199 research outputs found

    Surface induced disorder in body-centered cubic alloys

    Full text link
    We present Monte Carlo simulations of surface induced disordering in a model of a binary alloy on a bcc lattice which undergoes a first order bulk transition from the ordered DO3 phase to the disordered A2 phase. The data are analyzed in terms of an effective interface Hamiltonian for a system with several order parameters in the framework of the linear renormalization approach due to Brezin, Halperin and Leibler. We show that the model provides a good description of the system in the vicinity of the interface. In particular, we recover the logarithmic divergence of the thickness of the disordered layer as the bulk transition is approached, we calculate the critical behavior of the maxima of the layer susceptibilities, and demonstrate that it is in reasonable agreement with the simulation data. Directly at the (110) surface, the theory predicts that all order parameters vanish continuously at the surface with a nonuniversal, but common critical exponent. However, we find different exponents for the order parameter of the DO3 phase and the order parameter of the B2 phase. Using the effective interface model, we derive the finite size scaling function for the surface order parameter and show that the theory accounts well for the finite size behavior of the DO3 ordering but not for that of B2 ordering. The situation is even more complicated in the neighborhood of the (100) surface, due to the presence of an ordering field which couples to the B2 order.Comment: To appear in Physical Review

    Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.83.2362 DOI:10.1103/PhysRevLett.83.2362Molecular dynamics (MD) simulations and neutron diffraction experiments have been performed on n-dotriacontane ( n-C32D66) monolayers adsorbed on a graphite basal- plane surface. The diffraction experiments show little change in the crystalline monolayer structure up to a temperature of ~350K above which a large thermal expansion and decrease in coherence length occurs. The MD simulations provide evidence that this behavior is due to a phase transition in the monolayer in which intramolecular and translational order are lost simultaneously. This melting transition is qualitatively similar to the gel-to-fluid transition found in bilayer lipid membranes.Acknowledgment is made to the U.S. National Science Foundation under Grants No. DMR-9314235 and No. DMR-9802476, the Missouri University Research Reactor, and to the donors of The Petroleum Research Fund, administered by the ACS, for partial support of this research. We thank L. Criswell for assistance with the figures

    Defining Chlorophyll-a Reference Conditions in European Lakes

    Get PDF
    The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets

    Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate

    Get PDF
    Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of P i-fed 14-day-old seedlings were only 1.3-4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg -1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg 2+ and Ca 2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant -1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant -1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation. © Springer 2006.postprin

    Structural transition of oil-swollen cylindrical micelles of C12E5 in water studied by SANS

    Get PDF
    The effect of added oil on the local structure of oil-swollen cylindrical micelles in the system C12E5 + decane + water was investigated by small-angle neutron scattering (SANS). The geometry of the aggregates was studied for fixed overall concentration of surfactant plus oil, c(m)=7 mg/mL, and increasing oil content alpha (the mass fraction of oil in the dispersed mixture of surfactant plus oil), to clarify the dependency of the apparent molar mass on alpha which was observed in a preceding light scattering study (J. Phys. Chem. B 1999, 103, 5768). There it was found that with increasing alpha at given cm the molar mass of the micelles increases up to a maximum near alpha=0.07 and then decreases sharply as the oil content is further increased. The present work shows that this decrease of the molar mass results from a decrease of the micellar contour length L-c, whereas the mass per unit length M-L of the aggregates increases almost linearly over the entire range of oil content

    Density and thermal expansion of some liquid alkanes

    No full text

    Adsorption calorimetric study of the organization of sodium n-decyl sulfate at the graphite/solution interface

    Get PDF
    The material and enthalpy balances of the adsorption of sodium n-decyl sulfate from aqueous solutions onto graphitized carbon black were determined between 288 and 318 K by using an automated flow sorption/microcalorimeter system. At low concentrations, the surfactant molecules form a flat monomolecular film on the graphite plane, in consequence of surface-directed ordering. A mechanism is proposed in which two adsorbed phases coexist during the formation of this surfactant monolayer. The enthalpy of adsorption in the monolayer region is ca. -42 kJ mol(-1), which does not depend appreciably on the temperature or on the surface coverage. At higher concentrations, the ordered monolayer induces surface aggregation to produce half-cylindrical hemimicelles as the critical micelle concentration is approached. The enthalpies of surface aggregation at 288, 298, and 318 K are -10, -16, and -26 kJ mol(-1), respectively. As the temperature is increased from 288 to 318 K, the average number of surfactant molecules in the cross section of a half-cylinder drops from ca. 5.4 to 3.4. Calorimetric evidence is provided that cationic and anionic surfactant adsorption on graphite follow the same mechanism in the low-density and high-density adsorbate regions
    corecore