
Planning with Learned Ignorance-Aware Models

28

 University of Oxford visual identity guidelines

The belted crest is a traditional device featuring
elements from the arms of the University
including three crowns and an open book with
the motto ‘Dominus illuminatio mea’ (the Lord
is my light) contained within a buckled belt.

For ceremonial uses the belted crest can be used
on its own. These include such items as invitation
cards, certificates, place cards and menus.

Three colours are permitted for the belted crest:
Oxford blue, gold or white. The gold should
ideally be a special metallic ink (Pantone 872).
The four-colour breakdown for the colour gold
is specified as: C=0 M=21 Y=60 K=30.

A black version of the belted crest exists but
should only be used when setting up a document
to be printed by the University Reprographics
Office, when the logo is then printed in Oxford
blue or gold, or for legal agreements.

Other, limited uses of the ceremonial crest will
be considered on a case-by-case basis by the
Design and Publications Office.

NOTE
Careful judgement should always be used when
deciding whether to use the belted crest instead
of the Oxford logo. If you are in any doubt about
the appropriate use of the belted crest, contact
the Design and Publications Office for guidance.

Ceremonial belted crest

x

0.5x

0.5x 0.5x

0.5x

Examples of useExclusion zone

Colour variations

The use of the belted
crest is restricted and
generally confined
to ceremonial
applications.

UNIVERSITY OF OXFORD

ENCAENIA
!

The Vice-Chancellor
requests the pleasure of the company of

at Rhodes House
on Wednesday XX June 2014

7.00 for 7.30pm

Dress: Business suit or full academic dress
Gowns are only worn by current members of the University

RSVP to:

Xx Xxxxx Xxxxxxx

Email: xxxx@xxxx.xx.xx Telephone: XXXX XXXXXXX

Angelos Filos

Department of Computer Science
University of Oxford

This dissertation is submitted for the degree of
Doctor of Philosophy

Worcester College Trinity 2022

To my family,
Panagiota, Maria, and Paschalis

♡

Acknowledgments

This thesis would not have been enjoyable or even possible without the support of fantastic
individuals and institutions. First and foremost, I would like to express my gratitude
to my advisor, Yarin Gal, for providing support and essential feedback throughout
the years. Yarin, you have significantly influenced my research while allowing me the
time and independence to explore my own path, which has helped me develop as an
independent researcher. Moreover, you have introduced me to an array of remarkable
researchers and significant opportunities. Your consistent mentoring and encouragement
have been invaluable to me. I would also like to thank Sergey Levine, who acted as a
co-advisor. Sergey, thank you for always providing helpful advice and insight. I greatly
enjoyed our collaboration, even though the COVID-19 lockdown disrupted my visit to
your lab. I would like to thank Edward Grefenstette and Jakob Foerster for carefully
examining this thesis and providing constructive feedback. I thank Rowan McAllister,
Nicholas Rhinehart, Greg Farquhar, Natasha Jaques, Andre Barreto, and Amy Zhang,
for being amazing collaborators and mentors. For the work in this thesis, I was lucky to
collaborate also with Panos Tigas and Clare Lyle. Thank you for your contributions – I
could not have done it without you. I also want to thank the rest of OATML: Sebastian
Farquhar, Joost van Amersfoort, Aidan Gomez, Milad Alizadeh, Tim G. J. Rudner,
Lewis Smith, Andreas Kirsch, Binxin Ru, Neil Band, Andrew Jesson, Jannik Kossen, Lisa
Schut, Gunshi Gupta, and Muhammed T. Razzak, for the interesting discussions and
fun times. I would also like to thank all my colleagues at J.P. Morgan: Gregory Sidier,
Louis Moussu, Samuel Assefa, Cyrine Chtourou, Mahmoud Mahfouz, Giorgio Vit, Joshua
Lockhart, Hans Buehler, Manuela Veloso, Jacobo Roa-Vicens, Tucker Balch. For my
colleagues at DeepMind: Andre Barreto, Greg Farquhar, Eszter Vertes, Feryal Behbahani,
Zita Marinho, Simon Osindero, Kate Baumli, Matteo Hessel, Hado van Hasselt, David
Silver, Diana Borsa, Abram Friesen, Tom Schaul, Ioannis Antonoglou, Wilka Carvalho
Carvalho and the RL team, thank you for making me feel so welcome despite the physical
distance, and being invested in my internship project. I thank Marilena for assuming
and delivering the challenging role of ”partner in DPhil during a pandemic” and for her
unwavering support. Last but not least, I want to thank my family: Panagiota, Maria,
and Pascalis, for always believing in me and encouraging me to be who I am.

