54 research outputs found

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms

    A topological characterization of modulo-p arguments and implications for necklace splitting

    Get PDF
    The classes PPA-p have attracted attention lately, because they are the main candidates for capturing the complexity of Necklace Splitting with p thieves, for prime p. However, these classes were not known to have complete problems of a topological nature, which impedes any progress towards settling the complexity of the Necklace Splitting problem. On the contrary, topological problems have been pivotal in obtaining completeness results for PPAD and PPA, such as the PPAD-completeness of finding a Nash equilibrium [18, 15] and the PPA-completeness of Necklace Splitting with 2 thieves [24]. In this paper, we provide the first topological characterization of the classes PPA-p. First, we show that the computational problem associated with a simple generalization of Tucker's Lemma, termed p-polygon-Tucker, as well as the associated Borsuk-Ulam-type theorem, p-polygon-Borsuk-Ulam, are PPA-p-complete. Then, we show that the computational version of the well-known BSS Theorem [8], as well as the associated BSS-Tucker problem are PPA-p-complete. Finally, using a different generalization of Tucker's Lemma (termed Zp-star-Tucker), which we prove to be PPA-p-complete, we prove that p-thief Necklace Splitting is in PPA-p. This latter result gives a new combinatorial proof for the Necklace Splitting theorem, the only proof of this nature other than that of Meunier [42]. All of our containment results are obtained through a new combinatorial proof for Zp-versions of Tucker's lemma that is a natural generalization of the standard combinatorial proof of Tucker's lemma by Freund and Todd [27]. We believe that this new proof technique is of independent interest

    The distortion of distributed voting

    Get PDF
    Voting can abstractly model any decision-making scenario and as such it has been extensively studied over the decades. Recently, the related literature has focused on quantifying the impact of utilizing only limited information in the voting process on the societal welfare for the outcome, by bounding the distortion of voting rules. Even though there has been significant progress towards this goal, almost all previous works have so far neglected the fact that in many scenarios (like presidential elections) voting is actually a distributed procedure. In this paper, we consider a setting in which the voters are partitioned into disjoint districts and vote locally therein to elect local winning alternatives using a voting rule; the final outcome is then chosen from the set of these alternatives. We prove tight bounds on the distortion of well-known voting rules for such distributed elections both from a worst-case perspective as well as from a best-case one. Our results indicate that the partition of voters into districts leads to considerably higher distortion, a phenomenon which we also experimentally showcase using real-world data

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Total Intermittent Pringle Maneuver during Liver Resection Can Induce Intestinal Epithelial Cell Damage and Endotoxemia

    Get PDF
    Contains fulltext : 110009.pdf (publisher's version ) (Open Access)OBJECTIVES: The intermittent Pringle maneuver (IPM) is frequently applied to minimize blood loss during liver transection. Clamping the hepatoduodenal ligament blocks the hepatic inflow, which leads to a non circulating (hepato)splanchnic outflow. Also, IPM blocks the mesenteric venous drainage (as well as the splenic drainage) with raising pressure in the microvascular network of the intestinal structures. It is unknown whether the IPM is harmful to the gut. The aim was to investigate intestinal epithelial cell damage reflected by circulating intestinal fatty acid binding protein levels (I-FABP) in patients undergoing liver resection with IPM. METHODS: Patients who underwent liver surgery received total IPM (total-IPM) or selective IPM (sel-IPM). A selective IPM was performed by selectively clamping the right portal pedicle. Patients without IPM served as controls (no-IPM). Arterial blood samples were taken immediately after incision, ischemia and reperfusion of the liver, transection, 8 hours after start of surgery and on the first post-operative day. RESULTS: 24 patients (13 males) were included. 7 patients received cycles of 15 minutes and 5 patients received cycles of 30 minutes of hepatic inflow occlusion. 6 patients received cycles of 15 minutes selective hepatic occlusion and 6 patients underwent surgery without inflow occlusion. Application of total-IPM resulted in a significant increase in I-FABP 8 hours after start of surgery compared to baseline (p<0.005). In the no-IPM group and sel-IPM group no significant increase in I-FABP at any time point compared to baseline was observed. CONCLUSION: Total-IPM in patients undergoing liver resection is associated with a substantial increase in arterial I-FABP, pointing to intestinal epithelial injury during liver surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT01099475

    Consensus-halving: does it ever get easier?

    Get PDF
    corecore