611 research outputs found
Facility location with double-peaked preference
We study the problem of locating a single facility on a real line based on
the reports of self-interested agents, when agents have double-peaked
preferences, with the peaks being on opposite sides of their locations. We
observe that double-peaked preferences capture real-life scenarios and thus
complement the well-studied notion of single-peaked preferences. We mainly
focus on the case where peaks are equidistant from the agents' locations and
discuss how our results extend to more general settings. We show that most of
the results for single-peaked preferences do not directly apply to this
setting; this makes the problem essentially more challenging. As our main
contribution, we present a simple truthful-in-expectation mechanism that
achieves an approximation ratio of 1+b/c for both the social and the maximum
cost, where b is the distance of the agent from the peak and c is the minimum
cost of an agent. For the latter case, we provide a 3/2 lower bound on the
approximation ratio of any truthful-in-expectation mechanism. We also study
deterministic mechanisms under some natural conditions, proving lower bounds
and approximation guarantees. We prove that among a large class of reasonable
mechanisms, there is no deterministic mechanism that outperforms our
truthful-in-expectation mechanism
Truthful Mechanisms for Matching and Clustering in an Ordinal World
We study truthful mechanisms for matching and related problems in a partial
information setting, where the agents' true utilities are hidden, and the
algorithm only has access to ordinal preference information. Our model is
motivated by the fact that in many settings, agents cannot express the
numerical values of their utility for different outcomes, but are still able to
rank the outcomes in their order of preference. Specifically, we study problems
where the ground truth exists in the form of a weighted graph of agent
utilities, but the algorithm can only elicit the agents' private information in
the form of a preference ordering for each agent induced by the underlying
weights. Against this backdrop, we design truthful algorithms to approximate
the true optimum solution with respect to the hidden weights. Our techniques
yield universally truthful algorithms for a number of graph problems: a
1.76-approximation algorithm for Max-Weight Matching, 2-approximation algorithm
for Max k-matching, a 6-approximation algorithm for Densest k-subgraph, and a
2-approximation algorithm for Max Traveling Salesman as long as the hidden
weights constitute a metric. We also provide improved approximation algorithms
for such problems when the agents are not able to lie about their preferences.
Our results are the first non-trivial truthful approximation algorithms for
these problems, and indicate that in many situations, we can design robust
algorithms even when the agents may lie and only provide ordinal information
instead of precise utilities.Comment: To appear in the Proceedings of WINE 201
Localization of planar acoustic reflectors from the combination of linear estimates
In this paper we present a simple yet effective method for estimating the geometry of an acoustic enclosure in three-dimensions. By capturing the acoustic impulse responses using a microphone array and a loudspeaker at different spatial locations we transform the localization of planar reflectors into the estimation of multiple linear reflectors. By decomposing the microphone array into co-planar sub-arrays the line parameters of the reflectors lying on the corresponding planes can be inferred using a geometric constraint. By intersecting these lines the actual lying plane of each reflector can be estimated. The proposed method is evaluated using a three-dimensional microphone array in a real conference room
Social Welfare in One-Sided Matching Mechanisms
We study the Price of Anarchy of mechanisms for the well-known problem of
one-sided matching, or house allocation, with respect to the social welfare
objective. We consider both ordinal mechanisms, where agents submit preference
lists over the items, and cardinal mechanisms, where agents may submit
numerical values for the items being allocated. We present a general lower
bound of on the Price of Anarchy, which applies to all
mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and
Random Priority, achieve a matching upper bound. We extend our lower bound to
the Price of Stability of a large class of mechanisms that satisfy a common
proportionality property, and show stronger bounds on the Price of Anarchy of
all deterministic mechanisms
A New Lower Bound for Deterministic Truthful Scheduling
We study the problem of truthfully scheduling tasks to selfish
unrelated machines, under the objective of makespan minimization, as was
introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the
current gap of on the approximation ratio of deterministic truthful
mechanisms is a notorious open problem in the field of algorithmic mechanism
design. We provide the first such improvement in more than a decade, since the
lower bounds of (for ) and (for ) by
Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07],
respectively. More specifically, we show that the currently best lower bound of
can be achieved even for just machines; for we already get
the first improvement, namely ; and allowing the number of machines to
grow arbitrarily large we can get a lower bound of .Comment: 15 page
PATHway: decision support in exercise programmes for cardiac rehabilitation
Rehabilitation is important for patients with cardiovascular diseases (CVD) to improve health outcomes and quality of life. However, adherence to current exercise programmes in cardiac rehabilitation is limited. We present the design and development of a Decision Support System (DSS) for telerehabilitation, aiming to enhance exercise programmes for CVD patients through ensuring their safety, personalising the programme according to their needs and performance, and motivating them toward meeting their physical activity goals. The DSS processes data originated from a Microsoft Kinect camera, a blood pressure monitor, a heart rate sensor and questionnaires, in order to generate a highly individualised exercise programme and improve patient adherence. Initial results within the EU-funded PATHway project show the potential of our approach
- …
