5,695 research outputs found

    New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations

    Get PDF
    We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime (LIR<8.1×1010L_{IR} <8.1 \times 10^{10} Lsun) and very low dust masses (Md<1.6×107M_d<1.6 \times 10^7 Msun). We find that all five galaxies are compatible with the Calzetti IRX-β\beta relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.Comment: 10 pages, 7 figures. Minor revisions. Accepted for publication in A&

    Approaches to Estimating the Health State Dependence of the Utility Function

    Get PDF
    If the marginal utility of consumption depends on health status, this will affect the economic analysis of a number of central problems in public finance, including the optimal structure of health insurance and optimal life cycle savings. In this paper, we describe the promises and challenges of various approaches to estimating the effect of health on the marginal utility of consumption. Our basic conclusion is that while none of these approaches is a panacea, many offer the potential to shed important insights on the nature of health state dependence.

    Interaction effects at the magnetic-field induced metal-insulator transition in Si/SiGe superlattices

    Full text link
    A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.Comment: 5 pages, 3 figures, Solid State Communications, in prin

    No Way Back: Maximizing survival time below the Schwarzschild event horizon

    Full text link
    It has long been known that once you cross the event horizon of a black hole, your destiny lies at the central singularity, irrespective of what you do. Furthermore, your demise will occur in a finite amount of proper time. In this paper, the use of rockets in extending the amount of time before the collision with the central singularity is examined. In general, the use of such rockets can increase your remaining time, but only up to a maximum value; this is at odds with the ``more you struggle, the less time you have'' statement that is sometimes discussed in relation to black holes. The derived equations are simple to solve numerically and the framework can be employed as a teaching tool for general relativity.Comment: 7-pages, 5 figures, accepted for publication in the Publications of the Astronomical Society of Australia (Journal name corrected.

    General covariance violation and the gravitational dark matter. I. Scalar graviton

    Full text link
    The violation of the general covariance is proposed as a resource of the gravitational dark matter. The minimal violation of the covariance to the unimodular one is associated with the massive scalar graviton as the simplest representative of such a matter. The Lagrangian formalism for the continuous medium, the perfect fluid in particular, in the scalar graviton environment is developed. The implications for cosmology are shortly indicated.Comment: 11 pages; minor correction

    Localized to extended states transition for two interacting particles in a two-dimensional random potential

    Full text link
    We show by a numerical procedure that a short-range interaction uu induces extended two-particle states in a two-dimensional random potential. Our procedure treats the interaction as a perturbation and solve Dyson's equation exactly in the subspace of doubly occupied sites. We consider long bars of several widths and extract the macroscopic localization and correlation lengths by an scaling analysis of the renormalized decay length of the bars. For u=1u=1, the critical disorder found is Wc=9.3±0.2W_{\rm c}=9.3\pm 0.2, and the critical exponent ν=2.4±0.5\nu=2.4\pm 0.5. For two non-interacting particles we do not find any transition and the localization length is roughly half the one-particle value, as expected.Comment: 4 two-column pages, 4 eps figures, Revtex, to be published in Europhys. Let

    Investigating Biological Matter with Theoretical Nuclear Physics Methods

    Full text link
    The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.Comment: Prepared for the proceedings of the "XII Meeting on the Problems of Theoretical Nuclear Physics" (Cortona11
    • …
    corecore