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A B S T R A C T   

Mining activities and associated actions cause land-use/land-cover (LULC) changes across the world. The 
objective of this study were to evaluate the historical impacts of mining activities on surface biophysical char-
acteristics, and for the first time, to predict the future changes in pattern of vegetation cover and land surface 
temperature (LST). In terms of the utilized data, satellite images of Landsat, and meteorological data of Sungun 
mine in Iran, Athabasca oil sands in Canada, Singrauli coalfield in India and Hambach mine in Germany, were 
used over the period of 1989–2019. In the first step, the spectral bands of Landsat images were employed to 
extract historical LULC changes in the study areas based on the homogeneity distance classification algorithm 
(HDCA). Thereafter, a CA-Markov model was used to predict the future of LULC changes based on the historical 
changes. In addition, LST and vegetation cover maps were calculated using the single channel algorithm, and the 
normalized difference vegetation index (NDVI), respectively. In the second step, the trends of LST and NDVI 
variations in different LULC change types and over different time periods were investigated. Finally, a CA- 
Markov model was used to predict the LST and NDVI maps and the trend of their variations in future. The re-
sults indicated that the forest and green space cover was reduced from 9.95 in 1989 to 5.9 Km2 in 2019 for 
Sungun mine, from 42.14 in 1999 to 33.09 Km2 in 2019 for Athabasca oil sands, from 231.46 in 1996 to 263.95 
Km2 in 2016 for Singrauli coalfield, and from 180.38 in 1989 to 133.99 Km2 in 2017 for Hambach mine, as a 
result of expansion and development of of mineral activities. Our findings about Sungun revealed that the areal 
coverage of forest and green space will decrease to 15% of the total study area by 2039, resulting in reduction of 
the mean NDVI by almost 0.06 and increase of mean standardized LST from 0.52 in 2019 to 0.61 in 2039. our 
results further indicate that for Athabasca oil sands (Singrauli coalfield, Hambach mine), the mean values of 
standardized LST and NDVI will change from 0.5 (0.44 and 0.4) and 0.38 (0.38, 0.35) in 2019 (2016, 2017) to 
0.57 (0.5, 0.47) and 0.33 (0.32, 0.28), in 2039 (2036, 2035), respectively. This can be mainly attributed to the 
increasing mining activities in the past as well as future years. The discussion and conclusions presented in this 
study can be of interest to local planners, policy makers, and environmentalists in order to observe the damages 
brought to the environment and the society in a larger picture.   
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1. Introduction 

Over the last three centuries, the Earth’s surface has changed 
significantly due to the human activities (Hurtt et al., 2011; Crutzen, 
2016). Several ecological, socioeconomic and political factors, such as 
environmental crises, government decisions and local management, 
affect land-use/land-cover (LULC) changes (Mayes et al., 2014). LULC 
changes might have positive or negative effects on natural resources at 
local and global scales (Mialhe et al., 2015; Symeonakis, 2016; Mousi-
vand and Arsanjani, 2019). 

A major negative impact of LULC changes is a deforestation (Jaimes 
et al., 2010; Li et al., 2016). Deforestation has caused a series of envi-
ronmental effects, including CO2 emissions, climate change, environ-
mental quality, biodiversity decline, surface ecological status, and 
surface biophysical characteristics (Harris et al., 2012; Peralta-Rivero 
et al., 2014; Mahmood et al., 2016). All these suggest that LULC 
change studies are highly important to understand their negative im-
pacts (e.g., on past and future deforestations) and their key driving 
factors. Thus, several investigations have been conducted under both 
local and global scales (Hansen et al., 2008, 2013; Ernst et al., 2013). 

One of the most important and basic foundations of any country’s 
economy is its mineral resources (Wright and Czelusta, 2003; Sekerin 
et al., 2019). The role of mines in economic growth is very serious and 
strategic, and the exploitation of the country’s mines is an undeniable 
necessity in economic development. Many people in every country are 
working in this industry and it can be acknowledged that the mining 
industry in every country has a significant impact on social welfare in 
that country (Sonderegger et al., 2020). However, the adverse effects of 
this industry on our environment is not hidden from anyone. Therefore, 
in order to balance these three sectors, namely economic growth, social 
welfare and reducing environmental disorders, we are required to enter 
sustainable development in this industry (Farjana et al., 2019; Berger 
et al., 2020). 

Mining activity is such that it has externality effects (Hemalatha 
et al., 2005; Papagiannis et al., 2014). These effects will occur when a 
firm or individual engages in an activity that directly affects others (firm 
or individual) (positively or negatively) but does not pay or receive 
money for it. This means that the individual or firm creating the exter-
nality effect does not include the costs or benefits of doing so in its cost- 
benefit calculations. 

The operation of a mine, in addition to the costs faced in the pro-
duction process, imposes another cost on the environment, which is 
called social costs (Ajith and Ghosh, 2019; Spitz and Trudinger, 2019). 
Normally, the mine does not pay for this cost to the environment. As a 
result, this environmental cost is not included in the cost-benefit func-
tion of the enterprise. This causes the level of production of the enter-
prise to be higher than the optimal social level and the pressure of 
mining activities excessive and uncontrollable on the environment. The 
social planner should try to make the level of activity of the enterprise at 
the optimal level of society (Sonderegger et al., 2020). The first step in 
solving this challenge is to identify and model the adverse effects of 
mining activities on environmental conditions in a region. 

