17 research outputs found

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Multi-trait genome-wide association study identifies new loci associated with optic disc parameters

    Get PDF
    A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH

    Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features

    No full text
    PURPOSE. To evaluate a novel automated segmentation algorithm for cup-to-disc segmentation from stereo color photographs of patients with glaucoma for the measurement of glaucoma progression. METHODS. Stereo color photographs of the optic disc were obtained by using a fixed stereo-base fundus camera in 58 eyes of 58 patients with suspected or open-angle glaucoma. Manual planimetry was performed by three glaucoma faculty members to delineate a reference standard rim and cup segmentation of all stereo pairs and by three glaucoma fellows as well. Pixel feature classification was evaluated on the stereo pairs and corresponding reference standard, by using feature computation based on simulation of photoreceptor color opponency and visual cortex simple and complex cells. An optimal subset of 12 features was used to segment all pixels in all stereo pairs, and the percentage of pixels assigned the correct class and linear cup-to-disc ratio (LCDR) estimates of the glaucoma fellows and the algorithm were compared to the reference standard. RESULTS. The algorithm was able to assign cup, rim, and background correctly to 88% of all pixels. Correlations of the LCDR estimates of glaucoma fellows with those of the reference standard were 0.73 (95% Cl, 0.58-0.83), 0.81 (95% Cl, 0.70-0.89), and 0.86 (95% Cl, 0.78-0.91), respectively, whereas the correlation of the algorithm with the reference standard was 0.93 (95% Cl, 0.89-0.96; n = 58). CONCLUSIONS. The pixel feature classification algorithm allows objective segmentation of the optic disc from conventional color stereo photographs automatically without human input. The performance of the disc segmentation and LCDR calculation of the algorithm was comparable to that of glaucoma fellows in training and is promising for objective evaluation of optic disc cupping

    Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features

    No full text
    PURPOSE. To evaluate a novel automated segmentation algorithm for cup-to-disc segmentation from stereo color photographs of patients with glaucoma for the measurement of glaucoma progression. METHODS. Stereo color photographs of the optic disc were obtained by using a fixed stereo-base fundus camera in 58 eyes of 58 patients with suspected or open-angle glaucoma. Manual planimetry was performed by three glaucoma faculty members to delineate a reference standard rim and cup segmentation of all stereo pairs and by three glaucoma fellows as well. Pixel feature classification was evaluated on the stereo pairs and corresponding reference standard, by using feature computation based on simulation of photoreceptor color opponency and visual cortex simple and complex cells. An optimal subset of 12 features was used to segment all pixels in all stereo pairs, and the percentage of pixels assigned the correct class and linear cup-to-disc ratio (LCDR) estimates of the glaucoma fellows and the algorithm were compared to the reference standard. RESULTS. The algorithm was able to assign cup, rim, and background correctly to 88% of all pixels. Correlations of the LCDR estimates of glaucoma fellows with those of the reference standard were 0.73 (95% Cl, 0.58-0.83), 0.81 (95% Cl, 0.70-0.89), and 0.86 (95% Cl, 0.78-0.91), respectively, whereas the correlation of the algorithm with the reference standard was 0.93 (95% Cl, 0.89-0.96; n = 58). CONCLUSIONS. The pixel feature classification algorithm allows objective segmentation of the optic disc from conventional color stereo photographs automatically without human input. The performance of the disc segmentation and LCDR calculation of the algorithm was comparable to that of glaucoma fellows in training and is promising for objective evaluation of optic disc cupping

    Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis

    Get PDF
    Item does not contain fulltextPrimary open-angle glaucoma (POAG) is the most common chronic optic neuropathy worldwide. Epidemiological studies show a robust positive relation between intraocular pressure (IOP) and POAG and modest positive association between IOP and blood pressure (BP), while the relation between BP and POAG is controversial. The International Glaucoma Genetics Consortium (n=27 558), the International Consortium on Blood Pressure (n=69 395), and the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (n=37 333), represent genome-wide data sets for IOP, BP traits and POAG, respectively. We formed genome-wide significant variant panels for IOP and diastolic BP and found a strong relation with POAG (odds ratio and 95% confidence interval: 1.18 (1.14-1.21), P=1.8 x 10(-27)) for the former trait but no association for the latter (P=0.93). Next, we used linkage disequilibrium (LD) score regression, to provide genome-wide estimates of correlation between traits without the need for additional phenotyping. We also compared our genome-wide estimate of heritability between IOP and BP to an estimate based solely on direct measures of these traits in the Erasmus Rucphen Family (ERF; n=2519) study using Sequential Oligogenic Linkage Analysis Routines (SOLAR). LD score regression revealed high genetic correlation between IOP and POAG (48.5%, P=2.1 x 10(-5)); however, genetic correlation between IOP and diastolic BP (P=0.86) and between diastolic BP and POAG (P=0.42) were negligible. Using SOLAR in the ERF study, we confirmed the minimal heritability between IOP and diastolic BP (P=0.63). Overall, IOP shares genetic basis with POAG, whereas BP has limited shared genetic correlation with IOP or POAG
    corecore