Walton Street, Oxford, March 2022

Declaration of originality

I, Angelos Filos hereby declare that except where specific reference is made to the work of
others, the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other univer-
sity. This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.

Angelos Filos
Trinity 2022

Abstract

One of the goals of artificial intelligence research is to create decision-makers (i.e., agents)
that improve from experience (i.e., data), collected through interaction with an environ-
ment. Models of the environment (i.e., world models) are an explicit way that agents use
to represent their knowledge, enabling them to make counterfactual predictions and plans
without requiring additional environment interactions. Although agents that plan with
a perfect model of the environment have led to impressive demonstrations, e.g., super-
human performance in board games, they are limited to problems their designer can
specify a perfect model. Therefore, learning models from experience holds the promise of
going beyond the scope of their designers’ reach, giving rise to a self-improving vicious cir-
cle of (i) learning a model from the past experience; (ii) planning with the learned model;
and (iii) interacting with the environment, collecting new experiences. Ideally, learned
models should generalise to situations beyond their training regime. Nonetheless, this is
ambitious and often unrealistic when finite data is used for learning the models, leading
to generally imperfect models, with which naive planning could be catastrophic in novel,
out-of-training distribution situations. A more pragmatic goal is to have agents that are
aware of and quantify their lack of knowledge (i.e., ignorance or epistemic uncertainty).

In this thesis, we motivate and demonstrate the effectiveness of and propose novel
ignorance-aware agents that plan with learned models. Naively applying powerful plan-
ning algorithms to learned models can render negative results, when the planning algo-
rithm exploits the model imperfections in out-of-training distribution situations. This phe-
nomenon is often termed overoptimisation and can be addressed by optimising ignorance-
augmented objectives, called knowledge equivalents. We verify the validity of our ideas
and methods in a number of problem settings, including learning from (i) expert demon-
strations (imitation learning, §3); (ii) sub-optimal demonstrations (social learning, §4);
and (iii) interacting with an environment with rewards (reinforcement learning, §5). Our
empirical evidence is based on simulated autonomous driving environments, continuous
control and video games from pixels and didactic small-scale grid-worlds. Throughout
the thesis, we use neural networks to parameterise the (learnable) models and either use
existing scalable approximate ignorance quantification deep learning methods, such as
ensembles, or introduce novel planning-specific ways to quantify the agents’ ignorance.

The main chapters of this thesis are based on publications (Filos et al., 2020, 2021, 2022).

