347 research outputs found

    Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare autosomal recessive disorder of nucleoside metabolism that is caused by mutations in the nuclear thymidine phosphorylase gene (TYMP) gene, encoding for the enzyme thymidine phosphorylase. There are currently no approved treatments for MNGIE. The aim of this study was to investigate the safety, tolerability, and efficacy of an enzyme replacement therapy for the treatment of MNGIE. In this single centre study, three adult patients with MNGIE received intravenous escalating doses of erythrocyte encapsulated thymidine phosphorylase (EE-TP; dose range: 4 to 108 U/kg/4 weeks). EE-TP was well tolerated and reductions in the disease-associated plasma metabolites, thymidine, and deoxyuridine were observed in all three patients. Clinical improvements, including weight gain and improved disease scores, were observed in two patients, suggesting that EE-TP is able to reverse some aspects of the disease pathology. Transient, non-serious adverse events were observed in two of the three patients; these did not lead to therapy discontinuation and they were managed with pre-medication prior to infusion of EE-TP. To conclude, enzyme replacement therapy with EE-TP demonstrated biochemical and clinical therapeutic efficacy with an acceptable clinical safety profile

    Small Nerve Fiber Pathology in Critical Illness

    Get PDF
    BACKGROUND: Degeneration of intraepidermal nerve fibers (IENF) is a hallmark of small fiber neuropathy of different etiology, whose clinical picture is dominated by neuropathic pain. It is unknown if critical illness can affect IENF. METHODS: We enrolled 14 adult neurocritical care patients with prolonged intensive care unit (ICU) stay and artificial ventilation ( 65 3 days), and no previous history or risk factors for neuromuscular disease. All patients underwent neurological examination including evaluation of consciousness, sensory functions, muscle strength, nerve conduction study and needle electromyography, autonomic dysfunction using the finger wrinkling test, and skin biopsy for quantification of IENF and sweat gland innervation density during ICU stay and at follow-up visit. Development of infection, sepsis and multiple organ failure was recorded throughout the ICU stay. RESULTS: Of the 14 patients recruited, 13 (93%) had infections, sepsis or multiple organ failure. All had severe and non-length dependent loss of IENF. Sweat gland innervation was reduced in all except one patient. Of the 7 patients available for follow-up visit, three complained of diffuse sensory loss and burning pain, and another three showed clinical dysautonomia. CONCLUSIONS: Small fiber pathology can develop in the acute phase of critical illness and may explain chronic sensory impairment and pain in neurocritical care survivors. Its impact on long term disability warrants further studies involving also non-neurologic critical care patients

    Muscle pain in mitochondrial diseases: a picture from the Italian network

    Get PDF
    Muscle pain may be part of many neuromuscular disorders including myopathies, peripheral neuropathies and lower motor neuron diseases. Although it has been reported also in mitochondrial diseases (MD), no extensive studies in this group of diseases have been performed so far. We reviewed clinical data from 1398 patients affected with mitochondrial diseases listed in the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases", to assess muscle pain and its features. Muscle pain was present in 164 patients (11.7%). It was commonly observed in subjects with chronic progressive external ophthalmoplegia (cPEO) and with primary myopathy without cPEO, but also-although less frequently-in multisystem phenotypes such as MELAS, MERFF, Kearns Sayre syndrome, NARP, MNGIE and Leigh syndrome. Patients mainly complain of diffuse exercise-related muscle pain, but focal/multifocal and at rest myalgia were often also reported. Muscle pain was more commonly detected in patients with mitochondrial DNA mutations (67.8%) than with nuclear DNA changes (32.2%). Only 34% of the patients showed a good response to drug therapy. Interestingly, patients with nuclear DNA mutations tend to have a better therapeutic response than patients with mtDNA mutations. Muscle pain is present in a significant number of patients with MD, being one of the most common symptoms. Although patients with a myopathic phenotype are more prone to develop muscle pain, this is also observed in patients with a multi system involvement, representing an important and disabling symptom having poor response to current therapy

    Large genotype–phenotype study in carriers of D4Z4 borderline alleles provides guidance for facioscapulohumeral muscular dystrophy diagnosis

