654 research outputs found
Membrane fractioning of pre-treated waste activated sludge for the recovery of valuable biocompounds
Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1\u3b1 Axis
Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression; therefore, targeting of UPR-related molecules may open novel therapeutic avenues. Endoplasmic reticulum (ER) stress and UPR pathways are constitutively activated in MM cells, which are characterized by an increased protein turnover as a consequence of high production of immunoglobulins and high rates of protein synthesis. A great deal of scientific data also evidenced that a mild activation of UPR pathway can regulate cellular differentiation. Our previous studies revealed that MM cell-derived small extracellular vesicle (MM-EV) modulated osteoclasts (OCs) function and induced OCs differentiation. Here, we investigated the role of the UPR pathway, and in particular of the IRE1\u3b1/XBP1 axis, in osteoclastogenesis induced by MM-EVs. By proteomic analysis, we identified UPR signaling molecules as novel MM-EV cargo, prompting us to evaluate the effects of the MM-EVs on osteoclastogenesis through UPR pathway. MM-EVs administration in a murine macrophage cell line rapidly induced activation of IRE1\u3b1 by phosphorylation in S724; accordingly, Xbp1 mRNA splicing was increased and the transcription of NFATc1, a master transcription factor for OCs differentiation, was activated. Some of these results were also validated using both human primary OC cultures and MM-EVs from MM patients. Notably, a chemical inhibitor of IRE1\u3b1 (GSK2850163) counteracted MM-EV-triggered OC differentiation, hampering the terminal stages of OCs differentiation and reducing bone resorption
Symbolic universes between present and future of Europe:First results of the map of European societies' cultural milieu
This paper reports the framework, method and main findings of an analysis of cultural milieus in 4 European countries (Estonia, Greece, Italy, and UK). The analysis is based on a questionnaire applied to a sample built through a two-step procedure of post-hoc random selection from a broader dataset based on an online survey. Responses to the questionnaire were subjected to multidimensional analysisâa combination of Multiple Correspondence Analysis and Cluster Analysis. We identified 5 symbolic universes, that correspond to basic, embodied, affect-laden, generalized worldviews. People in this study see the world as either a) an ordered universe; b) a matter of interpersonal bond; c) a caring society; d) consisting of a niche of belongingness; e) a hostile place (othersâ world). These symbolic universes were also interpreted as semiotic capital: they reflect the capacity of a place to foster social and civic development. Moreover, the distribution of the symbolic universes, and therefore social and civic engagement, is demonstrated to be variable across the 4 countries in the analysis. Finally, we develop a retrospective reconstruction of the distribution of symbolic universes as well as the interplay between their current state and past, present and future socio-institutional scenarios
A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies
<p>Abstract</p> <p>Background</p> <p>The commonest pathogenic <it>DMD </it>changes are intragenic deletions/duplications which make up to 78% of all cases and point mutations (roughly 20%) detectable through direct sequencing. The remaining mutations (about 2%) are thought to be pure intronic rearrangements/mutations or 5'-3' UTR changes. In order to screen the huge <it>DMD </it>gene for all types of copy number variation mutations we designed a novel custom high density comparative genomic hybridisation array which contains the full genomic region of the <it>DMD </it>gene and spans from 100 kb upstream to 100 kb downstream of the 2.2 Mb <it>DMD </it>gene.</p> <p>Results</p> <p>We studied 12 DMD/BMD patients who either had no detectable mutations or carried previously identified quantitative pathogenic changes in the <it>DMD </it>gene. We validated the array on patients with previously known mutations as well as unaffected controls, we identified three novel pure intronic rearrangements and we defined all the mutation breakpoints both in the introns and in the 3' UTR region. We also detected a novel polymorphic intron 2 deletion/duplication variation. Despite the high resolution of this approach, RNA studies were required to confirm the functional significance of the intronic mutations identified by CGH. In addition, RNA analysis identified three intronic pathogenic variations affecting splicing which had not been detected by the CGH analysis.</p> <p>Conclusion</p> <p>This novel technology represents an effective high throughput tool to identify both common and rarer DMD rearrangements. RNA studies are required in order to validate the significance of the CGH array findings. The combination of these tools will fully cover the identification of causative DMD rearrangements in both coding and non-coding regions, particularly in patients in whom standard although extensive techniques are unable to detect a mutation.</p
Workload measurement for molecular genetics laboratory: A survey study
Genetic testing availability in the health care system is rapidly increasing, along with the diffusion of next-generation sequencing (NGS) into diagnostics. These issues make imperative the knowledge-drive optimization of testing in the clinical setting. Time estimations of wet laboratory procedure in Italian molecular laboratories offering genetic diagnosis were evaluated to provide data suitable to adjust efficiency and optimize health policies and costs. A survey was undertaken by the Italian Society of Human Genetics (SIGU). Forty-two laboratories participated. For most molecular techniques, the most time-consuming steps are those requiring an intensive manual intervention or in which the human bias can affect the global process time-performances. For NGS, for which the study surveyed also the interpretation time, the latter represented the step that requiring longer times. We report the first survey describing the hands-on times requested for different molecular diagnostics procedures, including NGS. The analysis of this survey suggests the need of some improvements to optimize some analytical processes, such as the implementation of laboratory information management systems to minimize manual procedures in pre-analytical steps which may affect accuracy that represents the major challenge to be faced in the future setting of molecular genetics laboratory
Toponymy of the Murter island, University of Zadar, Center of the Adriatic onomastic research, Onomastica Adriatica Series, vol. 4 (chief editor Vladimir SkraÄiÄ), Zadar, 2010
[This corrects the article DOI: 10.1371/journal.pone.0189885.]
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
- âŠ