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A B S T R A C T

A harmful effect of anthropogenic activities in urban environments is the increases of thermal discomfort and
subsequently, a negative effect on humans’ mental and physical performance. Therefore, it is of high importance
to detect, monitor, and predict thermal discomfort, especially its temporal and spatial patterns in cities. The
objective of this study is to propose a new method for modeling outdoor thermal comfort based on remote
sensing and climatic datasets. To do so, several datasets were utilized, including those from Landsat, Moderate
Resolution Imaging Spectroradiometer (MODIS), Digital Elevation Model (DEM) from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), and climatic datasets from local meteorological stations.
The method was experimented in the city of Tehran, Iran. For modeling outdoor thermal comfort, the Least
Squares Adjustment (LSA) model was presented based on the Principle Component Analysis (PCA). In this model,
the Principle Components (PCs) of the environmental and surface biophysical parameters were considered as
independent variables and Discomfort Index (DI) as dependent variable. Finally, by determining the optimal
values of the adjustment coefficients for each independent variable, maps of outdoor thermal comfort at different
timestamps were produced and analyzed. The results of the modeling showed that correlation coefficient and
Root Mean Square Error (RMSE) between the modeled and observed outdoor thermal comfort values at the
meteorological stations for the training data sets were 0.86 and 1.80, for the testing data set were 0.89 and 2.04,
respectively, while it was 0.85 and 1.15 for the self-deployed devices. The average values of DI in warm season of
year was 8.5 °C higher than the cold season of the year. Further, in both warm and cold seasons of year the mean
value of DI for bare land was found higher than other land covers, whereas that of water bodies lower than
others. Our findings suggest that efficiency can be achieved for modeling outdoor thermal comfort using LSA
with remote sensing and climatic datasets.

1. Introduction

Over the past decades, physical development of cities has caused
many changes including land use and land cover changes, increased
various types of pollutions, and climate changes (Brunsell 2006,
Firozjaei et al. 2019b, Firozjaei et al. 2019d). Urbanization leads to
changes of the natural landscape to artificial surfaces, hydrological
cycle and surface biophysical properties (Panah et al. 2017, Silva et al.
2018, Firozjaei et al. 2020a). Among the most important adverse im-
pacts of increased human activities is decreasing vegetation cover and
increasing impervious surfaces that cause alter air and surface

temperature, and surface energy balance (Senanayake et al. 2013, Cai
et al. 2019, Firozjaei et al. 2020b). One of the most important effects of
increased human activities and urban warming is the increase of
thermal discomfort in urban environments (Liu et al. 2018, Musse et al.
2018).

Thermal comfort indicates the relationship between the impact of
climate changes and the various dimensions of human life in urban
environments. Outdoor thermal comfort is a condition of mind that
expresses the satisfaction of the surrounding thermal environment
(Choi and Yeom 2019, Hami et al. 2019). Outdoor thermal discomfort
(even, stress) has different negative effects on various aspects of human
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life, including social, economic, health and environmental aspects. Due
to the prediction of increasing population growth and physical expan-
sion of cities all over the world in the coming decades, it is of great
importance to assess, monitor and predict the spatial and temporal
patterns of outdoor thermal comfort in urban environments (Mijani
et al. 2019).

