137 research outputs found
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica
The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to âŒ70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of OligoceneâMiocene glaciomarine sediments. Overall, we find that 17â25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2â2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains
Semaphorins and their receptors: Novel features of neural guidance molecules
Semaphorins were originally identified as axon guidance cues involved in the development of the nervous system. In recent years, it is emerging that they also participate in various biological systems, including physiological and pathological processes. In this review, we primarily focus on our cumulative findings for the role of semaphorins and their receptors in the regulation of the immune system, while also summarizing recent progress in the context of cardiovascular system
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
âSpontaneousâ late recovery from stuttering: Dimensions of reported techniques and causal attributions
Purpose: (1) To survey the employed techniques and the reasons/occasions which adults who had recovered from stuttering after age 11 without previous treatment reported as causal to overcome stuttering, (2) to investigate whether the techniques and causal attributions can be reduced to coherent (inherently consistent) dimensions, and (3) whether these dimensions reflect common therapy components. Methods: 124 recovered persons from 8 countries responded by SurveyMonkey or paper-and-pencil to rating scale questions about 49 possible techniques and 15 causal attributions. Results: A Principal Component Analysis of 110 questionnaires identified 6 components (dimensions) for self-assisted techniques (Speech Restructuring; Relaxed/Monitored Speech; Elocution; Stage Performance; Sought Speech Demands; Reassurance; 63.7% variance explained), and 3 components of perceived causal attributions of recovery (Life Change, Attitude Change, Social Support; 58.0% variance explained). Discussion: Two components for self-assisted techniques (Speech Restructuring; Elocution) reflect treatment methods. Another component (Relaxed/Monitored Speech) consists mainly of items that reflect a common, non-professional understanding of effective management of stuttering. The components of the various perceived reasons for recovery reflect differing implicit theories of causes for recovery from stuttering. These theories are considered susceptible to various biases. This identification of components of reported techniques and of causal attributions is novel compared to previous studies who just list techniques and attributions. Conclusion: The identified dimensions of self-assisted techniques and causal attributions to reduce stuttering as extracted from self-reports of a large, international sample of recovered formerly stuttering adults may guide the application of behavioral stuttering therapies
Q
The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis
- âŠ