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The effect of added oil on the local structure of oil-swollen cylindrical micelles in the system C12E5 + decane
+ water was investigated by small-angle neutron scattering (SANS). The geometry of the aggregates was
studied for fixed overall concentration of surfactant plus oil,cm ) 7 mg/mL, and increasing oil contentR (the
mass fraction of oil in the dispersed mixture of surfactant plus oil), to clarify the dependency of the apparent
molar mass onR which was observed in a preceding light scattering study (J. Phys. Chem. B1999, 103,
5768). There it was found that with increasingR at givencm the molar mass of the micelles increases up to
a maximum nearR ) 0.07 and then decreases sharply as the oil content is further increased. The present
work shows that this decrease of the molar mass results from a decrease of the micellar contour lengthLc,
whereas the mass per unit lengthML of the aggregates increases almost linearly over the entire range of oil
content.

Introduction

Amphiphilic molecules self-assemble into micelles of various
geometries in water. The micellar shape is determined primarily
by the effective cross-sectional area of the hydrophilic and
hydrophobic moieties of the molecules. Surfactants with large
water-soluble headgroups and small nonpolar tails tend to pack
into aggregates of highest curvature, i.e., spherical micelles.
Micellar shapes of lower mean curvature, such as elongated
ellipsoids or oblate shapes will be favored, if the two moieties
of the amphiphile have similar cross-sectional areas. For the
particular case of C12E5 in water, it is well-established1-5 that
cylindrical micelles are present in the isotropic solution at
ambient temperature. These cylindrical micelles can solubilize
moderate amounts of oils,6-9 as is visualized in Figure 1. The
phase behavior and the structures of such ternary microemul-
sions have been the subject of an enormous number of
publications.10 In the present contribution, we focus on the
structural transition from cylindrical micelles to globular oil-
swollen droplets brought about by an increase of the oil content
in the mixture as reported in two preceding contributions.6,7

Following the notation introduced in that work, we use the
symbolcm for the overall concentration of surfactant plus oil,
cm ) (ms + mo)/V, wherems andmo is the mass of the surfactant
and the oil respectively, and the mass fraction of oil in the solute
mixture is denoted by the symbolR ) mo/(ms + mo). Using
light scattering, we have investigated the effect of decane on
the micellar shape of C12E5 in water. It was found that at overall
concentrationscm up to ca. 100 mg/mL an increase of the oil
content up toR ≈ 0.07 causes a gradual increase of the molar
mass of the aggregates. However, asR is further increased at

constantcm, the molar mass decreases sharply and a droplet
microemulsion is eventually formed atR g 0.25. The aim of
the present work is to understand the structural transformations
of the oil-swollen cylindrical micelles in the regionR e 0.15.
Specifically, we wish to elucidate the reasons for the nonmono-
tonic change of the molar mass on increasing oil content.

According to the flexible-surface model,11 the surfactant
monolayer separating the aqueous region from the oil domain
can be regarded as a flexible membrane. The bending free
energy per unit areafB of this membrane, the minimum of which
determines the shape of the micelle, is given by
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Figure 1. Cryo transmission electron micrograph of a vitrified C12E5

+ decane+ water mixture containing an overall concentrationcm )
0.1 g/mL of the solute with an oil fraction ofR ) 0.10. The temperature
prior to vitrification was 22°C.

fB ∝ ∫(2κ(H - C0)
2 + κjK) dS (1)
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whereH andK represent the mean curvature and the Gaussian
curvature, respectively, given byH ) (1/R1 + 1/R2)/2 andK )
(R1R2)-1, with R1 andR2 the two principal radii of curvature.
C0 is the spontaneous curvature, andκ andκj are the curvature
elasticity moduli of the membrane.12 For a given system at a
given temperature,fB depends only on the radiiR1 andR2 and
thus on the geometry of the aggregate. In this case, the free
energy will decrease if the radii increase, provided that the
spontaneous curvature is sufficiently small. Accordingly, solu-
bilization of oil in the cylindrical micelles should cause an
increase of the micellar diameter rather than an increase of the
contour length of the micelles.