Several studies have been conducted for modeling outdoor thermal
comfort in urban environments based on synoptic station data (Van
Hove et al. 2015, Katavoutas et al. 2016, Qaid et al. 2016, Morris et al.
2017). The spatial resolution of these data is inappropriate. Due to the
spatial heterogeneity of the outdoor thermal comfort conditions in
urban areas (Mushore et al. 2018), the synoptic station data alone does
not have proper function for accurate modeling of the thermal and
comfort changes in space and time. Previous studies have shown that
outdoor thermal comfort in an area is affected by environmental and
surface biophysical parameters (Tsunematsu et al. 2016, Xu et al. 2017,
Mushore et al. 2018, Song and Wu 2018). Mijani et al. (2019) showed
that outdoor thermal comfort in an urban area can be affected by
downward surface shortwave and longwave radiation, surface upward
longwave radiation, brightness, greenness and wetness of the surface.
With the capabilities of remote sensing data for modeling environ-
mental and surface biophysical parameters at different spatial and
temporal resolutions, there is a high potential for using these data to
model outdoor thermal comfort patterns and changes (Xu et al. 2017,
Mushore et al. 2018, Mijani et al. 2019). Sobrino et al. (2013) in-
vestigated the outdoor thermal comfort condition in Madrid city, Spain,
using thermal remote sensing and climatic data set at the meteor-
ological stations. Discomfort Index (DI) was developed to model out-
door thermal comfort. Xu et al. (2017) applied humidity and air tem-
perature data in ground stations and satellite images of Landsat and
Sentinel for the production of outdoor thermal comfort maps in Fuzhou,
China. The result showed that the outdoor thermal comfort was found
in direct relation with the built-up index and inversely related with the
vegetation cover and water body indexes. Song and Wu (2018) in-
vestigated the state of Wisconsin's outdoor thermal comfort in the
United States based on the remote sensing data. Data sets from ground
stations and images and products of the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor were used. The results showed that
land surface temperature (LST) had a greater effect on outdoor thermal
comfort than built-up and vegetation covers. Mushore et al. (2018)
studied outdoor thermal comfort in Zimbabwe in different seasons and
land covers. Relative humidity and air temperature data recorded at
ground stations and Landsat satellite images were used. It showed that
Landsat 8 imagery had a high ability for modeling outdoor thermal
comfort in different seasonal conditions. Ziaul and Pal (2019) analyze
the patterns and changes of thermal comfort in different seasons in the
English Municipality of Bazar (India) and its surrounding. The DI value
was modeled based on the thermal bands of Landsat imagery and field
observation data. The RayMan model was applied to calculate the
Physiological Equivalent Temperature (PET) value. The results in-
dicated that the extension discomfort zone in each season of 2016
significantly increased compare to 2010. In summer, extreme heat
stress is experienced except the area under vegetation cover and water
body. Lai et al. (2019) investigated the heat mitigating strategies to
improve the outdoor thermal condition. In they study, the cooling ef-
fects of various strategies, including cool surface, vegetation cover,
urban geometry, and water bodies was analyzed. They findings showed
that urban geometry has the greatest effect on thermal comfort in
summer followed by vegetation cover and water bodies. However, re-
flective surface led to the increased the amount of PET in summer.
Arghavani et al. (2020) studied the effectiveness of different urban
green strategies on the diurnal variability of urban heat island (UHI)
and outdoor thermal comfort in Tehran Metropolis. In this study, sa-
tellite images of Landsat 8 and Sentinel-2 applied to calculated the
urban density and fraction vegetation cover. Also, THI, ETI and RSI
indices were calculated for assessing thermal comfort variations. They

results showed that in low-intensity residential area, diurnal cooling
effects in all strategies (surface vegetation, green roof, surface vegeta-
tion/green roof) are simulated, while in high-intensity residential and
commercial and industrial areas, daytime cooling is predicted. Over the
city, surface vegetation has the least diurnal averaged cooling effects in
comparison to the green roof approach. Also, the effect of its warming
nighttime is more significant than the green roof. Feng et al. (2020)
analyze the changes of thermal comfort in different seasons and land
cover in Nanjing in China. Landsat images in four time points of 1994,
2000, 2010 and 2013 was used. The modified temperature-humidity
index applied to explore the urban thermal comfort. The findings
showed that the impacts of water bodies and built-up lands on thermal
comfort were the most important in summer with being the most
comfortable and uncomfortable types, respectively and the opposite
results found in spring and winter. Additionally, the composition of the
landscape was found a major factor affecting thermal comfort.

In most studies, the efficiency of satellite imagery has been proven
useful for outdoor thermal comfort modeling. LST and vegetation cover
index have been used to modeling of outdoor thermal comfort, while
Taleghani (2018), Taleghani and Berardi (2018) and Yang et al. (2013)
showed that other parameters, such as albedo, emissivity, and wetness
can also affect the outdoor thermal comfort of a region.

Multiple linear regression model is one of common regression
models in modeling outdoor thermal comfort. The least squares ad-
justment (LSA) can be used to determine the optimum values of the
unknown coefficients in linear regressions. This method is based on
minimization the sum of the squares error and applying it in linear or
nonlinear mathematical models (Yan et al. 2018). LSA is high-perfor-
mance, simple and user friendly (Schaffrin and Felus 2005). On the
other hand, this model also can also be implemented with low number
of training data (Ghilani 2017). While LSA can be useful, one of the
most important assumptions of this model is multiple nonlinearity. That
is, the predictive variables should not have a very high correlation with
each other (Kumar et al. 2019, Cahyono et al. 2020). Different en-
vironmental and surface biophysical parameters were correlated with
each other in a region. The use of these independent variables in re-
gression models may lead to errors in modeling outdoor thermal com-
fort. Principle Component Analysis (PCA) can be very useful to solve
the correlation challenge between predictive variables in the regression
models for modeling outdoor thermal comfort. PCA is a numerical
statistical method that converts a number of components dependent
from multispectral image to a smaller number of uncorrelated linear
combinations of variables in the name of the principal component
(Zhang et al. 2014, Liu et al. 2017, Adami et al. 2018). In general, the
first principal component (PC1) contains shared information of all
bands used as input data in the PCA, i.e., spatial information, while the
spectral specific information of each band falls into the other principal
components (Wang et al. 2010, de Almeida et al. 2015, Firozjaei et al.
2019b);(de Almeida et al. 2015, Bansal et al. 2017, Liu et al. 2020).