Mining and related operations are parts of activities that have a 
potential to harm the surface biophysical characteristics. In some cases, 
mining directly affects natural resources with serious consequences (Lin 
et al., 2005). The negative impacts of mining operations on the surface 
biophysical characteristics may appear in different mining stages 
including exploration, extraction, and processing (Woldai, 2001). The 
impacts of mining activities on LULC change and surface biophysical 
properties depend on types of minerals, location, extraction methods, 
and other parameters (Azcue, 2012; Padmanaban et al., 2017). Surface 
biophysical properties that might be affected by mineral activities 
include surface temperature, albedo, water content and vegetation. 
Changes in these properties can influence the ecological and climatic 
conditions of an environment at different scales. Therefore, it is vital to 
assess environmental impacts of mining activities. 

In recent studies, satellite images have been employed to monitor 
and assess the effects of anthropogenic activities on surface biophysical 
characteristics state (Fu and Weng, 2016; Estoque and Murayama, 2017; 
Moghaddam et al., 2018; Fu et al., 2019). Satellite data offer several 
advantages, such as being multi-temporal and multi-spectral, and cover 
extensive areas, that make them suitable to study and explore dynamic 
phenomena (Firozjaei et al., 2018). These data can be used to determine 
the type, amount and location of LULC and surface biophysical prop-
erties changes (Butt et al., 2015; Zhang and Zhou, 2016; Tong et al., 
2017; Wang et al., 2017). 

Over the past few years, studies have been conducted to explore the 
effects of mineral activities on the surrounding surface biophysical 
characteristics using remote sensing technology (Sarma and Kushwaha, 
2005; Joshi et al., 2006; Charou et al., 2010; Borana et al., 2014; Vasuki 
et al., 2019). For example, Townsend et al. (2009) showed that the in-
tensity of mining activities caused extensive degradation before the 
surface reclamation in 1977 in the Central Appalachian Mountains in 
the United States, while the degradation and LULC pattern changes were 
significantly reduced after the reclamation until 2006. In another study, 
Obodai et al. (2019) identified mining activities as the key driver of 
deforestation in Ankobra river basin, Ghana between 2008 and 2016. 
Cano Londoño (2018) evaluated the negative effects of mining activities 
on three sections life cycle assessment, exergy analysis, and emergy 
accounting. Life cycle assessment evaluates process sustainability based 
on the environmental impacts generated by waste and emissions 
released to the environment, emergy based on the use of the necessary 
resources to carry out the process, and Exergy based on process effi-
ciency based on this. 

Previous studies on the effects of mining activities on the surface 
biophysical characteristics have several limitations including (a) The 
focus of studies was on the effects of mineral activities on LULC changes 
of mines’ surrounding areas. (b) These studies were only employed 
optical remote sensing images to investigate the effects of mineral ac-
tivities on the surface biophysical characteristics (Padmanaban et al., 
2017; Guo et al., 2019; Obodai et al., 2019). (c) These studies have been 
focused on examining the trend of mine land area changes and LULC 
changes resulting from it in the past. 

Due to these counted limitations and challenges in previous studies, 
considering the following actions are important: (a) To more accurately 
assess the negative effects of mining activities on the surface biophysical 
characteristics, using satellite imagery based quantitative indices such 
as land surface temperature (LST) and normalized difference vegetation 
index (NDVI) can be very useful. Both LST and NDVI are the most 
important and applicable indicators in modeling the surface biophysical 
characteristics (Weng et al., 2004; Karnieli et al., 2010). (b) Due to the 
complexity of interactions in surface biophysical characteristics, 
combining remotely sensed information recorded in the optical and 
thermal ranges of the electromagnetic spectrum from surface can in-
crease the accuracy in modeling the surface biophysical characteristics 
(Li et al., 2018; Meng et al., 2018). (c) Modeling the changes in surface 
biophysical characteristics caused by anthropogenic activities in the 
past is of great importance. However, predicting the future trends of 
these changes is critical and useful for management and planning in 
controlling the negative effects of these changes (Ahmed et al., 2013; 
Mushore et al., 2017; Firozjaei et al., 2018). 

The main objective of this study was to evaluate and predict the 
impacts of mining activities on the surface biophysical characteristics. 
The main contribution and innovations of this study is multifold by: a) a 
quantitative investigation of the effects of mineral activities on LST and 
NDVI changes, b) integration of optical and thermal information ob-
tained from remote sensing to investigate the effects of mineral activities 
on the surface biophysical characteristics, c) predicting mining activ-
ities’ impacts on the surrounding surface biophysical characteristics 
through application of multi-temporal satellite images. 
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2. Materials and methods 

2.1. Study area 

To select the study areas, diversity criteria were considered in (1) 
geographical location and (2) the type of extractive materials and (3) the 
type of surface cover of the surrounding areas. In this study, four mines 
from four different countries (Sungun mine in Iran, Athabasca oil sands 
in Canada, Singrauli coalfield in India, and Hambach mine in Germany) 
were selected in order to investigate the effects of mineral activities on 
surface biophysical characteristics change (Fig. 1). 

Areas around these mines include green space and forests. From 
these mines, copper, Oil sands, coal and lignite are extracted, 
respectively. 

2.1.1. Sungun mine 
Arasbaran biosphere reserve is a unique and key biosphere reserve 

that serves as a representative case study for biogeography, ecology, 
wildlife, cultural resources and landscapes-related studies. This study 
area is located between 38̊, 41ˊ and 38̊, 43ˊ N latitude and 46̊, 39ˊ and 
46̊, 43ˊ E longitude covering about 24,754 ha (Fig. 2). The Sungun 
copper mine is placed on the Qaradagh Mountains and parts of Dezmar 
and Arasbaran protected areas, which is surrounded by pastures and 
forests. The mine is located in a mountainous area with an average 
height of 2000 m above sea level ranging from 1700 to 2460 m, which 
indicates a high variation of elevation within a short distance along with 
steep slopes. It was declared as a biosphere reserve by the United Na-
tions Educational, Scientific and Cultural Organization (UNESCO) in 
1976 (Rasuly et al., 2010; UNESCO, 2015). The most important and 
valuable natural habitat of Arasbaran biosphere reserve is the Dezmar 
protected area, which is the main habitat of Arasbaran forest species. 
While being a national biosphere reserve, a large mining project of 
copper, so-called Sungun copper mine development plan, has started to 
evolve and even host some related factories and infrastructure plans 
such as electricity supply and accommodation for staff. To the best of our 
knowledge, no study has investigated the development of mining ac-
tivities and its impacts on the surface biophysical characteristics. 