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a myopathy with prevalence of 1 in 20,000. Almost all patients affected by FSHD carry deletions of an integral number of tandem 3.3 kilobase repeats, termed D4Z4, located on chromosome 4q35. Assessment of size of D4Z4 alleles is commonly used for FSHD diagnosis. However, the extended molecular testing has expanded the spectrum of clinical phenotypes. In particular, D4Z4 alleles with 9–10 repeat have been found in healthy individuals, in subjects with FSHD or affected by other myopathies. These findings weakened the strict relationship between observed phenotypes and their underlying genotypes, complicating the interpretation of molecular findings for diagnosis and genetic counseling. In light of the wide clinical variability detected in carriers of D4Z4 alleles with 9–10 repeats, we applied a standardized methodology, the Comprehensive Clinical Evaluation Form (CCEF), to describe and characterize the phenotype of 244 individuals carrying D4Z4 alleles with 9–10 repeats (134 index cases and 110 relatives). The study shows that 54.5% of index cases display a classical FSHD phenotype with typical facial and scapular muscle weakness, whereas 20.1% present incomplete phenotype with facial weakness or scapular girdle weakness, 6.7% display minor signs such as winged scapula or hyperCKemia, without functional motor impairment, and 18.7% of index cases show more complex phenotypes with atypical clinical features. Family studies revealed that 70.9% of relatives carrying 9–10 D4Z4 reduced alleles has no motor impairment, whereas a few relatives (10.0%) display a classical FSHD phenotype. Importantly all relatives of index cases with no FSHD phenotype were healthy carriers. These data establish the low penetrance of D4Z4 alleles with 9–10 repeats. We recommend the use of CCEF for the standardized clinical assessment integrated by family studies and further molecular investigation for appropriate diagnosis and genetic counseling. Especially in presence of atypical phenotypes and/or sporadic cases with all healthy relatives is not possible to perform conclusive diagnosis of FSHD, but all these cases need further studies for a proper diagnosis, to search novel causative genetic defects or investigate environmental factors or co-morbidities that may trigger the pathogenic process. These evidences are also fundamental for the stratification of patients eligible for clinical trials. Our work reinforces the value of large genotype–phenotype studies to define criteria for clinical practice and genetic counseling in rare diseases

    Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives

    Get PDF
    In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field

    Interpretation of the epigenetic signature of facioscapulohumeral muscular dystrophy in light of genotype-phenotype studies

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by incomplete penetrance and intra-familial clinical variability. The disease has been associated with the genetic and epigenetic features of the D4Z4 repetitive elements at 4q35. Recently, D4Z4 hypomethylation has been proposed as a reliable marker in the FSHD diagnosis. We exploited the Italian Registry for FSHD, in which FSHD families are classified using the Clinical Comprehensive Evaluation Form (CCEF). A total of 122 index cases showing a classical FSHD phenotype (CCEF, category A) and 110 relatives were selected to test with the receiver operating characteristic (ROC) curve, the diagnostic and predictive value of D4Z4 methylation. Moreover, we performed DNA methylation analysis in selected large families with reduced penetrance characterized by the co-presence of subjects carriers of one D4Z4 reduced allele with no signs of disease or presenting the classic FSHD clinical phenotype. We observed a wide variability in the D4Z4 methylation levels among index cases revealing no association with clinical manifestation or disease severity. By extending the analysis to family members, we revealed the low predictive value of D4Z4 methylation in detecting the affected condition. In view of the variability in D4Z4 methylation profiles observed in our large cohort, we conclude that D4Z4 methylation does not mirror the clinical expression of FSHD. We recommend that measurement of this epigenetic mark must be interpreted with caution in clinical practice