The objective of this study is to propose a new approach for mod-
eling outdoor thermal comfort using reflective and thermal infrared
remote sensing data based on the PCA and LSA models. The unique
contribution of this study to the literature is threefold: a) presentation
of a LSA model for modeling outdoor thermal comfort using reflective
and thermal infrared remote sensing data, which can take into account
of key environmental parameters; b) The challenge of correlation
among independent variables is solved by applying the PCs; and c) The
presented LSA model shows the ability to model outdoor thermal
comfort status in both absolute and relative terms.

2. Materials and methods

2.1. Study area

Tehran is a key center for production, housing, trade, distribution
and transportation in Iran. It has a population of 8,895,947
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(worldpopulationreview 2018) that reaches exceeding 14 million
people in daytime and stands as the 24th largest populated city in the
world and the most populous city in western Asia. Ahmadnezhad et al.
(2013) reported that 17 heat waves occurred in Tehran in 2001 to
2011, causing more than 1,069 mortality. In the summer of 2013, a
heat wave sequence extended over three weeks with air temperature of
more than 40 °C and broke the air temperature record in the last
60 years in Tehran. Also, the average annual frequency of heat waves
during the period of 2005–2015 in Tehran metropolitan area was 43
heat waves per year, of which approximately on average, 50% of the
waves occur during the warm season and 50% in the cold season
(Keikhosravi 2019). The geographic location of the study area is shown
in Fig. 1. Tehran is located where Dashte-e Kavir deserts touch Alborz
mountains, hence, its climate can vary largely depending how each of
the two landscapes play a dominant role. This means that its climate is
largely heterogeneous so that the Northern districts have a dry cold
climate, and the Southern parts have a dry warm climate. The height of
this city ranges between 900 and 1800 m above sea level within 30 km.
In the last 45-year season, Tehran has experienced its highest tem-
perature at about 43 °C and its lowest temperature at about −15 °C.
The average of relative humidity in Tehran is 40%, the dominant wind
direction is west (270°) and its average speed is 5.5 m/s. The mean
annual rainfall varies from a maximum of 422 mm in the north to a

minimum of 145 mm in the south-east. The number of rainy days varies
between 89 days in the north and 33 days in the south, while there are
about 205 to 213 clear sky days. The land cover map and the area of
each class for the case study are extracted based on the Landsat 8 image
on 25 May 2018. According to Fig. 1, the area of built-up, green space,
bare land and water body for the study area were 4800.61, 869.8,
13494.1 and 141.6 ha, respectively.

2.2. Data

This study used satellite imagery, meteorological, and land data sets
to implement propose model for modeling outdoor thermal comfort. In
this study a set of Landsat 8 satellite images (Path: 164, Row: 035),
MODIS water vapor (MOD07) and LST (MOD11A1) products for the
season of 2013–2018 were used. In this study, Landsat satellite imagery
were used for modeling of surface biophysical parameters such as LST,
albedo, land cover, brightness, greenness and wetness. The MOD07 and
MOD11A1 products were used to calculate and accuracy assessment of
LST obtained from Landsat images. Also, in this study, Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model (GDEM) was used to modeling of in-
coming radiation and Temperature Lapse Rate (TLR) effect (Firozjaei
et al. 2019a, Firozjaei et al. 2019c).