To test this prediction, we studied the structural transition of
the present system by small-angle neutron scattering (SANS).
In the analysis of the scattering data, different routes were
pursued. Following the work of Schurtenberger et al.,13,14 a
Guinier-type extrapolation of the SANS data for wormlike
micelles was performed which yields a measure of the mass
per unit length,ML, and the cross-section radius of gyration
Rg,csof the micelles, and allows to calculate their contour length
Lc. A method for a quantitative analysis of the scattering data
by nonlinear least-squares fitting of an appropriate scattering
function was suggested by Pedersen and Schurtenberger.15,16

On the basis of the work of Sharp and Bloomfield,17 they derived
a parametrized approximate expression for the scattering func-
tion of cylindrical micelles. In this treatment, the expression
for the scattering function of a polymer chain with excluded
volume,Sexv(q,Lc,b), is combined with a term that takes into
account the local stiffness of the chain,Sloc(q,Lc,b), and the sum
of these terms is multiplied with the scattering function of the
cylinder cross-section,Scs (q,Rcs). Here q ) 4π sin(θ/2)/λ is
the scattering vector, withθ the scattering angle andλ the
wavelength,b is the Kuhn segment length, andRcs is the cylinder
cross-section radius. Unfortunately, this promising formalism
could not be implemented for the analysis of the present data,
as will be explained in the discussion below. Instead, we
constructed a new scattering function based on an expression
by Koyama18 which had been used successfully in the past to
represent the scattering from semi-flexible polymer chains.19-21

As is well-known, the Koyama expression does not take into
account excluded-volume effects of the chain, and there has
been some controversy about its accuracy in the intermediate
q-range.15,22,23Accordingly, the results for the Kuhn segment
length derived by this approach may be subject to a systematic
error. However, despite this drawback, this approach offers a
reasonably quantitative framework to analyze the way in which
the oil-swollen cylindrical micelles transform into a droplet
microemulsion as the oil content of the system is increased.

Experimental Section

Materials. The surfactant C12E5 was purchased from Nikko
Chemicals Co., Japan, with a purity better than 99% according
to the manufacturer. Decane (>98%) and D2O (>99.9%) were
purchased from Sigma-Aldrich Fine Chemicals, Germany. All
substances were used without further purification.

Small-Angle Neutron Scattering.Small-angle neutron scat-
tering experiments were performed at the instrument V4 of the
Berlin Neutron Scattering Center BENSC at the HMI, Berlin,
Germany. Neutrons were derived from a hydrogen cold source
and monochromatized by a velocity selector. The mean de
Broglie wavelength was set toλ0 ) 0.6 nm with a full width at
half-maximum, fwhm, of the distribution∆λ/λ0 ) 0.1. The
instrument was equipped with a 64× 64 element3He detector
with a pixel size of 10× 10 mm2, which was positioned at

three different sample-to-detector distances (1, 4, and 16 m) to
cover a range of scattering vectors 0.03 nm-1 e q e 3.6 nm-1

after radial averaging. Solutions for the scattering experiments
were prepared by weight and contained in cylindrical quartz
cells with a path length of 1 mm. We investigated a series of
solutions with a fixed overall concentration of the solutecm )
7 mg/mL in which the oil content was adjusted toR ) 0, 0.02,
0.05, 0.07, 0.10, and 0.15. Temperature control with an accuracy
of (0.2 K was achieved by an externally controlled water bath
thermostat. Sampling times were chosen such that the statistical
error was smaller than 2% at any scattering vector. Data
reduction and calibration of intensities to absolute scale, using
water as a standard scatterer, was achieved by HMI standard
procedures according to Strunz et al.24 The software packages
ITP and DEC by Glatter25,26were applied to derive the scattering
length density profile of the micellar cross-section.

Results and Discussion

The radially averaged, background and solvent corrected
scattering curves for four samples of increasing oil content are
displayed in Figure 2. In this double logarithmic representation,
the scattering curves begin with a power-law range at low
q-vectors, whereI(q) ∝ q-x with x > 1 and the global structure
of the micelles dominates the scattering behavior. In theq-range
in which the experiment is sensitive to the local cylindrical
structure of the particles, the scattered intensity scales with an
exponentx ) 1. The crossover from power-law to the linear
region is expected to occur atqclp ≈ 1.9,20,27 where lp is the

Figure 2. (a) Radially averaged SANS curves recorded at 22°C,
corrected for background and solvent scattering. The overall solute
concentration wascm ) 7 mg/mL and the oil contentR of the solute
was (4) 0.02, (]) 0.05, (O) 0.07, and (0) 0.10. The individual curves
have been shifted on the ordinate by a factor of 10 with respect to the
next below. The solid lines represent the best fit with the model function
given in eq 7. (b) Cassasa-Holtzer plot of the same experimental data
in theq-range relevant for the crossover from the rodlike to coil behavior
at qclp ≈ 1.9 as indicated by the arrow.
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persistence length. Because theq-1-regime cannot be identified
unambiguously in the present case, this crossover cannot be
determined from this representation. If the intensity is plotted
in a Cassasa-Holtzer28-30 or bending rod plot asI(q)q vs q, the
crossover is more evident31 and the persitence length can be
estimated to be roughlylp ≈ 13 nm with an uncertainty of about
2 nm for all samples investigated (see Figure 2b). At the high-q
end of the linear regime, the scattering curves display an
exponential decay as the experiment probes the cross-sectional
structure of the micelles. In Figure 2a, the deviation from the
linear q-dependence as well as the position of the first local
minimum of the scattered intensity are shifted slightly to smaller
scattering vectors as the oil-content of the solute increases,
indicating qualitatively that the cross-sectional diameter of the
micelles grows upon the addition of oil.