Contents

List of figures xxi

List of tables xxv

List of acronyms xxvii

List of symbols xxxi

1 Introduction 1

1.1 Thesis statement . 2

1.2 Contributions and outline . 3

2 Background & literature review 7

2.1 Decision-making under uncertainty . 8

2.1.1 Decision-making under risk . 9

2.1.2 Decision-making under ignorance 10

2.2 Supervised learning (SL) . 14

2.2.1 Probabilistic inference . 15

2.2.2 Deep learning (DL) . 18

2.2.3 Ignorance-aware deep neural networks 19

2.2.4 Imitation learning (IL) . 21

2.3 Reinforcement learning (RL) . 23

2.3.1 Agent-environment interface & definitions 23

2.3.2 Markov decision process (MDP) solvers 27

2.3.3 Planning . 34

2.3.4 Overoptimising a learned objective 37

2.3.5 Ignorance-aware RL agents . 39

3 Plan and adapt from expert demonstrations 41

3.1 Background & problem setting . 43

3.2 Methods . 47

3.2.1 Robust imitative planning (RIP) 47

3.2.2 Adaptive robust imitative planning (AdaRIP) 51

3.3 Experiments . 52

3.3.1 Detecting distribution shifts . 56

3.3.2 Recovering from distribution shifts 57

3.3.3 Adapting to distribution shifts . 58

3.4 Related work . 59

3.5 Conclusion & discussion . 61

4 Plan and adapt from sub-optimal demonstrations 63

4.1 Background & problem setting . 65

4.2 Methods . 71

4.2.1 Inverse temporal difference (ITD) learning 71

4.2.2 ΨΦ-learning with no-reward demonstrations 73

4.3 Experiments . 77

4.3.1 Accelerating RL with no-reward demonstrations 78

4.3.2 Inferring reward functions . 80

4.3.3 Predicting other agents’ behaviour 81

4.3.4 Transfer and few-shot generalisation 82

4.4 Related work . 83

4.5 Conclusion & discussion . 85

5 Plan with model-value inconsistency 87

5.1 Background & problem setting . 89

5.2 Method . 90

5.2.1 Implicit value ensemble (IVE) . 91

5.2.2 Model-value inconsistency . 93

5.3 Experiments . 96

5.3.1 Detecting out-of-distribution regimes with self-inconsistency 97

5.3.2 Optimism and pessimism in the face of self-inconsistency 98

5.3.3 Planning with averaged model-predicted values 100

5.4 Related work . 100

5.5 Conclusion & discussion . 102

6 Afterword 105

Supplementary Material

A Plan and adapt from expert demonstrations 107

A.1 CARNOVEL: Suite of tasks under distribution shift 107

A.2 AdaRIP examples . 109

B Plan and adapt from sub-optimal demonstrations 111

B.1 Experimental details . 111

B.1.1 Highway . 111

B.1.2 Roundabout . 112

B.1.3 CoinGrid . 112

B.1.4 Fruitbot . 113
B.2 Implementation details . 113
B.3 Proofs . 115
B.4 Visualisations . 119

C Plan with model-value inconsistency 121
C.1 Experimental details . 121

C.1.1 Environments . 121
C.1.2 Experiments . 124

C.2 Implementation details . 127
C.2.1 Tabular methods . 127
C.2.2 Dreamer (Hafner et al., 2019a) . 127
C.2.3 Muesli (Hessel et al., 2021) . 127
C.2.4 VPN (Oh et al., 2017) . 128

C.3 Extensions . 128
C.3.1 IVE with the Bellman optimality operator 128
C.3.2 MPV with action-value functions 128

C.4 Additional experiments . 129
C.4.1 Measuring self-inconsistency in OOD states 129
C.4.2 Measuring explicit value ensemble variance in OOD states 129
C.4.3 How to use the IVE[5] signal? . 130
C.4.4 Ablation on pessimism for evaluation 131
C.4.5 Dreamer variants . 132

Bibliography 133

List of figures

2.1 The agent’s beliefs about the “true” reward function θ∗r: The uninformed
initial (a.k.a. prior) belief p(Θr) and the more concentrated posterior
belief p(Θr|D) after observing reward samples D. 10

2.2 Single-step decision-making under uncertainty. The agent selects one of
the {LEFT, RIGHT} boxes and receives a reward that depends on the colour
of the randomly drawn marbles: 0 reward for white marbles; +1 for green;
and −1 for red. (a) The RIGHT action has an irreducibly uncertain reward
(risk). (b) The reward function for the RIGHT action is unknown (ignorance)
and deterministic. (c) A decision-making problem that involves both risk
(a = LEFT) and ignorance (a = RIGHT). 13

2.3 Data distribution. 14

2.4 Supervised learning (SL) with probabilistic inference for the coefficients
of 20-th degree polynomial functions. (a) The input-output pairs, with
additive i.i.d. normal noise. (b) The maximum likelihood estimation
(MLE) and maximum a posteriori (MAP) point estimates. (c) The mean
and 3 standard deviations interval of the posterior predictive distribution,
using exact Bayesian inference. 17