Fig. 1. Tehran and its suburb: (a) Iran location in world; (b) Geographical location of the Tehran in Iran; (c) Major land cover types around urbanized zone.
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Climatic data measured at six synoptic stations in the study area
(Fig. 1), including air temperature, relative humidity, and soil tem-
perature, were used. The recording time the climate data was si-
multaneous with the Landsat overpass during the 2013–2018. Meteor-
ological and synoptic stations are located in the study area covering
heterogeneous landscapes, so that the climatic conditions and hetero-
geneous topography of the case study are well covered. Additionally,
ground data set was recorded by relative humidity and air temperature
recording devices at the Landsat overpass was used. The Testo 184 G1
two-channel data logger was used for recording relative humidity and
air temperature. Four of these devices were placed at a height of 2 m
from the ground and continuously recorded relative humidity and air
temperature for 37 days. The temperature recorder range by these de-
vices is 20–70° C and relative humidity is 0–100%. The accuracy of
recording relative humidity and air temperature by these devices
was ± 0/5° C and ± 0.03%, respectively. In the present study, from
relative humidity and air temperature data recorded by these devices

were used at the time of Landsat satellite passage on 12 July 2018, 28
July 2018 and 13 August 2018. From the training and testing dataset
obtained field observation on 25 May 2018 were used in the classifi-
cation process of land covers in the supervised classification algorithm.
For each land type i.e., built-up, bare land, open space and water body,
about 200 pixels and 150 pixels are chosen, respectively as a set of
training and testing samples, for classification and accuracy assessment.
To collect these samples, from a handheld GPS (error < 7 m) was used.

2.3. Methodology

The proposed conceptual model for modeling outdoor thermal
comfort based on LSA is indicated in Fig. 2. In the first step, DI values
for the location of synoptic stations were calculated based on the re-
lative humidity and air temperature values. In the second step, different
environmental and surface biophysical parameters maps, presented as
supplementary data and the values of these parameters were extracted

Fig. 2. The flowchart of the study.
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at the location of the synoptic stations. In the third step, based on the
correlation coefficient between DI index values and the environmental
and surface biophysical parameters of different values, environmental
and surface biophysical parameters influencing outdoor thermal com-
fort were identified. In the fourth step, based on the PCA, the first and
second PCs of the environmental and surface biophysical parameters
influencing outdoor thermal comfort were calculated. Then, the LSA
model was employed to estimation of impact of first and second PCs on
outdoor thermal comfort. Finally, based on the optimal coefficients
calculated separately for the first and second PCs and maps of the first
and second PCs, outdoor thermal comfort maps were produced and the
outdoor thermal comfort conditions in Tehran were investigated.

2.3.1. Preprocessing and environmental and surface biophysical parameters
modeling

In this study, atmosphere correction was conducted using the Fast
Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) algorithm
(Cooley et al. 2002, Weng et al. 2019). The downloaded Landsat ima-
gery from the USGS are considered suitable for time-series analysis. The
geo-registration was consistent and an Root Mean Square Error (RMSE)
of < 12 m was achieved (Moghaddam et al. 2018, Weng et al. 2019).
The geometric correction of image-to-image was conducted to match
the Landsat 8 image and GDEM.

The outdoor thermal comfort in the urban environment is influ-
enced by the interactions between the climatic conditions and the
structural characteristics of urban areas (Potchter and Ben-Shalom
2013). Our literature review reveals that the heterogeneity in the urban
surfaces characteristics causes outdoor thermal comfort heterogeneity
for citizens in different urban regions, which are mainly affected by
environmental and surface biophysical parameters, including DSSR,
DSLR, SULR, brightness, greenness, and wetness of the surface (Wang
et al. 2004, Zhang et al. 2009, Van Hove et al. 2015, Qaid et al. 2016).

The environmental and biophysical parameters modeled in this study
are shown in Table 1.

2.3.2. Outdoor thermal comfort in the locations of self-deployed devices and
meteorological stations

In this study, using air temperature and relative humidity values
recorded at self-deployed devices and meteorological stations, based on
the equation (1), outdoor thermal comfort is calculated for the location
of each synoptic station at the Landsat overpass.

= − − −DI T RH T0.55(1 0.01 )( 14.5) (1)

Where DI is the outdoor thermal comfort indicator, T air tempera-
ture (° C) and RH relative humidity (%) in the location of the self-de-
ployed devices and synoptic stations. The DI index was introduced by
Thom (1959), which calculation the human thermal comfort in open
spaces based on the relative humidity and air temperature. The con-
stant coefficients in this model are calculated based on the commu-
nication between air temperature and relative humidity variables with
modeled thermal comfort based on the metabolic information of the
human body (Thom 1959).

In several studies, the efficiency of DI has been proven for modeling
the outdoor thermal comfort situation in vast regions (Wang et al. 2004,
Toy et al. 2007, Sobrino et al. 2013, Coccolo et al. 2016, Xu et al. 2017,
Mushore et al. 2018). The results of DI can be categorized according to
Table 2.