2.1.2. Athabasca oil sands 
This study area is located between 56◦, 50ˊ and 57◦, 24ˊ N latitude 

and 112◦, 20ˊ and 110◦, 45ˊ W longitude covering about 4608 Km2 
(Fig. 1). Boreal ecosystems contain more than half of the carbon in 
forested areas of the earth and more than half of the earth’s surface 
freshwater. Boreal ecosystems have recently been recognized as the 
most important ecosystems in our planet that provide services such as 
carbon storage, flood control and water filtrations, with a total value 
many times greater than current resource exploitations (Schindler and 
Lee, 2010). In this valuable ecosystem in Canada, large mining activities 
of oil, the so-called Athabasca oil sands, have developed. The Athabasca 
oil sands (Athabasca tar sands) are large reservoirs of bitumen (heavy 
crude oil), located in northeastern Alberta, Canada (mostly near the Fort 
McMurray town). The Athabasca reservoir is the largest known reservoir 
of bitumen in the world and the largest of three major oil sands reser-
voirs in Alberta (Atkins and MacFadyen, 2008; Giesy et al., 2010). The 
oil sands in some references called as tar sands (Gailus, 2012; Smandych 
and Kueneman, 2013). Broadly, Athabasca oil sand reservoirs located 
under 141,000 km2 of boreal forest and muskeg. The boreal forest is 
habitat for many wildlife species who are sensitive to industrial activ-
ities (Schneider and Dyer, 2006). 

2.1.3. Singrauli Coalfield 
Singrauli Coalfield is located in the central part of India that is 

divided into two parts by the Kachni River. The Singruali coalfield 
covers an area of almost 300 km2. The major part of the coalfield (about 
220 km2) is located in Singrauli district of Madhya Pradesh and a small 
part (almost 80 km2) located in Sonbhadra district of Uttar Pradesh 
(Majumder and Sarkar, 1994). The study area is located between 24̊, 05ˊ 
and 24̊, 14ˊ N latitude and 82̊, 30ˊ and 82̊, 47ˊE longitude covering about 
469 Km2 (Fig. 1). Major coal mines in this part of Singrauli colfield are: 
Amlohri, Nigahi, Jayant, Dudhichua, Khadia, Krishnashila and Bina 
mines. The study area is a hilly region in the northern part of Singrauli 
colfield with elevation ranges from 270 to 620 m above mean sea level 
(Javed and Khan, 2012). Indeed, Singrauli coalfield is a typical erosional 
landscape with plain and plateau topography. The area in the south-
eastern has a mild slope towards the reservoir of Rihand Dam (also 
known as Govind Ballabh Pant Sagar reservoir) (Singh et al., 1997). The 

Fig. 1. Location of the study areas.  
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Fig. 2. Views of Mining activities in Sungun mine (Iran).  
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nearest cities to Singrauli coalfield are Waidhan (25 km) and Renukoot 
(50 km) (Javed and Khan, 2012). The climate type of Singrauli district 
between November and June is tropical monsoonal dry and during other 
months (rainy season) is very humid (Khan and Javed, 2012). 

2.1.4. Hambach mine 
This study area is located between 50◦, 51ˊ and 50◦, 58ˊ N latitude 

and 06◦, 24ˊ and 06◦, 39ˊ E longitude (Fig. 1). Hambach forest, a highly 
biodiverse old-growth forest, is one of Europe’s oldest forests with a 
unique ecology. The forest is located next to one of the largest lignite 
mine fields in western Europe as so-called Hambach mine. Decades of 
mining activities and forest degradation caused the rapid decrease of 
this uniqueness and now just 10% (almost 200 ha) of oak and hornbeam 
vegetation remain from what had been the largest forest in the Rhine-
land, west of Cologne, Germany. 

The Hambach mine is a large open pit mine located between Düren 
and Rhine-Erft districts, in the Rhenish coalfields. The mining activity 
has been started near the town of Niederzier and developed in areas that 
once belonged to the Hambach forest. Mining activities in this area is 
predicted to continue until 2040. The Hambach mine alongside Garz-
weiler and Inden mines provide almost 40% of the power needs of the 
populous state of North Rhine-Westphalia (NRW) (Heumann and Litt, 
2002; Hempel and Kulik, 2004) (https://www.group. 
rwe/en/our-portfolio/our-sites/hambach-mine-site). Started in 1970s, 
the mine’s area has a size of 43.8 km2 in end of 2017, with the maximum 
area of the Hambach mine has been calculated around 85 km2. With 
overall coal deposits in the Hambach Mine of 2.5 billion tonnes of 
lignite, the extraction capacity is 40–45 million tonnes per year. The 
lignite was created from dense forests, which have existed in the Lower 
Rhine Bay between 30 and 5 million years ago. The total coal extracted 
from all mines in NRW is almost 100 million tonnes per year and is 
employed to generate 12% of Germany’s power need (Schmitz, 2006; 
Fehres, 2010; Imboden and Moczek, 2015). 