To quantify this observation we have analyzed the scattering
data at scattering vectorsq g 0.2 nm-1, where the local
cylindrical structure of the micelles dominates the scattering
behavior, using the software packages ITP and DEC by
Glatter.25,26 For cylindrical particles, it is possible to calculate
the pair-distance distribution (PDD) functionpcs(r) of the cross-
section by the indirect Fourier transform algorithm implemented
in ITP. In a similar procedure, the radial excess scattering length
density (SLD) profile∆Fcs(r) of the cross-section is deduced
from pcs(r). Figure 3 shows the PDD functions corresponding
to the scattering curves displayed in Figure 2. The corresponding
SLD profiles are displayed as well. From both functions,pcs(r)
and∆Fcs(r), it is obvious that the cross-sectional dimension of
the micelles increases with increasing oil contentR. The same
trend has been observed in the system C12E5 + water+ n-octane
by cryo-transmission microscopy by Bernheim-Groswasser et
al.32 The analysis of our SANS-data allows us to quantify this

observation by calculating the cross-section radius of gyration,
Rg,cs, for the PDD via

The resulting values forRg,cs are summarized in Table 1.
We further analyzed the scattering curves according to the

procedure suggested by Schurtenberger et al.13,14At sufficiently
large values ofq, the micelles scatter like cylinders of contour
lengthLc, the particle scattering factor of which can be factorized
into a length contributionPLc(q) ∝ π/(qLc) and a contribution
of the cross-sectionPcs(q). As to be seen from Figure 3, the
cross-sectional SLD profiles of the micelles are monotonic. In
this case, we can apply the Guinier approximation to the cross-
sectional particle scattering factor, i.e.,Pcs(q) ∝ exp{-Rg,cs

2q2/
2}, whereRg,cs is the radius of gyration of the cross-section.
Accordingly, the scattered intensity on absolute scale can be
written as

HereML ) Mw/(NALc) is the absolute mass per unit length of
the micelles,Mw is the mass-average molar mass,Lc the contour
length, andNA is the Avogadro constant. The contrast factor
per unit mass∆Fm

2 is given by

where the subscripts c and s specify the cylindrical micelle and
the solvent, respectively,∑bi is the sum of the coherent
scattering lengths of all molecules constituting the respective
compound,mi is the mass of moleculei, andFi the respective
mass density.

According to eq 3, a plot of ln(I(q)q) versusq2 should be
linear in theq-range where this approximation applies, and the
cross-section radius of gyrationRg,cs can be obtained from the
slope of this linear dependence. Further,ML can be calculated
from the intercept of the linear extrapolation toq ) 0. As a
representative example, Figure 4 shows the cross-section Guinier

Figure 3. Top: Pair distance distribution functions calculated by
indirect Fourier transformation from the scattering curves displayed in
Figure 2. Symbols represent different oil contents of the soluteR: (4)
0.02, (]) 0.05, (O) 0.07, and (0) 0.10. The full lines are reconstructions
of the PDD function according to the scattering length density profiles
displayed on the bottom. Bottom: Excess scattering length density
profiles for R ) 0.02 (dashed) andR ) 0.10 (full). The SLD profiles
are normalized to unity atr ) 0.

