestimated the precipitation amount by 11% in humid, by 50% in semi-arid, and by 43% in arid climate conditions compared to the ground-based data. This study also evaluated the satellite data accuracy in drought and wet conditions based on the standardized precipitation index (SPI) and different seasons. The results showed that the accuracy of satellite data varies significantly under drought, wet, and normal conditions and different timescales, being lowest under drought conditions, especially in arid regions. The highest accuracy was obtained on the 12-month timescale and the lowest on the 3-month timescale. Although the accuracy of the data is dependent on the season, the seasonal effects depend on climatic conditions.Peer Reviewe

    A PCA-OLS Model for Assessing the Impact of Surface Biophysical Parameters on Land Surface Temperature Variations

    Get PDF
    Analysis of land surface temperature (LST) spatiotemporal variations and characterization of the factors affecting these variations are of great importance in various environmental studies and applications. The aim of this study is to propose an integrated model for characterizing LST spatiotemporal variations and for assessing the impact of surface biophysical parameters on the LST variations. For this purpose, a case study was conducted in Babol City, Iran, during the period of 1985 to 2018. We used 122 images of Landsat 5, 7, and 8, and products of water vapor (MOD07) and daily LST (MOD11A1) from the MODIS sensor of the Terra satellite, as well as soil and air temperature and relative humidity data measured at the local meteorological station over 112 dates for the study. First, a single-channel algorithm was applied to estimate LST, while various spectral indices were computed to represent surface biophysical parameters, which included the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), normalized difference water index (NDWI), normalized difference built-up index (NDBI), albedo, brightness, greenness, and wetness from tasseled cap transformation. Next, a principal component analysis (PCA) was conducted to determine the degree of LST variation and the surface biophysical parameters in the temporal dimension at the pixel scale based on Landsat imagery. Finally, the relationship between the first component of the PCA of LST and each surface biophysical parameter was investigated by using the ordinary least squares (OLS) regression with both regional and local optimizations. The results indicated that among the surface biophysical parameters, variations of NDBI, wetness, and greenness had the highest impact on the LST variations with a correlation coefficient of 0.75, −0.70, and −0.44, and RMSE of 0.71, 1.03, and 1.06, respectively. The impact of NDBI, wetness, and greenness varied geographically, but their variations accounted for 43%, 38%, and 19% of the LST variation, respectively. Furthermore, the correlation coefficient and RMSE between the observed LST variation and modeled LST variation, based on the most influential biophysical factors (NDBI, wetness, and greenness) yielded 0.85 and 1.06 for the regional approach and 0.93 and 0.26 for the local approach, respectively. The results of this study indicated the use of an integrated PCA–OLS model was effective for modeling of various environmental parameters and their relationship with LST. In addition, the PCA–OLS with the local optimization was found to be more efficient than the one with the regional optimization

    Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery

    No full text
    Accurate built-up area extraction is one of the most critical issues in land-cover classification. In previous studies, various techniques have been developed for built-up area extraction using Landsat images. However, the efficiency of these techniques under different technical and geographical conditions, especially for bare and sandy areas, is not optimal. One of the main challenges of built-up area extraction techniques is to determine an optimum and stable threshold with the highest possible accuracy. In many of these techniques, the optimum threshold value fluctuates substantially in different parts of the image scene. The purpose of this study is to provide a new index to improve built-up area extraction with a stable optimum threshold for different environments. In this study, the developed Automated Built-up Extraction Index (ABEI) is presented to improve the classification accuracy in areas containing bare and sandy surfaces. To develop and evaluate the accuracy of the new method for built-up area extraction with Landsat 8 OLI reflective bands, five test sites located in the Iranian cities (Babol, Naqadeh, Kashmar, Bam and Masjed Soleyman), eleven European cities (Athens, Brussels, Bucharest, Budapest, Ciechanow, Hamburg, Lyon, Madrid, Riga, Rome and Porto) and high resolution layer imperviousness (HRLI) data were used. Each site has varying environmental and complex surface coverage conditions. To determine the optimal weights for each of the Landsat 8 OLI reflective bands, the pure pixel sets for different classes and the improved gravitational search algorithm (IGSA) optimization were used. The Kappa coefficient and overall error were calculated to evaluate the accuracy of the built-up extraction map. Additionally, the ABEI performance was compared with the urban index (UI) and normalized difference built-up index (NDBI) performances. In each of the five test sites and eleven cities, the extraction accuracy of the built-up areas using the ABEI was higher than that using the UI, and NDBI (P-value of 0.01). The relative standard deviations of the optimal threshold values for the ABEI and UI were 27 and 155% (at five test sites) and were 16 and 37% (at eleven European cities), respectively, which indicates the stability of the ABEI threshold value when the location and environmental conditions change. The results of this study demonstrated that the ABEI can be used to extract built-up areas from other land covers. This index is effective even in bare soil and sandy areas, where other indices experience major challenges