2.2. Data and pre-processing 

The satellite images of Landsat 4, 5, 7 and 8 were used in this study 
for LULC and LST mapping. The acquired images in GeoTiff format were 
geo-referenced in the World Geodetic System (WGS84) datum, and 
projected in the Universal Transverse Mercator (UTM, zone 38 N, 12 N, 
44 N, and 31 N for Songon mine, Athabasca oil sands, Singrauli coalfield 
and Hambach mine, respectively). While selecting satellite images 
within 1989–2019, the absence of cloud cover and having no 

precipitation two days prior the satellite’s passage was considered 
(Table 1). In order to provide the training and test data for image clas-
sification and accuracy assessment of extracted LULC maps, Landsat 
false color composite, and Google Earth Images for each data were used. 

To complete the input parameters of the LST estimation algorithms, 
water vapor product (MOD07L2) of the MODIS sensor and the air 
temperature data measured at the weather stations at Landsat overpass 
time were used. 

2.3. Methods 

In order to achieve the designated objectives of this study, a set of 
tasks, as presented in Fig. 3, were followed: a) the optical bands of 
Landsat images were employed to extract LULC changes from 1989 to 
2019 based on the homogeneity distance classification algorithm 
(HDCA); b) the LULC changes by future were predicted using the CA- 
Markov model; c) the LST and vegetation cover maps were calculated 
based on single channel algorithm and NDVI, respectively for different 
dates; d) the LST and NDVI variations trend caused by each LULC 
changes type in different time periods were investigated; e) the CA- 
Markov model was employed to predict the future maps of LST and 
NDVI. 

2.3.1. LULC changes in past and future 
The LULC types in the tree study areas include forest and green 

space, pasture, mine, bare land built-up and water for the time period 
1989–2019. HDCA was used to classify satellite images. Prior to the 
supervised classification of images, training dataset was carefully 
selected, so that, it could provide a representative pattern of the LULC 
types. The incorrect definition of classes by training data affects the 
entire process of supervised classification and leads to the inaccurate 
classification (Otukei and Blaschke 2010). In order to avoid that, 450 
sample points per class were selected, which were geographically 
distributed over the entire study areas. 

The HDCA is inspired by the gravity law is a supervised classification 
method for satellite images. HDCA used merging, traveling and escaping 
operators for image classification based on spatial and spectral infor-
mation. HDCA runs in two supplementary computing stages. The 
weighted Manhattan distance (WMD) was used in HDCA. Feature se-
lection in HDCA was applied by an improved gravitational search al-
gorithm (IGSA) optimization to determine the optimal feature space 
scale. More details about HDCA can be found in Firozjaei et al. (2019a). 
After LULC classification, the overall accuracy and kappa index were 
calculated for accuracy assessment (Foody 2002). Finally, LULC maps 
and areal coverage of each class was extracted for different timestamps. 
Additionally, the CA-Markov model was used to predict future LULC. 
More details on CA-Markov model are presented by (Arsanjani et al., 
2013; Firozjaei et al., 2019b). The LULC map of future was produced 
using LULC maps of past years and LULC changes in different years was 
compared using Cross-Tab model (Shalaby and Tateishi, 2007). 

2.3.2. NDVI and LST 
To investigate the surface changes caused by mineral activities for 

the period of 1989–2019, NDVI and LST were calculated. The NDVI is 
the most used remotely sensed vegetation index in remote sensing 
studies (Herrmann et al., 2005). NDVI is calculated by the reflectance of 
the Red and NIR bands. NDVI extract useful information about surface 
biophysical parameters including greenness and vegetation (Tucker, 
1979). 

The Single Channel (SC) algorithm (Jiménez-Muñoz and Sobrino, 
2003; Jiménez-Muñoz et al., 2014; Yu et al., 2014) was applied to 
calculate LST from thermal bands of Landsat 4, 5, 7 and 8. The NDVI 
threshold method (Sobrino et al., 2008; Jimenez-Munoz et al., 2014) 
was used to retrieve the land surface emissivity (LSE) for each 
timestamp. 

Table 1 
The used Landsat imagery for study areas.  

Study area Satellite (sensor) Row/ 
Path 

Date 

Sungun mine Landsat4-TM/ 
TIR 

166/33 16/07/1989 

Landsat5-TM/ 
TIR 

04/08/1993, 19/07/1998 and 
28/07/2007 

Landsat7-ETM+/ 
TIRS 

08/08/2003 

Landsat8-OLI/ 
TIRS 

10/07/2013 and 11/07/2019 

Athabasca oil 
sands 

Landsat5-TM/ 
TIR 

042/ 
020 

16/05/1999 

Landsat8-OLI/ 
TIRS 

21/05/2019 

Singrauli 
coalfield 

Landsat5-TM/ 
TIR 

142/ 
043 

09/10/1996 

Landsat8-OLI/ 
TIRS 

16/10/2016 

Hambach mine Landsat5-TM/ 
TIR 

197/ 
025 

17/06/1989 

Landsat8-OLI/ 
TIRS 

14/06/2017  
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2.3.3. Investigating the effects of multi-temporal LULC changes on LST and 
NDVI 

2.3.3.1. Relative prediction of LST and NDVI. To make the relative pre-
diction of LST and NDVI, we used a model proposed by (Firozjaei et al., 
2018) as follows:  

1. Maps of LST, NDVI, and LULC changes for different time periods 
were obtained using subtraction and crosstab methods. If n years are 

considered in the study, then the number 
(

n
2

)
of the LST, NDVI, and 

LULC changes maps for the study period were obtained.  
2. The variation in LST and NDVI due to the LULC changes for different 

time periods was investigated.  

3. The average changes in LST and NDVI resulting from LULC change 
were calculated.  

4. The LULC map using the CA-Markov model was predicted for 2039 
(For Sungun mine).  

5. The map of land cover changes between 2019 and 2039 was obtained 
using the crosstab model (For Sungun mine).  

6. A map of the predicted changes in LST and NDVI resulting from the 
LULC changes between 2019 and 2039 was obtained (For Sungun 
mine).  