2.5 Ensemble of deep neural networks (NNs) for ignorance quantification. (a)
The action→reward pairs, with additive i.i.d. normal noise. (b) The di-
versely initialised ensemble members. (c) The ensemble members’ predic-
tions at the end of training, where the members “agree” in-distribution,
i.e., close to the data, and disagree in OOD inputs and hence forming use-
ful ignorance estimates. (d) Knowledge equivalents (KEs) for ignorance-
aware agents (see §2.1.2) using ensemble statistics. Note that an ignorance-
seeking (resp. -averse) agent that maximises the ensemble max (resp. min)
would pick an action far from (resp. close to) the observed data. 20

2.6 Learning to act from expert demonstrations in a gridworld via behaviour
cloning (BC) with a multi-layer perceptron (MLP) neural network policy.
(a) Example trajectories of the expert agent ■, which navigates to the
goal ■ while avoiding the trap ■. (b) The loss function (see Eqn. (2.15))
decreases as more gradient update (i.e., learning) steps (see 2.20) are
performed. (c) The performance, quantified as the episode return (see
Eqn. (2.30)), of the BC agent, compared to the expert agent and an agent

that selects actions uniformly randomly. 22

2.7 An agent navigates in an 1D gridworld environment, modelled as a con-
trolled Markov process (CMP). The white nodes represent the environ-
ment states and the black nodes the agent actions. 23

2.8 An agent navigates in an 1D gridworld environment to reach a rewarding
goal, modelled as a Markov decision process (MDP). The white nodes
represent the environment states, the black nodes the agent actions and
the grey square nodes the terminal environment states, i.e., goal. 25

2.9 Latent world model sub-neural networks (NNs). (a) The representation
network that embeds the observed environment state to a latent state (a.k.a.
embedding). (b) The action-conditioned latent dynamics network. (c)
The reconstruction network that decodes a latent state to an environment
state. (d) The partial model’s prediction network that predicts a partial
view of the environment state, such as an estimate of the state value
function or the optimal policy, from the latent state. 32

2.10 Overoptimisation with an ensemble of reward models. (a) The optimality
gap, i.e., agent’s regret to the optimal policy. (b) The hallucination error,
i.e., difference between the agent’s reward estimate for its action and its
true value. 38

3.1 Sequential decision-making and out-of-training distribution (OOD) settings.
The agent is trained on the in-distribution states and deployed on the test
states, from which it follows a trajectory in OOD states. (a) The agent is
deployed in novel/OOD scenarios, i.e., it undergoes a domain shift. (b)
The agent is deployed in in-distribution actions but its model imperfections
lead to compounding errors that finally push it in OOD states, i.e., it
undergoes a covariate shift. We refer to both settings as distribution shift. 42

3.2 Expert demonstrations coverage. 44

3.3 Imitative model neural network (NN) architecture for continuous actions.
Following the terminology from §2.3.2, there are three sub-NNs: (i) the
representation network hθh

; (i) the dynamics network mθm
; and (iii) the

prediction network fθf
. 45

3.4 Trajectory library from CARLA’s autopilot demonstrations, constructed with
K-means clustering on 4 seconds-long expert plans from the training dataset. 46

3.5 The robust imitative planning (RIP) agent. (a) Expert demonstra-
tions. We assume access to states s and expert plans a pairs, i.e., D ≜
{(s(i),a(i))}i, collected either in simulation (Dosovitskiy et al., 2017) or in
real-world (Caesar et al., 2019; Sun et al., 2019; Houston et al., 2020). (b)
Learning algorithm (see §3.2.1). We capture agent’s ignorance by learn-
ing an ensemble of density estimators {q(a|s; θk)}

K
k=1, following the imple-

mentation of Remark 2.7. (c) Planning paradigm (see §3.2.1). The plan
aRIP that maximises an ignorance-averse knowledge equivalent (KE, see
§2.1.2), e.g., the ensemble min, is selected. For continuous action spaces,

the plans are efficiently calculated online with gradient-based optimisation
(see §2.3.3) through the learned likelihood models. 48