    Challenges for proceeding of Fault and fraud bankruptcy offenses in Iranian law

    No full text
    In Iranian law, bankruptcy is considered a fault and a form of crime against property and possessions, which has been criminalized for violating the property rights of individuals and disrupting the economic system and public order. However, from a legal point of view, there are various legal challenges to the rules of procedure governing these crimes, especially in determining the origin of the prosecution, the manner in which the prosecution is initiated, the necessity or non-necessity of issuing a writ of execution, and the observance of civil procedure. Regarding the private aspect, it is discussed in this article and the following results have been obtained: First, the origin of the calculation of the pursuit time lapse must have been the date of the first non-payment of the merchant. Secondly, the criminal aspect of the mentioned crimes requires the issuance of a warrant if the necessary conditions are provided. Third, the claim for damages resulting from the above offenses - except for the rejection of property and rights subject to the offense - requires the observance of the procedures of civil procedure

    Study on Durability of Oak Wood by Field test stakes

    No full text
    With the aim of measuring the durability of Oak wood (Quercus castaneafolia), 2×2×45cm wood samples were prepared. The treatments were included natural wood and impregnated with Celcure. Wood samples with 20 replication installed in 2 zones in north of Iran included Chamestan and Shalman in Mazanderan and Gilan provinces respectively. Evaluation of samples was done qualitatively based on ASTM D-1758-01. According to the results of periodically evaluation, Oak wood is “perishable”. All of the Celcure impregnated samples after 60 months were sound. Stating on longtime result of wood preservative effect needs more investigatio

    A PCA−OLS Model for Assessing the Impact of Surface Biophysical Parameters on Land Surface Temperature Variations

    Get PDF
    Analysis of land surface temperature (LST) spatiotemporal variations and characterization of the factors affecting these variations are of great importance in various environmental studies and applications. The aim of this study is to propose an integrated model for characterizing LST spatiotemporal variations and for assessing the impact of surface biophysical parameters on the LST variations. For this purpose, a case study was conducted in Babol City, Iran, during the period of 1985 to 2018. We used 122 images of Landsat 5, 7, and 8, and products of water vapor (MOD07) and daily LST (MOD11A1) from the MODIS sensor of the Terra satellite, as well as soil and air temperature and relative humidity data measured at the local meteorological station over 112 dates for the study. First, a single-channel algorithm was applied to estimate LST, while various spectral indices were computed to represent surface biophysical parameters, which included the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), normalized difference water index (NDWI), normalized difference built-up index (NDBI), albedo, brightness, greenness, and wetness from tasseled cap transformation. Next, a principal component analysis (PCA) was conducted to determine the degree of LST variation and the surface biophysical parameters in the temporal dimension at the pixel scale based on Landsat imagery. Finally, the relationship between the first component of the PCA of LST and each surface biophysical parameter was investigated by using the ordinary least squares (OLS) regression with both regional and local optimizations. The results indicated that among the surface biophysical parameters, variations of NDBI, wetness, and greenness had the highest impact on the LST variations with a correlation coefficient of 0.75, −0.70, and −0.44, and RMSE of 0.71, 1.03, and 1.06, respectively. The impact of NDBI, wetness, and greenness varied geographically, but their variations accounted for 43%, 38%, and 19% of the LST variation, respectively. Furthermore, the correlation coefficient and RMSE between the observed LST variation and modeled LST variation, based on the most influential biophysical factors (NDBI, wetness, and greenness) yielded 0.85 and 1.06 for the regional approach and 0.93 and 0.26 for the local approach, respectively. The results of this study indicated the use of an integrated PCA–OLS model was effective for modeling of various environmental parameters and their relationship with LST. In addition, the PCA–OLS with the local optimization was found to be more efficient than the one with the regional optimization.Peer Reviewe

    MONITORING SPATIOTEMPORAL CHANGES OF HEAT ISLAND IN BABOL CITY DUE TO LAND USE CHANGES

    No full text
    Urban heat island is one of the most vital environmental risks in urban areas. The advent of remote sensing technology provides better visibility due to the integrated view, low-cost, fast and effective way to study and monitor environmental and humanistic changes. The aim of this study is a spatiotemporal evaluation of land use changes and the heat island in the time period of 1985-2015 for the studied area in the city of Babol. For this purpose, multi-temporal Landsat images were used in this study. For calculating the land surface temperature (LST), single-channel and maximum likelihood algorithms were used, to classify Images. Therefore, land use changes and LST were examined, and thereby the relationship between land-use changes was analyzed with the normalized LST. By using the average and standard deviation of normalized thermal images, the area was divided into five temperature categories, inter alia, very low, low, medium, high and very high and then, the heat island changes in the studied time period were investigated. The results indicate that land use changes for built-up lands increased by 92%, and a noticeable decrease was observed for agricultural lands. The Built-up land changes trend has direct relation with the trend of normalized surface temperature changes. Low and very low-temperature categories which follow a decreasing trend, are related to lands far away from the city. Also, high and very high-temperature categories whose areas increase annually, are adjacent to the city center and exit ways of the town. The results emphasize on the importance of attention of urban planners and managers to the urban heat island as an environmental risk
    corecore