611 research outputs found

    Facility location with double-peaked preference

    Get PDF
    We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents' locations and discuss how our results extend to more general settings. We show that most of the results for single-peaked preferences do not directly apply to this setting; this makes the problem essentially more challenging. As our main contribution, we present a simple truthful-in-expectation mechanism that achieves an approximation ratio of 1+b/c for both the social and the maximum cost, where b is the distance of the agent from the peak and c is the minimum cost of an agent. For the latter case, we provide a 3/2 lower bound on the approximation ratio of any truthful-in-expectation mechanism. We also study deterministic mechanisms under some natural conditions, proving lower bounds and approximation guarantees. We prove that among a large class of reasonable mechanisms, there is no deterministic mechanism that outperforms our truthful-in-expectation mechanism

    Truthful Mechanisms for Matching and Clustering in an Ordinal World

    Full text link
    We study truthful mechanisms for matching and related problems in a partial information setting, where the agents' true utilities are hidden, and the algorithm only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph of agent utilities, but the algorithm can only elicit the agents' private information in the form of a preference ordering for each agent induced by the underlying weights. Against this backdrop, we design truthful algorithms to approximate the true optimum solution with respect to the hidden weights. Our techniques yield universally truthful algorithms for a number of graph problems: a 1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a 2-approximation algorithm for Max Traveling Salesman as long as the hidden weights constitute a metric. We also provide improved approximation algorithms for such problems when the agents are not able to lie about their preferences. Our results are the first non-trivial truthful approximation algorithms for these problems, and indicate that in many situations, we can design robust algorithms even when the agents may lie and only provide ordinal information instead of precise utilities.Comment: To appear in the Proceedings of WINE 201

    Localization of planar acoustic reflectors from the combination of linear estimates

    Get PDF
    In this paper we present a simple yet effective method for estimating the geometry of an acoustic enclosure in three-dimensions. By capturing the acoustic impulse responses using a microphone array and a loudspeaker at different spatial locations we transform the localization of planar reflectors into the estimation of multiple linear reflectors. By decomposing the microphone array into co-planar sub-arrays the line parameters of the reflectors lying on the corresponding planes can be inferred using a geometric constraint. By intersecting these lines the actual lying plane of each reflector can be estimated. The proposed method is evaluated using a three-dimensional microphone array in a real conference room

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms

    A New Lower Bound for Deterministic Truthful Scheduling

    Full text link
    We study the problem of truthfully scheduling mm tasks to nn selfish unrelated machines, under the objective of makespan minimization, as was introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the current gap of [2.618,n][2.618,n] on the approximation ratio of deterministic truthful mechanisms is a notorious open problem in the field of algorithmic mechanism design. We provide the first such improvement in more than a decade, since the lower bounds of 2.4142.414 (for n=3n=3) and 2.6182.618 (for nn\to\infty) by Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07], respectively. More specifically, we show that the currently best lower bound of 2.6182.618 can be achieved even for just n=4n=4 machines; for n=5n=5 we already get the first improvement, namely 2.7112.711; and allowing the number of machines to grow arbitrarily large we can get a lower bound of 2.7552.755.Comment: 15 page

    PATHway: decision support in exercise programmes for cardiac rehabilitation

    Get PDF
    Rehabilitation is important for patients with cardiovascular diseases (CVD) to improve health outcomes and quality of life. However, adherence to current exercise programmes in cardiac rehabilitation is limited. We present the design and development of a Decision Support System (DSS) for telerehabilitation, aiming to enhance exercise programmes for CVD patients through ensuring their safety, personalising the programme according to their needs and performance, and motivating them toward meeting their physical activity goals. The DSS processes data originated from a Microsoft Kinect camera, a blood pressure monitor, a heart rate sensor and questionnaires, in order to generate a highly individualised exercise programme and improve patient adherence. Initial results within the EU-funded PATHway project show the potential of our approach
    corecore