3.6 Didactic example of robust imitative planning (RIP) agent in an out-of-
training distribution (OOD) driving setting. (a) The bird-eye view of the
scene and the candidate plans, i.e., aα,aβ,aγ. (b) The imitative scores
for ensemble of imitative models q1, q2, q3 and the actions each model
would select and the RIP selected action under the “worst-case model”
(WCM) knowledge equivalent (KE). 50

3.7 RIP’s robustness to OOD scenarios, compared to CIL (Codevilla et al.,
2018) and DIM (Rhinehart et al., 2020). Both baselines get out of the
road and hit the barriers while RIP follows a safe trajectory. 54

3.8 The spawn location and the route for completing example CARNOVEL task. 55

3.9 Uncertainty estimators as indicators of catastrophes on CARNOVEL. We col-
lect 50 scenes for each model that led to a crash, record the uncertainty
4 seconds (Taoka, 1989) before the accident and assert if the uncertain-
ties can be used for detection. RIP’s (ours) predictive variance (in blue,
see Eqn. (3.8)) serves as a useful detector, while DIM’s (Rhinehart et al.,
2020) negative log-likelihood (in orange) cannot be used for detecting
catastrophes. We assume that the main reason for catastrophes is distri-
bution shifts. 56

3.10 Adaptation scores of AdaRIP (see §3.2.2) on CARNOVEL tasks that RIP-
WCM and RIP-MA (see §3.2.1) do worst. We observe that as the number
of online expert demonstrations increases, the success rate improves thanks
to online model adaptation. 60

4.1 Q-learning with a behaviour cloning (BC) auxiliary loss. 66

4.2 CoinGrid . 67

4.3 The ΨΦ-learning (ΨΦL) agent’s neural network (NN) architecture. It
comprises of (i) a representation network hθh

that receives learning sig-
nal from all the losses, shaping a shared representation. (ii) a cumulants
network ΦθΦ

; (iii) successor features (SFs) approximators for each of the
demonstrators {Ψθ

Ψk
}Kk=1 and the ‘ego’ reinforcement learning (RL) agent

Ψθ
Ψ0

; and corresponding (iv) preferences vectors {wk}Kk=0. Ensembles of
two SFs approximators (per-agent) are used for combatting the overopti-
misation of learned reward functions phenomenon (see §2.10). 74

4.4 Environments studied in this chapter. Environments (a-b) are multi-agent
environments in which the ego-agent must learn online from other agents,
and learn to navigate around other agents in the environment (see §4.3.1).
Environments (c-d) are single-agent. In environment (c) we test whether
the ego-agent can learn offline from a set of demonstrations previously
collected by other agents (see §4.3.4). Environment (d) is used to test
whether our method can scale to more complex, high-dimensional tasks
(see §4.3.1). 77

4.5 Learning curves for ΨΦ-learning (ΨΦL) and baselines in three tasks
in the multi-agent Highway environment (a-c), and in single-agent
FruitBot (d). Tasks (a) and (b) represent extreme cases where either
reinforcement learning (RL) or imitation learning (IL) is irrelevant. In
SingleHighway (a), other agents have the same task as the ego-agent, so
IL excels. In AdversarialHighway (b), other agents exhibit degenerative
behaviour, so IL performs extremely poorly and traditional RL (DQN)
excels. In both of these extreme cases, ΨΦ-learning achieves good per-
formance, showing it can flexibly reap the benefits of either IL or RL as
appropriate. MultiHighway (c) is most realistic; here, other agents have
varied preferences and goals that may or may not relate to the ego-agent’s
task. ΨΦ-learning clearly outperforms baseline techniques. Similar results
are shown in FruitBot (d), showing that ΨΦ-learning scales well to high-
dimensional environments, consistently outperforming baselines like PPO
and SQIL. We plot mean performance over 3 runs and individual runs are
transparent. 79

4.6 Learning curves for ΨΦ-learning (ΨΦL) and ignorance-unaware variants
in three tasks in the multi-agent Highway environment (a-c). The “- pes-
simistic KE” variant learns ensembles of cumulants and successor features
(SFs) but uses only on for action selection, i.e., m = 1 in Eqn. (4.23). The
“- ensemble” variant does not learn ensembles at all. The performance of
the ignorance-unaware variants is relatively poor. 80

