23 research outputs found

    Past and present distribution, densities and movements of blue whales <i>Balaenoptera musculus</i> in the Southern Hemisphere and northern Indian Ocean

    Get PDF
    1Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of =8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings.2Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar.3Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering.4Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic.5Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.6South-east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies.7Antarctic blue whales numbered 1700 (95% Bayesian interval 860–2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4–11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales.</li

    Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin

    Get PDF
    “Two-cysteine” peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus, reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin’s role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here. the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Sulfiredoxin

    No full text

    The societal challenge of ocean acidification

    No full text
    The carbonate chemistry of the world’s oceans, including their pH, has been remarkably constant for hundreds of thousands of years (Pearson and Palmer, 2000), with typical surface ocean variations between ice ages and warm phases of no more than 0.2 pH units ([Sanyal et al., 1995], [Hönisch and Hemming, 2005] and [Foster, 2008]). However, since the beginning of the industrial revolution, the oceans have taken up approximately 30% of the CO2 produced from fossil fuel burning, cement manufacture and land use changes (Sabine et al., 2004). While the invasion of CO2 into the ocean removes this greenhouse gas from the atmosphere and thereby dampens global warming, it forms carbonic acid in seawater and lowers ambient surface ocean pH (Broecker and Peng, 1982). Ocean acidification is the direct consequence of the excessive addition of CO2 to seawater (Broecker and Takahashi, 1977) and is therefore inherently more predictable than temperature and precipitation changes due to rising CO2 in the atmosphere. Changes are already measurable today ([Bates, 2001], [Bates et al., 2002], [Takahashi et al., 2003], [Keeling et al., 2004] and [Santana-Casiano et al., 2007]) and will become more pronounced as humankind emits more CO2 into the atmosphere, with surface ocean pH expected to decline by a further 0.3 pH units by the end of the century, corresponding to an approximately 100% increase in ocean acidity (hydrogen ion concentration [H+]), on top of the not, vert, similar0.1 pH unit decline to date ([Caldeira and Wickett, 2003], [Orr et al., 2005] and Solomon et al., 2007 In: S. Solomon et al., Editors, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge (2007).[Solomon et al., 2007]) (Fig. 1). Such a rapid change in ocean pH has very likely not happened since the time the dinosaurs went extinct 65 million years ago ([van der Burgh et al., 1993], [Pearson and Palmer, 2000] and [Pagani et al., 2005]). While the dissolution of carbonate sediments on the bottom of the ocean and the weathering of rocks on land coupled with mixing of surface and deeper waters will eventually restore ocean pH to its pre-industrial state, this process will take up to a million years to complete ([Archer, 2005] and [Ridgwell and Zeebe, 2005])

    Data from: Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    No full text
    Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approac h with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesise that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation
    corecore