After calculating DI values for different dates from 2013 to 2018,
the environmental and surface biophysical parameters were extracted
for the geographic location of self-deployed devices and meteorological
stations. To determine the environmental and surface biophysical
parameters influencing outdoor thermal comfort, the correlation coef-
ficient between each of these parameters with the DI values in the
geographic locations of self-deployed devices and meteorology was
calculated. The parameters that have a higher correlation coefficient
with outdoor thermal comfort index were used in the modeling. For
each group of surface biophysical characteristics, including brightness,
greenness and wetness, the parameter that has a higher correlation
coefficient with outdoor thermal comfort index was selected.

2.3.3. Proposed model based on LSA for modeling outdoor thermal comfort
Since there is a strong correlation among independent variables,

e.g., environmental and surface biophysical parameters, their applica-
tion in the LSA model is problematic due to data redundancy. To solve
this problem, PCA was used in order to minimize the correlation
(González-Audícana et al. 2004, Jolliffe 2011, Ha et al. 2013). Because
the scale and unit of environmental parameters used are different, the
PCA-based correlation matrix has been used in this study (Croux and

Table 1
Environmental and surface biophysical parameters used in this study.

Parameters Description Reference

SULR The Surface Upward Longwave Radiation (SULR) is the thermal radiation flux, which is emitted from the earth’s
surface to the atmosphere

(Allen et al. 2002, Firozjaei et al. 2018,
Firozjaei et al. 2019c)

DSSR The amount of Downward Surface Shortwave Radiation (DSSR) includes direct and diffuse solar radiation and
direct and diffused reflected radiation from neighboring regions

DSLR The Downward Surface Longwave Radiation (DSLR) is the downward thermal radiation flux from the atmosphere.
NDVI The Normalized Difference Vegetation Index (NDVI) indicates vegetation cover information. (Tucker 1979)
NDBI The Normalized Difference Built-up Index (NDBI) indicates Brightness information, including the percentage of

impervious surface, including bare land and built-up lands
(Zha et al. 2003)

NDWI The Normalized Difference Water Index (NDWI) indicating moisture information including water-related
complications, soil moisture, Plant and built-up lands

(Gao 1996)

Albedo The albedo is the proportion of reflected solar radiation to the total solar radiation emitted to land surface. The
value of this parameter depends on the type, sex, and amount of solar radiation absorbed by the phenomena.

(Taleghani 2018)

SAVI Soil-Adjusted Vegetation Index (SAVI) is a transformation technique that minimizes soil brightness influences from
spectral vegetation indices involving red and Near-Infrared (NIR) wavelengths.

(Huete 1988)

Brightness First components of Tasseled Cap Transformation (TCT) (Liu et al. 2014, Liu et al. 2015)
Greenness Second components of Tasseled Cap Transformation (TCT)
Wetness Third components of Tasseled Cap Transformation (TCT)

Table 2
Outdoor thermal comfort categories depending on the DI values.

Outdoor thermal comfort categories DI values (°C)

Hyper glacial <-40
Glacial −39.9 to −20
Extremely cold −19.9 to −10
Very cold −9.9 to −1.8
Cold −1.7 to 12.9
Cool 13−14.9
Comfortable 15−19.9
Hot 20−26.4
Very hot 26.5−29.9
Torrid >30
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Haesbroeck 2000, Borgognone et al. 2001).
In this study, PCs of environmental and surface biophysical para-

meters influencing DI values in the locations of self-deployed devices
and meteorological stations, were used with equation (2).

= + +DI a a PC1 a PC2Model 0 1 2 (2)

In equation (2), PC1 and PC2 represent the first and second PCs of
the environmental and surface biophysical parameters influencing
outdoor thermal comfort, and a0, a1 and a2 are coefficients. In order to
calculate the optimal values of the coefficients while minimizing the
remaining values of variance, i.e., minimizing the RMSE between the
modeled outdoor thermal comfort and the actual outdoor thermal

comfort, all coefficients were calculated (Fan 1997, Wolf and Ghilani
1997). In this case, for each observation, an equation is casted and
using the LSA method, the optimal values of the regression coefficients
will be calculated. Equations (3), (4) and (5) show the LSA form.

= = → − → =B DI A. X (B A. X) min LeastSquareAdjustment (3)

=
⎡

⎣
⎢
⎢

⋯⋯ ⋯⋯⋯⋯
⎤

⎦
⎥
⎥

A
1 PC1 PC2

.. . .
1 PC1 PC2

1 1

n n (4)

=X [a a a ]0 1 2 t (5)

Fig. 3. Environmental and surface biophysical parameters maps for 13 August 2018.
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By calculating optimal coefficients values and placing in equation
(2), DI thermal index maps for the case study were obtained.