4.7 Qualitative evaluation of the learned cumulants in the CoinGrid task. Cu-
mulants Φ̂1, Φ̂2, and Φ̂3 seem to capture the red, green, and yellow blocks,
respectively. Therefore, linear combinations of the learned cumulants can
represent arbitrary rewards in the environment, which involve stepping on
the coloured blocks. 81

4.8 Test accuracy in predicting other agents’ actions. The shared cumulants
Φ for modelling others- and ego- reward functions allow our ΨΦ-learning
(ΨΦL) to improve its ability to predict others’ actions by experiencing
new ego-tasks. Pure behaviour cloning (BC) and our ITD learning IRL
methods achieve high train accuracy but they do not have a mechanism
for utilising RL experience to improve their generalisation to the test set
as new tasks are provided. 82

5.1 The computational graph of the one-sample Monte Carlo (MC) estimator of
the k-step model-predicted value (k-MPV), i.e., v̂kθ(s) =

∑k−1
i=0 (γ

iri+1) +
γkvk. 88

5.2 Scalable ignorance quantification for reinforcement learning (RL) agents’
value function. (a) Explicit ensemble of value functions (EVE, Osband
et al., 2016) and (b) world models (EMVE, Chua et al., 2018), approxi-
mate samples from p(vπ|B) and p(m∗|B), respectively. The number of pa-
rameters grows linearly with the ensemble size. (c) Implicit value ensemble

(IVE) make ensemble value predictions using a single learned value function
and world model by exploiting the model-induced Bellman operator T π

m̂. 89

5.3 The computational graph of the one-rollout Monte Carlo (MC) estimator
of the implicit value ensemble (IVE), using point estimates of a world
model and value. 92

5.4 A value prediction problem of an implicit policy, modelled as a Markov
reward process (MRP, Sutton and Barto, 2018) with an one-dimensional
state space, i.e., s ∈ S = [−3, 3]. We learn a model m̂ and a value function
v̂ and construct a k-step model predicted value (k-MPV, Eqn. (5.1)) by ap-
plying the model induced Bellman operator Tm̂ repeatedly k times on the
learned value function vθv

, i.e., v̂kθ(s) ≜ (Tm̂)kvθv
(s). We visualise the k-

MPVs, a.k.a components of the implicit value ensemble (IVE, Eqn. (5.5))
for k ∈ {0, . . . , 10} (in blue) along with the ensemble mean and standard
deviation (in orange), constructed from a single (point) estimate of the
value function and model. (a) The predictions at initialisation, i.e., before
training. (b) The data, i.e., state and value target pairs. (c) The predic-
tions after training every IVE member towards the value targets in (b),
i.e., minm,v

∑
i

∑
k ∥v̂

k
θ(si) − vi∥22. We observe in (c) that the ensemble

components fit the value targets and their standard deviation is zero at
and around the observed (in-distribution) data but it is non-zero other-
wise (out-of-distribution points). Therefore the IVE members’ disagree-
ment can be used as a signal for epistemic uncertainty. In this example,
the variability between the IVE members’ predictions is only due to their
different functional forms. 95

5.5 Environments studied in this chapter. (a) Small and finite MDP for tab-
ular experiments. (b) Continuous control from pixels. (c) Procedurally
generated suite of pixel-based tasks. (d) Small-scale ALE-inspired (Belle-
mare et al., 2013) tasks. 97

5.6 Standard deviation across value ensembles for different numbers of ensem-
ble components N, trained on offline data from GridWorld environment
in Figure 5.5a, excluding the top left state from the training data. (a-e)
Implicit value ensemble (IVE) (ours, see Figure 5.2c), where we vary the
length of the rollout used to estimate the members, as defined in Eqn. (5.6).
(f-j) Explicit value ensemble (EVE) (ours, see Figure 5.2a), where we
vary the number of value networks. (k-o) Explicit model value ensemble
(EMVE) (ours, see Figure 5.2b), where we vary the number of world model
networks. The standard deviation σ is normalised in range [0, 1] per figure. 98