7. Finally, the LST and NDVI maps of 2039 were predicted by 
combining the LST of the year 2019 and the prediction maps of the 
LST and NDVI changes due to the LULC changes within 2019–2039 
(For Sungun mine). 

Fig. 3. The flowchart of the study.  
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3. Results and discussions 

3.1. The historical and future LULC changes 

Broadly, in view of the favorable ecological and climatic conditions 
of the study area, in addition to bare land class, there are also pasture 
lands and forests in the studied area. In 1993, due to the development of 
the Sungun mine activities, the mine class was added to other classes in 
the region. Over the past two decades, with increasing the activities of 
Sungun mine, the area of mine land use has also increased. The LULC 
maps over different years obtained from HDCA classifier are presented 
in Fig. 4. The mean values of kappa coefficient and the overall accuracy 
parameters of LULC maps of Athabasca oil sands (Singrauli Coalfield, 
Hambach mine) based on the test dataset were 0.92 (0.89, 0.91) and 93 
(90, 92), respectively. 

The visual examination of LULC maps for the period of 1989–2019 
confirms the physical development of the mine areas. In the waste 
disposal of the Sungun copper mine, waste materials accumulated in the 
surrounding valleys and vegetation covers in the valleys were buried 
under waste materials. Hence, the landscape view of this area turned 
into an unpleasant scene as several hectares of vegetations were 
destroyed due to road constructions. The most important effects of LULC 
changes in forest and mine classes are evident. According to the LULC 
map of 2039, the physical expansion of the mine and degradation of 
vegetation will continue as presented in Fig. 5. 

According to Fig. 5, the area of the mine class has been increased 

from 13.41 ha in 1993 to 621.54 ha in 2019. Similarly, the forest area 
was decreased from 929.70 to 594.27 ha corresponding to a net area of 
115.34 ha. The high rate of natural resource degradation in the region 
indicates the expansion of human activities, which have been recognized 
as the main causes of forest degradation all over the world (Wang, 2004; 
Glantz, 2019; Koglo et al., 2019; Nichols et al., 2019). Based on the 
results obtained with the CA-Markov model, the area of the mine and 
forest classes in 2039 will change to 1109.3, and 381.1 ha, respectively. 
The LULC changes during the period of 1993–2019 and 2019–2039 are 
presented in Fig. 6. 

Our obtained results indicated that more than 229.50 ha of pasture 
lands were converted to mine land use. Additionally, up to 2039 it is 
expected that more than 344 ha of forests and pastures in the study area 
will be converted to mine land use. Conversion of natural resources into 
mine has negative impacts on the surface biophysical characteristics as 
well as to the ecosystem (Sarma and Kushwaha, 2005; Joshi et al., 2006; 
Charou et al., 2010; Borana et al., 2014; Vasuki et al., 2019). 

3.2. NDVI and LST 

To investigate the negative effects of increasing mineral activities on 
the biophysical parameters, NDVI values for various dates were calcu-
lated as shown in Fig. 7. 

The mean NDVI for 1989, 1993, 1998, 2003, 2008, 2013, and 2019 
were obtained to be 0.345, 0.340, 0.325, 0.312, 0.289, 0.260 and 0.244, 
respectively. The results demonstrated that the mean NDVI was 

Fig. 4. The obtained LULC maps of the study area for the past and future years.  

M.K. Firozjaei et al.                                                                                                                                                                                                                            



Ecological Indicators 122 (2021) 107264

8

decreased by almost 0.1 during the time period of 1989–2019. The 
major reason for this decrease can be attributed to reduction of the 
forests and their conversion into mine and pasture lands. At all dates, 
forest and mine classes had the highest and lowest NDVI values, 
respectively. The most important negative effect of LULC changes on 
surface biophysical parameters is LST variations (Fig. 8). 

According to Fig. 8, the spatial distribution of LST values was 
changed over the time period of 1989–2019. The mean standardized LST 

values were increased from 1989 to 2019. With increasing mineral ac-
tivities over the past two decades, the thermal cluster with a low tem-
perature in the center of the study area was changed to cluster with a 
moderate temperature. 

3.3. Effect of LULC changes on LST and NDVI variations 

The difference operator was applied on the LST and NDVI maps of 

Fig. 5. The areal coverage (ha) of each LULC class within 1989–2039.  

Fig. 6. The LULC changes maps for the time period of 1993–2019 and 2019–2039.  

M.K. Firozjaei et al.                                                                                                                                                                                                                            



Ecological Indicators 122 (2021) 107264

9

different dates to calculate LST and NDVI variations caused by LULC 
changes at different time periods. The LST and NDVI variations map and 
conversion of the other classes to the mine class for the time period of 
1989–2019 are shown in Fig. 9. 

According to the results presented in Fig. 9, the study area experi-
enced the highest variations of LST (indicated with red color) during the 
time period of 1989–2019, which spatially coincident with those areas 
that were converted from forest to mine class. After analyzing all 
possible LST variations maps (15 different modes) and the correspond-
ing LULC maps (for instance: LST variations map and LULC map for the 
time period of 1989–2019), the mean values of LST variations caused by 
LULC changes were calculated. The obtained results revealed that LULC 
changes from forest to mine, pasture to mine, forest to pasture, forest to 
bare land and pasture to bare land were changed the LST 5.8, − 0.1, 
− 1.4, 1.6, 3.3, and 0.9 ◦C, respectively. Also, LULC changes resulted in a 
decrease in NDVI values in the study area (blue-colored). Most of the 
changes in NDVI values were due to the conversion of forests to mine 
lands in the center of the study area. The NDVI values of those areas that 
were converted from pasture class to mine class also decreased 
considerably. 

