25 research outputs found

    Crystallization and X-ray analysis of human cytoplasmic phenylalanyl-tRNA synthetase

    No full text
    The crystallization and X-ray analysis of recombinant human cytosolic phenylalanyl-tRNA synthetase (hcPheRS) are reported. Diffraction data were collected to 3.3 Å resolution and the hcPheRS structure was determined by the molecular-replacement method using phase information derived from multiwavelength anomalous dispersion data

    Structural Aspects of Phenylalanylation and Quality Control in Three Major Forms of Phenylalanyl-tRNA Synthetase

    No full text
    Aminoacyl-tRNA synthetases (aaRSs) are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase (PheRS)—bacterial (αβ)2, eukaryotic/archaeal cytosolic (αβ)2, and mitochondrial α—is a prominent example of structural diversity within the aaRSs family. Although archaeal/eukaryotic and bacterial PheRSs share common topology of the core domains and the B3/B4 interface, where editing activity of heterotetrameric PheRSs is localized, the detailed investigation of the three-dimensional structures from three kingdoms revealed significant variations in the local design of their synthetic and editing sites. Moreover, as might be expected from structural data eubacterial, Thermus thermophilus and human cytoplasmic PheRSs acquire different patterns of tRNAPhe anticodon recognition

    Idiosyncrasy and identity in the prokaryotic phe-system: Crystal structure of E. coli phenylalanyl-tRNA synthetase complexed with phenylalanine and AMP

    No full text
    The crystal structure of Phenylalanyl-tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl-tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)2 heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N-terminus, A1 and A2 belong to the α-subunit and B1-B8 domains to the β subunit. The structure of EcPheRS revealed that architecture of four helix-bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil-short helix structural fragments. The N-terminal domain of the α-subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N-terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNAPhe binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ∼5 Å is required for C-terminal domain B8, and of ∼6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS
    corecore