5.7 Self-inconsistency as a signal for distribution shifts. (a) Normalised training
and test performance for a Muesli agent evaluated on both training and
unseen test levels of 5 Procgen games after 100M environment frames,
for different numbers of unique levels seen during training. Values are
normalised by the min and max scores for each game. (b) σ-IVE(5)
computed using the model of the Muesli agent while evaluating on both

training and unseen test levels, for different numbers of unique levels seen
during training. Bars, error-bars show mean and standard error across 3
seeds, respectively. 99

5.8 Probability of reaching the out-of-distribution state in a tabular GridWorld,
starting from the bottom right cell (Figure 5.5a) by (a) seeking or (b)
avoiding self-inconsistency (σ-IVE, see §5.2.2) or explicit value or model
ensemble (EVE, EMVE) standard deviation. Error bars show standard
error over 100 seeds. 99

A.1 The spawn location and the route for completing each CARNOVEL task. . . 108

A.2 Examples where the non-adaptive method (a) fails to recover from a
distribution shift, despite it being able to detect it. The adaptive method
(b) queries the human driver when uncertain (dark red), then uses the
online demonstrations for updating its model, resulting into confident
(light red, white) and safe trajectories. 109

B.1 Highway . 111

B.2 Roundabout . 112

B.3 CoinGrid . 112

B.4 FruitBot . 113

B.5 Computational graph of the ΨΦ-learning algorithm. Demonstrations D

contain data from other agents for unknown tasks. We employ inverse
temporal difference learning (ITD, see §4.2.1) to recover other agents’
successor features (SFs) and preferences. The ego-agent combines the
estimated SFs of others along with its own preferences and successor
features with generalised policy improvement (GPI, see §4.1), generating
experience. Both the demonstrations and the ego-experience are used to
learn the shared cumulants. Losses L∗ are represented with double arrows
and gradients flow according to the pointed direction(s). 114

B.6 Qualitative evaluation of the learned cumulants in the CoinGrid task.
Cumulants Φ̂1, Φ̂2, and Φ̂3 seem to capture the red, green, and yellow
blocks, respectively. The yellow blocks are captured by both and Φ̂4.
Therefore, linear combinations of the learned cumulants can represent
arbitrary rewards in the environment, which involve stepping on the
coloured blocks. 119

B.7 Sensitivity of our ITD (see §4.2.1) and ΨΦ-learning (see §4.2.2) algorithms
to the dimensionality of the learned cumulants. We consistently observe
across all three experiments (a)-(c) that for a small number of Φ dimensions
the cumulants are not expressive enough to capture the axis of variation of
the different agents’ reward functions (including the ego-agent in (c)). We
also note that the performance of both ITD and ΨΦ-learning is relative
robust for a medium and large number of Φ dimensions. We attribute
this to the used sparsity prior, i.e., L1 loss, to the preferences w. In
our experiments we selected the smallest number of Φ dimensions that

demonstrated good performance to keep the number of model parameters
as small as possible (in bold in the figures and reported in Table B.1). . . 119

C.1 GridWorld . 121
C.2 Procgen tasks. 122
C.3 MinAtar tasks. 123
C.4 walker . 123
C.5 σ-IVE[5] computed using the model of the Muesli agent while evaluating

on both training and unseen test levels, for different numbers of unique
levels seen during training. To estimate the IVE, we used 100 action
sequences from the policy. Bars, error-bars show mean and standard error
across 3 seeds, respectively. 129

C.6 σ-EVE[5] computed using the Muesli agent augmented with an ensemble
of 5 value heads (different random initialisation) while evaluating on both
training and unseen test levels, for different numbers of unique levels
seen during training. (a) Performance for training (green) and test (pink)
for varying number of levels. (b) Explicit value ensemble inconsistency
measured by standard deviation of the 5 different heads. 129