3.4. Relative prediction of LST and NDVI 

The LULC changes caused variations in surface biophysical param-
eters including LST and NDVI. Based on LST and NDVI variations caused 
by LULC changes in the past, maps of LST and NDVI for 2039 were 
produced as presented in Fig. 10a and 10b, respectively. Combining LST 
and NDVI maps for 2019 with LST and NDVI changes maps derived from 
LULC changes between 2019 and 2039, the prediction maps of relative 
LST and NDVI for 2039 were produced and shown in Fig. 10c and 10d, 
respectively. 

Due to the prediction of forest and pasture land degradation as a 
consequence of the physical expansion of the mine over the future years, 
the LST and NDVI of the study area will increase and decrease in the 
further years, respectively. The Area of lands with high LST and low 
NDVI (red-colored) will increase. For this reason, the current trend of 
mineral activities will have negative impacts on the surface biophysical 
characteristics of the study area. According to the prediction results, the 
mean values of the standardized LST and NDVI will change from 0.52 
and 0.25 in 2016 to 0.61 and 0.19 in 2036, respectively. 

3.5. Results of other three studied mines 

The LULC maps of Athabasca oil sands (Singrauli Coalfield, Hambach 
mine) in different years obtained from HDCA classifier are presented in 
Fig. 11. The mean values of kappa coefficient and the overall accuracy 
parameters of LULC maps of Athabasca oil sands (Singrauli Coalfield, 
Hambach mine) based on the test dataset were 0.92 (0.89, 0.91) and 93 
(90, 92) persents, respectively. The visual examination of LULC maps 
indicates a significant increase in mine areas and consequently a 
decrease in green spaces and forest in all three study areas. 

According to the obtained results, the area of the mining lands in 
Athabasca oil sands was increased from 197.67 km2 in 1999 to 662.67 
km2 in 2019. Similarly, the area of the green spaces was decreased by 
almost 21%. The results of prediction indicated that up to 2039, the area 
of mining lands and green spaces will be reached to 1192.8 and 2774.2 
km2, respectively In Singrauli coalfield, mine land use has been 
increased by 128% from 1996 to 2016. The results of LULC prediction 
show that the area of each mine, built-up, bare, green space and water 
class will be 130.44, 39.52, 74.25, 186.79 and 38.27 km2 in 2039, 
respectively. 

From 1989 to 2017, a significant portion of the green spaces and 

Fig. 7. NDVI maps of the study area across different timestamps.  
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forests in Hambach mine region has been converted into mine land use. 
Indeed, the area of the mine class has increased from 18.45 km2 to 47.58 
km2. The results show that during the period 1989 to 2017, 6.32 km2 of 
mine land use have been converted to re-cultivated area (agricultural 
use and forest). However, the area of green space class has decreased by 
25%. The results of LULC prediction indicate that the area of mine and 
green space classes will reached to 55.45 and 122.13 km2 in 2035, 
respectively. The areal coverage of each LULC class of the study areas in 
past and future are given in Table 2. 

Our obtained results revealed that LULC changes from green spaces 
and forests to mine land use in past and future have led to the expansion 
of high-temperature areas (indicated with red color tones) and low NDVI 
(indicated with white color tone) in the three study areas (Fig. 12). 

The changes trend of the mean standardized LST and NDVI of the 
study areas are presented in Fig. 13. For Athabasca oil sands, the mean 
standardized LST was increased from 0.45 in 1999 to 0.5 in 2019, which 
is predicted to be 0.57 in 2039 due to physical expansion of the mine and 
the LULC changes. The mean standardized NDVI for 1999, 2019 and 
2039 was also calculated to be 0.42, 0.38 and 0.33, respectively. Tailings 
ponds are large areas created when extract bitumen products from the 
oil sands. The used water in extraction process which tainted with toxic 
metals, stored in tailings ponds. These tailings is one of the most 
important environmental challenges in the oil sands industry (Purdy 
et al., 2005). 

For Singrauli coalfield from 1996 to 2016, the mean standardized 
LST was increased by 0.06 and the mean standardized NDVI decreased 
by 0.07. According to the prediction results, the mean values of stan-
dardized LST and NDVI will reach from 0.44 and 0.38 in 2016 to 0.51 
and 0.32 in 2036, respectively. The mean standardized LST and NDVI for 

Hambach mine in 1989 and 2017 were 0.34 and 0.4, and 0.41 and 0.35, 
respectively. Our prediction results show that these parameters will be 
0.47 and 0.28 in 2035, respectively. 

Changes analyses of LULC, LST and NDVI for the past years show that 
the most changes in LST and NDVI in all three regions are due to the 
conversion of green space to mine land use (Fig. 14). 

The results indicated that for Athabasca oil sands, the mean NDVI 
decreased by almost 0.4 and increase of mean standardized LST by 
almost 12 ◦C, as a result of reduction of the green spaces and the con-
version of them into mine land use. In Singrauli coalfield with increasing 
mineral activities over the past two decades, the mean changes of LST 
and NDVI were 7 ◦C and 0.35, respectively. Additionally, the results 
demonstrated that for Hambach mine, the mean NDVI decreased by 
almost 0.42 and the mean standardized LST increased by almost 15 ◦C 
during the time period from 1989 to 2017. On the other hand, part of the 
mine in 1989 converted to recultivated area (agricultural use and forest) 
in 2016 (Red Oval). Mine land reclamation in the area has resulted in a 
mean 13 ◦C decrease of LST and an increase of 0.61% of mean NDVI, 
indicating a significant and positive impact of mine reclamation and a 
decrease in the physical expansion of the mine lands on the surface 
biophysical characteristics. One of the re-cultivation programs of the 
Hambach mine was the development of the Sophienhöhe hill in northern 
area. From 1990, the creation of the Sophienhöhe started in parts of the 
mining area where lignite deposits had already been removed (Imboden 
and Moczek, 2015). Although the creation of the Sophienhöhe can be 
considered as a considerable achievement, but can be not completely 
compensate other adverse impacts of mining activities on the surface 
biophysical characteristics. 