In this study, the geographical location of the meteorological sta-
tions during the period 2013–2016 were used as training data for cal-
culating the unknown coefficients of the LSA model. Furthermore, the
geographic location of self-deployed devices and meteorological sta-
tions data synchronized with the images for the season 2017 to 2018 as
testing set were used to assess the accuracy of the model. To do so, the
correlation coefficients and RMSE were computed between modeled DI
and DI obtained from self-deployed devices and weather stations. Then,
the outdoor thermal comfort condition of Tehran for annual warm and
cold seasons across different urban districts and land types in 2017 and
2018 was analyzed. For a meaningful evaluation results based on
general population, the correlation coefficients between the modeled DI
and the number of hospital emergency visits due to heat stroke at 2017
and 2018 summer in urban districts was calculated. To prepare the
urban land cover map, From the Landsat 8 satellite image on 25 May

2018 and the Maximum Likelihood Classification (MLC) algorithm was
used (Otukei and Blaschke 2010).

3. Results and discussion

Environmental and surface biophysical parameters were modeled
for different timestamps. LST was calculated for different time-steps
using the Split-Window (SW) (Jiménez-Muñoz et al. 2014) and the
Single-Channel (SC) (Jiménez-Muñoz et al. 2014, Yu et al. 2014) al-
gorithms. The RMSE and correlation coefficient between the LST de-
rived Landsat imagery and soil temperature recorded in the location of
the synoptic stations for the SW algorithm were 0.74 and 3.2, respec-
tively, and for the SC algorithms 0.77 and 2.8, respectively. Also, the
difference between the mean LST obtained from the SW and SC algo-
rithms with the average of MOD11A1 product were 2.2 and 1.8, re-
spectively. Accordingly, the LST calculated from the SC algorithm was
used for modeling SULR. The spatial distribution of the environmental
and surface biophysical parameters of the case study are heterogeneous
(Fig. 3).

The correlation coefficient between value of DI and each environ-
mental and surface biophysical parameters including brightness, wet-
ness, greenness, NDBI, NDWI, albedo, DEM, FVC, NDVI, SULR, DSLR,
and DSSR in geographic location of self-deployed devices and meteor-
ological stations are 0.38, 0.30, 0.28, 0.01, 0.02, 0.30, 0.02, 0.01, 0.01,
0.85, 0.21, and 0.02, respectively. The DSSR, DSLR, and SULR, and the
surface biophysical parameters of brightness, greenness and wetness
had the highest effect on the DI values. This set of environmental and
surface biophysical parameters was used for the first time in modeling
outdoor thermal comfort.

Previous studies have shown that environmental and surface bio-
physical parameters, such as LST, incoming and upwelling radiation,
built-up lands, vegetation cover, and albedo, brought an impact on the
temporal and spatial changes of the measured outdoor thermal comfort
indicators at synoptic stations. In this study, by replacing SULR with
LST, the influence of emissivity parameter is also considered in the
modeling outdoor thermal comfort for the first time. As brightness in-
creases, the sensible heat flux increases. This result suggests that in-
creased surface brightness can significantly affect the outdoor thermal

Fig. 3. (continued)

Table 3
Correlation coefficient among the environmental and surface biophysical
parameters influencing outdoor thermal comfort.

Parameters DSSR DSLR SULR Brightness Greenness Wetness

DSSR 1 0.15 0.74 0.18 0.21 0.05
DSLR – 1 0.14 0.08 0.13 0.09
SULR – – 1 0.31 0.28 0.21
Brightness – – – 1 0.50 0.05
Greenness – – – – 1 0.18
Wetness – – – – – 1

Table 4
Variance and correlation coefficient of PCs of environmental and surface bio-
physical parameters influencing outdoor thermal comfort.

Components PC1 PC2 PC3 PC4 PC5 PC6

Variance 4579 123 2 0.02 0.006 0.0008
R2 0.81 0.05 0.003 0.006 0.0009 0.0002
Eigenvalue 8.45 1.12 0.18 0.10 0.02 0.01
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comfort in urban open spaces. Although it increases surface albedo of
asphalt as a factor in reducing LST, a few studies such as (Taleghani
2018) considered the outdoor thermal comfort of the pedestrian. The
outdoor thermal comfort mainly depends on the mean radiant tem-
perature, while the increase in albedo increases the short-wave solar
radiation from the surface to the atmosphere. Although pedestrians use
the high albedo surface to reduce the surface of the asphalt, they suffer
from an increase in the reflected short-wave radiation from surface.