TABLE 1: Results of the Guinier Extrapolation of SANS
Data for Solutions with a Solute Content of 7 mg/mLa

R 0.00 0.02 0.05 0.07 0.10 0.15
∆F2

m /1021 cm2 g-2 4.16 4.24 4.34 4.40 4.51 4.67
T 19 °C 19°C 19°C 19°C 19°C 19°C
ML/10-20 g nm-1 1.13 1.23 1.41 1.53 1.75 2.04*
Rg,cs/nm 1.91 1.98 2.06 2.14 2.30 2.47*
MW/106 g mol-1 1.91 2.08 1.49
Lc/nm 280 226 141
†Rg,cs/nm 1.58 1.63 1.73 1.79 1.90 2.04*
T 22 °C 22°C 22°C 22°C 22°C 22°C
ML/10-20 g nm-1 1.12 1.23 1.46 1.55 1.78 2.14*
Rg,cs/nm 1.87* 1.98 2.02 2.09 2.27 2.43*
MW/106 g mol-1 2.59 2.88 3.17 3.48 2.64 1.37
Lc/nm 384 388 360 372 246 106
†Rg,cs/nm 1.59* 1.65 1.74 1.77 1.88 2.02*

a The oil content of the solute is denotedR, ML is the mass per unit
length, andRg,cs is the cross-sectional radius of gyration.MW is the
mass-average molar mass measured by light scattering.6,7 The contour
length Lc of the aggregates was calculated according toLc )
MW/(MLNA). The values with the asterisk are extrapolated from the
corresponding data at differentR. The values calculated from eq 2 are
marked by †.

Rg,cs ) (∫0

∞
r2pcs(r) dr

2∫0

∞
pcs(r) dr )1/2

(2)

I(q) ≈ ∆Fm
2cm

MLπ
q

exp(-Rg,csq
2/2) (3)

∆Fm
2 ) (∑bc

mc
- ∑bs

ms

Fs

Fc
)2

(4)
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plot of the scattering curves displayed in Figure 2. The values
of Rg,cs and ML obtained by linear least-squares fitting of the
data in the range 0.05 nm-2 e q2 e 0.2 nm-2 are listed in Table
1.

In the Guinier analysis presented above, the contour length
of the cylindersLc was derived indirectly fromML, using
complementary information from the previous light scattering
study.6,7 We have attempted to deriveLc directly from the SANS
data using the formalism of Pedersen and Schurtenberger.15

However, we were unable to implement this formalism, as the
expression forSexv(q,Lc,b) given in eq 13 of ref 15 yields
physically meaningless (negative) values forqRg < 1, where
Rg is the overall radius of gyration of the cylinder. This
inconsistency is not removed entirely when the crossover
function ω(qRg), which is used to link the Debye function for
a flexible coil with an expansion that accounts for the excluded
volume in eq 13 of ref 15, is replaced with (1- ω(qRg)). In
view of this unphysical behavior ofSexv(q,Lc,b) in the low-qRg

limit, and also in view of the fact that this formalism involves
a total of 13 model parameters which have to be determined
beforehand by comparison with simulated scattering functions,
we did not use the formalism of Pedersen and Schurtenberger
in the present analysis. Instead, we constructed a modified
particle scattering factorP(q,Lc,b,U,Rcs) along the ideas of these
authors. In this new formalism, the finite cross-section diam-
eter of the cylinders is taken into account by multiplying
Pwlc(q,Lc,b,U), the particle scattering factor of polydisperse
wormlike chains,18,20 with Pcs(q,Rcs), the cross-section form
factor of a rigid homogeneous cylinder, i.e.

whereU is the polydispersity index of the contour length and

whereRcs is the cross-section radius andJ1(qRcs) is the first-
order Bessel function. To compare eq 5 to experimental data,
it was multiplied with an amplitudeI(q ) 0) and smeared with
a Gaussian-type resolution function R(q,qj) as suggested by

Pedersen33 to give

whereqj is the nominal mean scattering vector. As Koyama’s
particle scattering factor of a wormlike chain contains an
integration, which can be solved only numerically,18 and because
we take into account length polydispersity and experimental
smearing, the solution of eq 7 requires three numerical integra-
tions which makes the least-squares fitting rather time-consum-
ing. To fasten the procedure, we fixed the polydispersity index
to U ) 2. Representative examples for the fits are shown as
full lines in Figure 2a, and the resulting values of the parameters
are summarized in Table 2.

As to be seen from Tables 1 and 2, the values for the contour
length derived with different methods agree reasonably well.
The segment lengths obtained by the fitting procedure are also
in good agreement with the estimate for the persistence length,
asb ) 2lp. The values for the cross-section radius of gyration,
Rg,cs resulting from the three methods differ somewhat (up to
ca. 50%). However, ifRg,cs is plotted as a function of the oil
contentR all methods yield a linear dependence with similar
slopes. Therefore, the results obtained by the different methods
may be regarded mutually consistent.