Fig. 8. LST maps (◦C) and mean standardized LST (rescale LST range to 0–1 based on maximum and minimum LST of region for each date) of case study in 
different dates. 
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4. Discussion 

The Sungun mine is a large porphyry copper mine with an extraction 
method of open pit mining (Yari et al., 2013), which causes major im-
pacts on the surface biophysical characteristics such as land and land-
scape degradation, mass production of waste mineral extraction and loss 
of vegetation (Xiang et al., 2018). In the waste disposal of the Sungun 
copper mine, waste materials accumulated in the surrounding valleys 
and vegetation cover in the valleys were buried under these materials 
resulting in a sustain change of landscape. During the mine tailing 
phase, several million tons of tailings were displaced and accumulated in 
the valleys and adjacent regions. Several hectares of lands were 
destroyed due to road damaging (Akbari et al., 2006; Alavi and Alinejad- 
Rokny, 2011). As a result, the natural surfaces of the study area changed 
significantly over the past two decades from the mining activities. 
Mining activities in the Sungun Copper mine caused significant changes 
in the area of forest, pasture, bare soil and mine lands (Figs. 4–6). 
Increased mining activities and consequently LULC changes resulted in 
direct and indirect changes in the surface biophysical characteristics of 
the study area. The direct effects were related to the conversion of 
natural lands to mine land due to increased mining activities. On the 
other hand, minerals extracted from the mine also contain Arsenic, 
Cobalt, Mercury and Nickel in addition to Copper. The soils at the mine 
neighborhoods were affected by the acidic mine drainage and leakage of 
pollutants affecting the natural functioning of large parts of the area. 
The existence of numerous waterways including Sungun-Chay Rivers in 
the east and Pekhir in the north of the mine and their flow paths in close 
proximity to the forest exacerbate the indirect negative effects of mining 
activities on the natural lands (Nasrabadi et al., 2009). Environmen-
talists have warned the respective stakeholders about the negative 

consequences of Sungun mine in Arasbaran and Dezmar protected areas 
(Bidhendi et al., 2007). 

In Athabasca oil sands two extraction methods have employed, one 
of them is surface or open pit mining. Only 20 percent of bitumen 
extracted through open pit mining (Burrowes et al., 2008; Mech, 2011), 
which includes large scale excavation using Heavy mining machinery 
(Center, 2014). Open pit mining in the study area destroyed the boreal 
forest and muskeg, as well as, built toxic tailings ponds (Rooney et al., 
2012). Oil sands activities contributes arsenic, cadmium, chromium, 
mercury, nickel and other metal elements toxic at low concentrations in 
streams and rivers of the Athabasca (Kelly et al., 2010). However, oil 
sands corporations have reclaimed small parts of mined lands (Hilde-
brand, 2008). 

Most of the extracted coal from Singrauli coalfield sent to thermal 
power plants in the area. The area is suitable for thermal power pro-
duction and is anticipated to produce Quarter of thermal power need of 
India (Jamal et al., 1991). over last two decades, Large scale mining 
activities and operation of thermal power plants have caused major 
impacts on the surface biophysical characteristics not only on the LULC 
pattern but also on various ecosystems in this area. Forest and green 
spaces degradation on a significant scale has occurred due to huge 
mining activities in this area. forests and green spaces replaced with 
waste materials from coal mining (Singh et al., 1997). 

The resettlements of local villages and towns, air pollution, land-
scape change and forest degradation were major negative impacts on the 
surface biophysical characteristics for the expansion of Hambach mine. 
Half of the landscape that converted to the mine area was forested and 
rich in biodiversity. 50% of the previously forested areas included de-
ciduous forests with the highest structural diversity and biodiversity 
composition in the region (Imboden and Moczek, 2015; Brock and 

Fig. 9. The NDVI changes map (a), LST variations map (unit: ◦C) (b), and LULC changes map (c) for the time period of 1989–2019. M: Mine B: Bare land, P: Pasture, 
and F: Forest. 
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Dunlap, 2018). Besides the direct effects on the surface biophysical 
characteristics, there are also significant social effects on local in-
habitants. The most important effect was the resettlement of local vil-
lages and towns, which lead to critical public debates in Germany. 
Around 2,500 inhabitants were relocated in past years. Additionally, the 
villages Morschenich and Manheim must be relocated (Imboden and 
Moczek, 2015). Environment activists have protested that if the forest is 
removed, the species that live there will be killed, including red-list 
species. Also, the local people concern for climate change (Bringezu, 
2019). Since 2010, Environment activists initiated mass-protests and 
campaigns against RWE’s mines in the Rhineland (Brock and Dunlap, 
2018). 

With the increase of mining activities in previous years, the con-
version of natural surfaces to impervious surfaces was increased (Xian 
et al., 2011; Weng, 2012; Xu et al., 2018). This conversion changed the 
intrinsic properties of the natural surfaces, resulting in inappropriate 
surface ecological states (Weng, 2012) and posed negative impacts on 
the natural processes (Peng et al., 2016; Zhang et al., 2016). The trend of 
LULC changes was in a way that reduced surface greenness and 
increased surface heat (Figs. 7, 8 and 13). Surface greenness, and heat 
are the two primary and important factors affecting surface ecological 
states (Hu and Xu, 2018; Xu et al., 2018, 2019). The surface ecological 
states of the study areas was spatially and temporally heterogeneous due 
to the heterogeneous surface biophysical characteristics. 