C.7 Model-value inconsistency (see §5.2.2) as the Jensen-Shannon divergence of
the implicit value ensemble (see §5.2.1) for different numbers of ensemble
components n, trained across 100 Procgen levels error bars show SE over 3
seeds. (a) Mean episode return during training with 100 Procgen levels, for
Muesli baselines and for an agent trained with optimistic divergence over
an explicit ensemble dJS-EVE[5] and over IVE[5], both with an increasing
Jensen-Shannon disagreement. (b) Mean episode return for evaluation
without the optimistic disagreement for the same methods. (c) Ablation
study over dJS-IVE of varying length n = 5, 10 and by mixing in logit
space z+ d-IVE vs. mixing in probability space +d-IVE. 130

C.8 Mean episode return evaluated with pessimism bonus −dJS-IVE with
increasing weights for each procgen environment on a trained vanilla Muesli
using (a) 10 levels and (b) 100 levels. Error bars show 95% CI. 131

List of tables

3.1 Robust imitative planning (RIP) variants used for the ablation study. . . 55

3.2 We evaluate different autonomous driving prediction methods in terms of
their robustness to and recovery from distribution shifts from the nuScenes ICRA
2020 challenge (Phan-Minh et al., 2019). We use the provided train–val–
test splits and report performance on the test (i.e., out-of-sample) scenar-
ios. A “♣” indicates methods that use LIDAR observation, as in (Rhine-
hart et al., 2019), and a “♢” methods that use bird-view privileged infor-
mation, as in (Phan-Minh et al., 2019). A “⋆” indicates that we used
the results from the original paper, otherwise we used our implementation.
Standard errors are in grey (via bootstrap sampling). The outperform-
ing method is in bold. 58

3.3 We evaluate different autonomous driving methods in terms of their ro-
bustness to and recovery from distribution shifts, in our new bench-
mark, CARNOVEL. All methods are trained on CARLA Town01 using imita-
tion learning with expert demonstrations from the CARLA autopilot (Doso-
vitskiy et al., 2017). A “∗” indicates methods that use first-person camera
view, as in (Chen et al., 2019), a “♣” methods that use LIDAR observa-
tion, as in (Rhinehart et al., 2020) and a “♢” methods that use the ground
truth game engine state, as in (Chen et al., 2019). A “⋆” indicates that
we used the reference implementation from the original paper, otherwise
we used our implementation. For all the scenes we chose pairs of start-
destination locations and ran 10 trials with randomised initial simulator
state for each pair (same for all methods). Standard errors are in grey
(via bootstrap sampling). The outperforming method is in bold. 59

4.1 We evaluate how well inverse temporal difference (ITD) learning is able to
infer the correct reward function by training an RL agent on the inferred
rewards, and comparing this to alternative imitation learning methods in
three environments. All methods are trained on expert demonstrations. A
“♢” indicates methods that infer an explicit reward function and then use
one of DQN or PPO to train an RL agent, depending on the environment.
A “♣” indicates methods that directly learn a policy from demonstra-
tions. A “†” indicates methods that use privileged task id information for
handling multi-task demonstrations. We report mean and standard error

of normalised returns over 3 runs, where higher-is-better and the perfor-
mance is upper bounded by 1.0, reached by the same RL agent, trained
with the ground truth reward function. 81

4.2 We evaluate how well ΨΦ-learning (ΨΦL) is able to transfer to new
tasks in a few-shot fashion. We construct a multi-task variant of the
CoinGrid environment: The ego-agent is provided demonstrations for
either capturing only red coins R or only green coins G. Then it is evaluated
on 4 different tasks: collecting (i) both red and green coins R+G, (ii)
collecting red and avoiding green coins R-G, (iii) avoiding red and collecting
green coins -R+G and (iv) avoiding both red and green coins -R-G. A
“♢” indicates methods that use a single model for all tasks, while “♣”
indicates methods that require one model per task, i.e., they comprise of
4 models. Because it disentangles preferences from task representation,
ΨΦ-learning is able to adapt to reach optimal performance on the new
tasks after a single episode or improve intra-episode from the first episode
after experiencing the first rewards. In contrast, SQIL (Reddy et al., 2019)
takes 100 episodes to adapt. 83

5.1 Pixel-based continuous control experiments. