470 research outputs found

    Predicted multiply-imaged X-ray AGNs in the XXL survey

    Get PDF
    We estimate the incidence of multiply-imaged AGNs among the optical counterparts of X-ray selected point-like sources in the XXL field. We also derive the expected statistical properties of this sample, such as the redshift distribution of the lensed sources and of the deflectors that lead to the formation of multiple images, modelling the deflectors using both spherical (SIS) and ellipsoidal (SIE) singular isothermal mass distributions. We further assume that the XXL survey sample has the same overall properties as the smaller XMM-COSMOS sample restricted to the same flux limits and taking into account the detection probability of the XXL survey. Among the X-ray sources with a flux in the [0.5-2] keV band larger than 3.0x10−15^{-15} erg cm−2^{-2} s−1^{-1} and with optical counterparts brighter than an r-band magnitude of 25, we expect ~20 multiply-imaged sources. Out of these, ~16 should be detected if the search is made among the seeing-limited images of the X-ray AGN optical counterparts and only one of them should be composed of more than two lensed images. Finally, we study the impact of the cosmological model on the expected fraction of lensed sources.Comment: 15 pages, 7 figures, 1 table, accepted for publication in MNRA

    Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field

    Full text link
    Our aim was to identify gravitational lens candidates among some 5500 optical counterparts of the X-ray point-like sources in the medium-deep ~11 sq. deg. XMM-LSS survey. We have visually inspected the optical counterparts of each QSOs/AGN using CFHTLS T006 images. We have selected compact pairs and groups of sources which could be multiply imaged QSO/AGN. We have measured the colors and characterized the morphological types of the selected sources using the multiple PSF fitting technique. We found three good gravitational lens candidates: J021511.4-034306, J022234.3-031616 and J022607.0-040301 which consist of pairs of point-like sources having similar colors. On the basis of a color-color diagram and X-ray properties we could verify that all these sources are good QSO/AGN candidates rather than stars. Additional secondary gravitational lens candidates are also reported.Comment: 6 pages, 3 figures, 1 table, Accepted for publication in MNRA

    Endoscopic Ultrasonography in Chronic Pancreatitis

    Full text link

    A multi-photon Stokes-parameter invariant for entangled states

    Full text link
    We consider the Minkowskian norm of the n-photon Stokes tensor, a scalar invariant under the group realized by the transformations of stochastic local quantum operations and classical communications (SLOCC). This invariant is offered as a candidate entanglement measure for n-qubit states and discussed in relation to measures of quantum state entanglement for certain important classes of two-qubit and three-qubit systems. This invariant can be directly estimated via a quantum network, obviating the need to perform laborious quantum state tomography. We also show that this invariant directly captures the extent of entanglement purification due to SLOCC filters.Comment: 9 pages, 0 figures, Accepted for publication in Physical Review

    Redistribution of Flexibility in Stabilizing Antibody Fragment Mutants Follows Le Chatelier's Principle

    Get PDF
    Le Châtelier's principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc.), La Châtelier's principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect

    Nanoscale cuticle density variations correlate with pigmentation and color in butterfly wing scales

    Full text link
    How pigment distribution correlates with cuticle density within a microscopic butterfly wing scale, and how both impact final reflected color remains unknown. We used ptychographic X-ray computed tomography to quantitatively determine, at nanoscale resolutions, the three-dimensional mass density of scales with pigmentation differences. By comparing cuticle densities with pigmentation and color within a scale, we determine that the lower lamina structure in all scales has the highest density and lowest pigmentation. Low pigment levels also correlate with sheet-like chitin structures as opposed to rod-like structures, and distinct density layers within the lower lamina help explain reflected color. We propose that pigments, in addition to absorbing specific wavelengths, can affect cuticle polymerization, density, and refractive index, thereby impacting reflected wavelengths that produce structural colors

    I. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    Get PDF
    aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R and R-i color indices. conclusions: These flux and color variations are very likely caused by intrinsic variations of the quasar between the observed epochs. Microlensing effects probably also affect the brightest "A" lensed component.Comment: 10 pages, 8 figure

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&
    • …
    corecore