In general, forest and green space lands had the highest degree of 
greenness and the lowest degree of heat. For this reason, surface 
ecological states in forest and green space lands was better than other 

lands. On the other hand, mine lands had the lowest degree of greenness, 
and the highest degree of heat. For this reason, the mine land had the 
worst surface ecological states in the study area. The increased mine 
land area, significant reduction of forest and green space lands area and 
changes in surface biophysical characteristics (decreasing degree of 
Greenness, and increasing degree of heat) (Figs. 9 and 14). The most 
negative and positive change in modeled SES of the study area was 
related to the conversion of “forest and green space to mine” and “mine 
to forest and green space” lands, respectively. 

The operation of a mine, in addition to the costs faced in the pro-
duction process, imposes another cost on the environment, which is 
called the effects of externality or social costs. The important point is 
that normally the mining industry does not pay for this cost to the 
environment, so this environmental cost is not included in the cost- 
benefit function of the firm, which causes the production level of the 
firm to be higher than be the optimal social level. To solve this chal-
lenge, methods of (1) Pigounian Taxation, (2) No intervention (direct 
negotiation between parties), and (3) Firm limits, have been proposed 
by experts in the field of environmental economics. 

The Pigounian Taxation method states that by imposing a tax on 
activities with external influences, the amount of these activities should 
be placed at the optimal social level. This means that the tax internalizes 
the unforeseen costs of the activities with side effects for the producer so 
that his decision to optimize his private interests leads to a socially 
optimal result. The No intervention method is to form an agreement 
between the mining investors and the custodians of the environment and 
natural resources, so that if the negative effects of the mining activities 

Fig. 10. The maps of: (a) predicted LST changes, (b) predicted NDVI changes, (c) predicted relative LST, and (d) predicted relative NDVI.  
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increase from a certain limit, a cost will be paid by the mining investors 
to the custodians of the environment and resources. This revenue can be 
spent by environmentalists and natural resources to improve environ-
mental conditions such as afforestation in the same area or other areas. 
Implementing the No intervention method costs less than the Pigounian 
Taxation method. However, the enforceability of property rights is a 
precondition for using a No intervention method to resolve the mining 
externality effects of mining activities. Another idea for the issue of 
externalities is the Firm limits method. In this way, the government has 
set a ceiling for external effects that cannot be exceeded by the producer 
of the external work. The amount of limits is determined according to 
social preferences in such a way that production is at the optimal social 

level. 

5. Conclusions 

Anthropogenic activities have caused LULC changes with direct and 
indirect negative impacts on our ecosystems and surface biophysical 
parameters. This study represents an example of a mining activity in a 
precious national biosphere where its impacts on the surrounding sur-
face biophysical characteristics, in terms of changes in vegetation cover 
and LST, were investigated quantitatively. Our findings indicate a sig-
nificant and negative impact of the mine activities up to the present time 
and how it will continue in future. In recent years, significant parts of 
natural areas were converted to mine lands and mining activities that 
have significantly increased LST and reduced vegetation cover. Our re-
sults show that LST and NDVI have high potential to quantify the effects 
of human activities on the surface biophysical characteristics. Also, the 
combination of reflection and thermal information obtained from sat-
ellite images increases the accuracy of modeling the surface biophysical 
characteristics and the impact of mining activities on the surface bio-
physical characteristics. In the other hand, predicting the effects of 
mining activities on the surface biophysical characteristics in the future 
based on CA-Markov and multi-temporal satellite images indicates the 
worrying results. In the coming years, mining activities can significantly 
alter the surface biophysical characteristics including LULC, LST and 
NDVI. Our results and discussions can alarm local planners, stakeholders 
and environmentalists to consider solutions for protecting natural re-
serves while continuing mining activities, if necessary. As per potential 

Fig. 11. LULC maps of the study areas for past and future years.  

Table 2 
The areal coverage (km2) of each LULC class in the past and future years.  

Athabasca oil sands Mine Built-up Bare Green space Water 

16/05/1999  197.67  –  72.24  4214.67 123.72 
21/05/2019  662.67  –  484.96  3309.44 151.23 
2039  1192.81  –  494.30  2774.2 147.00 
Singrauli coalfield 
09/10/1996  39.36  37.18  123.40  231.46 3787 
16/10/2016  89.72  36.49  40.98  263.95 38.13 
2036  130.44  39.52  74.25  186.79 38.27 
Hambach mine 
17/06/1989  18.45  18.32  5.89  180.38 0.62 
14/06/2017  47.58  23.27  18.44  133.99 0.38 
2035  55.19  27.34  18.48  122.13 0.52  
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Fig. 12. LST and NDVI within past years, and relative LST and NDVI maps for future years.  
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solutions, consideration of a spatial decision support system for multi- 
objective land allocation i.e., co-existence of conflicting objectives is 
recommended. Developing a suitable structure and system for disposal 
and recycling of mineral waste can be very useful to improve the surface 
biophysical characteristics of the area around the mine. The results of 
the Hambach mine showed that the conversion of unused mining areas 
into forests could improve the surface biophysical characteristics. Also, 
the management of waterways and streams in these areas will be very 
useful to reduce the indirect negative effects of mining activities. The 
cooperation of economic and environmental experts in the development 
of detailed plans including Pigounian Taxation, No intervention and 
Firm limits methods in order to balance the economic advantages and 
environmental disadvantages of mining activities in a region is very 
important and useful. Moreover, this study proved the usefulness of 
long-term archive of optical and thermal remote sensing data for 
monitoring surface biophysical characteristics and anthropogenic-based 

changes. The application of predictive models is worthwhile gaining 
insights about the future changes in the ecosystem and taking protective 
measure against the undesired situations. CA-Markov is a straightfor-
ward and user-friendly model for prediction of future changes based on 
historical changes. As per future directions, studies aiming at environ-
mental impact assessment and changes in the living quality of the sur-
rounding inhabitants are recommended. 
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