    The neurophysiological lesson from the Italian CIDP database

    Get PDF
    Introduction Electrophysiological diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) may be challenging. Thus, with the aim ofproviding some practical advice in electrophysiological approach to a patient with suspected CIDP, we analyzed electrophysiological data from 499 patients enrolled inthe Italian CIDP Database. Methods We calculated the rate of each demyelinating feature, the rate of demyelinating features per nerve, the diagnostic rate for upper andlower limb nerves, and, using a ROC curve analysis, the diagnostic accuracy of each couple of nerves and each demyelinating feature, for every CIDP subtype.Moreover, we compared the electrophysiological data of definite and probable CIDP patients with those of possible and not-fulfilling CIDP patients, and by a logisticregression analysis, we estimated the odds ratio (OR) to make an electrophysiological diagnosis of definite or probable CIDP. Results The ulnar nerve had the highestrate of demyelinating features and, when tested bilaterally, had the highest diagnostic accuracy except for DADS in which peroneal nerves were the most informative.In possible and not-fulfilling CIDP patients, a lower number of nerves and proximal temporal dispersion (TD) measurements had been performed compared to definiteand probable CIDP patients. Importantly, OR for each tested motor nerve and each TD measurement was 1.59 and 1.33, respectively. Conclusion Our findingsdemonstrated that the diagnosis of CIDP may be missed due to inadequate or incomplete electrophysiological examination or interpretation. At the same time, thesedata taken together could be useful to draw a thoughtful electrophysiological approach to patients suspected of CIDP

    Relevance of diagnostic investigations in chronic inflammatory demyelinating poliradiculoneuropathy: Data from the Italian CIDP database

    Get PDF
    The objective of our work was to report the clinical features and the relevance of diagnostic investigations in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). We retrospectively reviewed data from patients with a clinical diagnosis of CIDP included in a national database. Among the 500 included patients with a clinical diagnosis of CIDP, 437 patients (87%) fulfilled the European Federation of Neurological Societies and Peripheral Nerve Society criteria for CIDP (definite in 407, probable in 26, possible in four). In 352 patients (86%) motor nerve conduction abnormalities consistent with demyelination were sufficient for the diagnosis of definite CIDP. In 55 patients, this diagnosis required the addition of one or two (from probable or from possible CIDP, respectively) supportive tests, while in 20 cases they improved the diagnosis from possible to probable CIDP, seven patients did not change diagnosis. Considering these 85 patients, cerebrospinal fluid studies were performed in 79 cases (93%) upgrading the certainty of diagnosis in 59% of examined patients. Sensory nerve conduction studies (NCS) were performed in 85% of patients with an improvement of diagnosis in 32% of cases. Nerve biopsy and ultrasound and magnetic resonance imaging (US/MRI) exams resulted positive in about 40% of examined patients, but they were performed in few patients (7 patients and 16 patients, respectively). A response to the therapy was present in 84% of treated patients (n = 77), contributing to support the diagnosis in 40 patients in whom the other supportive criteria were not sufficient. In most patients with CIDP the diagnosis is possible solely with motor NCS while other investigations may help improving the diagnosis in a minority of patients

    Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3.

    Get PDF
    ABSTRACT Objective To retrospectively investigate safety and efficacy of nusinersen in a large cohort of adult Italian patients with spinal muscular atrophy (SMA). Methods Inclusion criteria were: (1) clinical and molecular diagnosis of SMA2 or SMA3; (2) nusinersen treatment started in adult age (>18 years); (3) clinical data available at least at baseline (T0-beginning of treatment) and 6 months (T6). Results We included 116 patients (13 SMA2 and 103 SMA3) with median age at first administration of 34 years (range 18–72). The Hammersmith Functional Rating Scale Expanded (HFMSE) in patients with SMA3 increased significantly from baseline to T6 (median change +1 point, p<0.0001), T10 (+2, p<0.0001) and T14 (+3, p<0.0001). HFMSE changes were independently significant in SMA3 sitter and walker subgroups. The Revised Upper Limb Module (RULM) in SMA3 significantly improved between T0 and T14 (median +0.5, p=0.012), with most of the benefit observed in sitters (+2, p=0.018). Conversely, patients with SMA2 had no significant changes of median HFMSE and RULM between T0 and the following time points, although a trend for improvement of RULM was observed in those with some residual baseline function. The rate of patients showing clinically meaningful improvements (as defined during clinical trials) increased from 53% to 69% from T6 to T14. Conclusions Our data provide further evidence of nusinersen safety and efficacy in adult SMA2 and SMA3, with the latter appearing to be cumulative over time. In patients with extremely advanced disease, effects on residual motor function are less clear
    • …
    corecore