In nature, many of the environmental and surface biophysical
parameters are highly correlated (Table 3). Meanwhile, the correlation
coefficient between the DSSR and SULR and between the Brightness
and Greenness were 0.74 and 0.50, respectively. In Zoo et al. (2017),
environmental and surface biophysical parameters were used directly
for modeling outdoor thermal comfort in a multivariate regression
model (Xu et al. 2017). Given the correlation between these para-
meters, their direct application in the LSA model is statistically chal-
lenged. This challenge is addressed for the first time in this study.

To overcome the challenge of correlation between independent
variables, PCA was used for the first time in modeling outdoor thermal

comfort. The majority of non-redundant information related to en-
vironmental and surface biophysical parameters were embedded in the
first and second PCs. The correlation coefficient between the first and
second PCs with the DI values in the location of the synoptic station is
0.81 and 0.05, respectively (Table 4). The eigenvalues of the first and
second component is 8.45 and 1.12, respectively, which is much higher
than the eigenvalues of the other components. These results show that
PC1 and PC2 contained a very high percentage of primary environ-
mental and biophysical parameters information. The value of correla-
tion between PC1 and PC2 information is negligible and close to zero.
For this reason, outdoor thermal comfort was modeled based on LSA,
the first and second PCs for the first time.

Based on equation (2), the RMSE and correlation coefficient be-
tween the modeled and observed outdoor thermal comfort values at the
synoptic station for the training data set (from the beginning of 2013 to
the end of 2016) were 1.80 °C and 0.86, respectively and for the testing
data set (2017 and 2018) are 0.89 and 2.04, respectively. Also, the
RMSE and correlation coefficient between the modeled and observed
outdoor thermal comfort at 4 self-deployed devices for 12 July 2018, 28

Fig. 4. A sample of the first and second components maps for spring, summer, autumn and winter in 2017 and 2018.

N. Mijani, et al. Ecological Indicators 117 (2020) 106555

8



July 2018 and 13 August 2018 were investigated and the results are
1.15 °C and 0.85, respectively. The results indicant the capability of the
proposed model for the modeling outdoor thermal comfort. The spatial
and temporal distribution of the first and second principal components
for spring, summer, autumn and winter in case study is variable (Fig. 4).

Based on equation (11), in general, the western and northwestern
districts of the case study had the highest DI values and the central,
north and south-east districts the lowest DI values (Fig. 5).

The mean DI varied over different seasons. The highest and lowest
DI values were discovered on 28 July 2018 and 30 January 2017, re-
spectively (Fig. 6). The trend of changes in mean DI and PC1 on

different dates is similar together.
Generally, the average value of the DI indicates that these dates can

be classified into two groups, the warm and cold seasons. On 30
January 2017, 29 October 2017, 14 November 2017, 16 December
2017 and 22 March 2018 with the average of the DI, 12.6 °C belonged
to the cold season category, and the other of the dates to the mean DI
are 12.6 °C in the warm category.

For the cold season, the area and the number of clusters with high
DI values was found lower than the warm season of year (Fig. 7). The
average of the DI in the warm season of year yielded 8.5 °C higher than
the cold season of the year. The high value of the DI did not indicate

Fig. 5. DI maps in Tehran, Iran, in 2017 and 2018.
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Fig. 5. (continued)

Fig. 6. The mean PC1 and DI for different timestamps.
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favorable conditions for outdoor thermal comfort. Analysis of this in-
dicator for the warm and cold season of year can be different, and vice
versa. In the warm season of year, the low DI value was favorable, but
in the cold season of year, the high value of this index was favorable for
outdoor thermal comfort.

Considering the effect of land cover on environmental and surface
biophysical parameters, it can be concluded that DI outdoor thermal
comfort values in different land cover was different. In both warm and
cold seasons of year the average of the DI for bare land and water body
was higher and lower than other land covers (Fig. 8). Earlier studies by
(Xu et al. 2017, Mushore et al. 2018, Song and Wu 2018) have shown
that green space and water bodies improved the outdoor thermal
comfort in a region. The results indicate that the difference between the
mean DI value of the land covers in the warm season of year was higher
than the cold season of the year.

For a more accurate examination of the outdoor thermal comfort
conditions, the mean DI for different urban districts were calculated.
The results show that in both warm and cold season of years, the

districts of 22, 21, 9, 18, 19 and 5, which are located in the geo-
graphical directions of the west, northwest, and south-west, possessed
higher outdoor thermal comfort values than others. In the warm season
of the year, areas 1, 3, 6, 8, 11 and 10, and in the cold season of the
year, districts 8, 14, 12, 11, 10, 15 and 17, detected low DI values
(Fig. 9).