The main result of the present work is thatRg,csand the mass
per unit lengthML of the micelles exhibit a monotonic increase
with the oil contentR over the entire experimental range. Up
to R ≈ 0.07, the overall molar mass of the micellesMw reflects
this increase ofML with the oil content, which implies that the
contour lengthLc of the micelles remains nearly constant in
this region. The pronounced decrease ofMw observed at higher
oil contents (R > 0.07) thus implies a sharp decrease of the
contour length as the oil content is further increased. These
opposite trends ofML andLc and the resulting nonmonotonic
dependence ofMw onR are shown in Figure 5. The pronounced
decrease ofLc with increasingR at high oil contents eventually
leads to the crossover from oil-swollen cylindrical micelles to
spherical microemulsion droplets atR g 0.25.6

A second remarkable trend indicated by the present results
concerns the temperature dependence of the parametersML, Mw,
andLc. For given values ofcm andR, the molar massMw exhibits
a pronounced temperature dependence.7 On the other hand,Rg,cs

and the mass per unit length are virtually independent of
temperature in our experiments. This appears to be a general
behavior, as in the system C12E5 + water+ n-octane the cross-
sectional dimension is also found to be almost temperature
invariant.32 Accordingly, the finding thatML is nearly indepen-
dent of temperature (Table 1) also implies that the aggregates

Figure 4. Cross-sectional Guinier plot of the SANS data displayed in
Figure 2. The solute concentration wascm ) 7 mg/mL, and the oil
contentR was (4) 0.02, (]) 0.05, (O) 0.07, and (0) 0.10. The individual
curves are shifted on the ordinate by a factor of ln 10 with respect to
the next below. The solid straight lines were obtained by linear least-
squares fitting of the data in the range 0.05 nm-2 e q2 e 0.2 nm-2.

TABLE 2: Results of the Linear Least Squares Fitting of eq
7 to SANS Data for Solutions with a Solute Content of 7
mg/mLa

R 0.00 0.02 0.05 0.07 0.10 0.15
T 19 °C 19°C 19°C 19°C 19°C 19°C
Lc/nm 283 280 273 232 187
b/nm 27.2 26.0 29.7 27.0 34.0
Rg,cs/nm 1.39 1.45 1.45 1.70 1.89 2.08*
T 22 °C 22°C 22°C 22°C 22°C 22°C
Lc/nm 350 332 386 253
b/nm 22.0 25.0 27.0 30.2
Rg,cs/nm 1.34* 1.45 1.58 1.69 1.83 2.06*

a The oil content of the solute is denotedR, Lc is the contour length,
andb is the segment length. The cross-sectional radius of gyrationRg,cs

was calculated from the fitting parameterRcs
2 ) 5/2Rg,cs

2. The values
with the asterisk are extrapolated from the corresponding data at
different R.

Imodel(q) ) ∫0

∞
I(q ) 0)P(q,Lc,b,U,Rcs)R(q,qj) dq (7)

P(q,Lc,b,U,Rcs) ) Pwlc(q,Lc,b,U)P(q,Rcs) (5)

Pcs(q,Rcs) ) [2J1(qRcs)

qRcs
]2

(6)
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grow drastically in length when the temperature increases, as
is nicely confirmed by the overall contour length values obtained
from the model fits.

Conclusions

We have used SANS to determine the cross-section radius
of gyrationRg,csand the mass per unit lengthML of oil-swollen
cylindrical micelles in the water-rich corner of the C12E5 +
decane+ water phase diagram. We used simple asymptotic
extrapolation and Glatter’s indirect Fourier transform method,
as well as elaborate nonlinear least-squares fitting to analyze
the data. All of the three methods gave consistent results. By
combining these data with results from light scattering,6,7 we
calculated the contour lengthLc of the aggregates. It is found
that ML increases in a monotonic manner with the relative oil
content R of the surfactant+ oil solute mixture, as to be
expected on the basis of the flexible-surface model.11 Up to R
) 0.07, the contour lengthLc of the cylindrical aggregates
remains nearly constant, but a sharp decrease ofLc occurs asR
exceeds 0.10. This decrease ofLc outweighs the further increase
of the cross-sectional dimension, thus leading to a pronounced
maximum of the micellar mass at aboutR ≈ 0.07. The sharp
decrease of the contour length atR > 0.07 supports the
explanation by Menes et al.34 for the existence of a closed-loop
two phase-liquid/liquid region within the isotropic micellar phase
of the microemulsion phase diagram.35 According to Menes et
al., the re-entrant phase behavior at constant temperature is due
to a delicate balance of the weak attractive potential between
large aggregates, leading to phase separation, and an increasing
entropy term which leads to homogenization upon the addition

of sufficiently large amounts of oil. The entropy gain is assumed
to be due to the formation of smaller aggregates, as it was indeed
observed in the present contribution.
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