It should be noted that high or low DI values for a specific spot in
the study area at a particular time did not necessarily indicate the
presence or absence of a favorable outdoor thermal comfort. Previous
studies (Toy et al. 2007, Sobrino et al. 2013, Coccolo et al. 2016) in-
dicated that according to human body's metabolism, a DI value between
15 °C and 19.9 °C perceived as the most favorable condition. The cor-
relation coefficients between the modeled DI and the number of hos-
pital emergency visits due to heat stroke at warm season in urban
districts was 0.89. The results indicate the significance of the results
based on general population. According to Table 2, the results of DI
scores can be classified to cold, cool, comfortable, hot, very hot and
torrid zones (Fig. 10).

During the cold seasons of the year, the city of Tehran consisted of
cold, cool and comfortable categories. But, for the warm season of the
year, the area contained cool, comfortable and hot categories. In the
warm season, the cold category included water bodies. In the cold
season, the comfortable category was discovered in the west and
northwest of the studied area, while the central, north and south-east
districts were mostly in the cold and cool categories. However, in the
warm season, the central, northern, northeastern and southeastern
districts of the comfort category were located in the comfort zone, and
the western, northwest, and southwestern districts on the warm cate-
gory, indicating the condition of outdoor thermal comfort was un-
suitable for these Districts. In the northern part of Tehran, the climate is
temperate and mountainous, and semi-arid in some places. The pre-
cipitation is usually high in winter. In March, the weather temperature
is increasing and the weather is warming up in late April. In early June,
the weather is relatively warm. The climate of Tehran is warm and dry
in desert and southern areas, while it is cold and semi-humid in high-
lands, cold with long winters. The hottest months of the year are

Fig. 7. The mean DI maps for warm and cold seasons of years.

Fig. 8. The mean DI for each land cover in the warm and cold seasons of the
year.

Fig. 9. The mean DI values for different urban districts in warm and cold seasons of the year in Tehran, Iran.
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reported in August and September with an average temperature of 35 to
45 °C, and the coldest months of the year, January and February, with a
temperature of −5 °C. The northern part of Tehran and Shemiranat are
also moderate in the summer. In the warm season of the year, 52% of
the area of the study was classified as a comfortable category and 47%
was made up of warm category. For the cold season, cold, cool, and
comfortable categories covered 58%, 31%, and 10% of the area, re-
spectively (Table 5).

4. Conclusions

In this study, we have demonstrated that a LSA based model can be
developed to model outdoor thermal comfort conditions with remotely
sensed and climate datasets. The novelty of this study is threefold: a)
presentation of a LSA model for modeling outdoor thermal comfort
using reflective and thermal infrared remote sensing data; b) The
challenge of correlation among independent variables is solved by ap-
plying PCA; and c) The presented LSA model shows the ability to model
outdoor thermal comfort status in both absolute and relative terms. By
replacing SULR with LST, the influence of the emissivity parameter was
also considered in the modeling for the first time. Due to the correlation
between the environmental and surface biophysical parameters, their
direct application in the LSA model is statistically challenged. This
challenge is addressed for the first time in this study. The result of the
case study in Tehran, Iran shows that the mean DI value in the warm
season was higher than that in the cold season. In both warm and cold
seasons, the average values of DI for bare land yielded higher than other
land covers, but those of water bodies always lower than others. The
difference between the mean DI value of the land covers in the warm
season of year was higher than that of the cold season. Our findings
indicate that cold, cool and comfortable categories of outdoor thermal
comfort appeared in the cold season, while cool, comfortable and hot
categories in the warm season. The proposed LSA model has the cap-
ability of modeling outdoor thermal comfort in absolute and relative
terms. The correlation coefficient and RMSE between the modeled and
observed outdoor thermal comfort values at the locations of self-de-
ployed devices and meteorological stations for the training and testing
data sets proved the efficiency of the proposed model. However, the
coefficients must be adjusted for each case study in the modeling, so

that better communication of its outcome would be possible with local
policy makers and the general public of a city. In arid regions or regions
with hot summers, our approach can help to identify extreme and in-
tolerable areas for certain demographic and socioeconomic groups. In
future studies, it is suggested to explore the feasibility of modeling
nighttime outdoor thermal comfort because urban heat island effect can
be more apparent in the evening. Furthermore, satellite images at finer
resolution along with land cover data reflecting fine landscape varia-
tions can yield more accurate maps of outdoor thermal comfort.
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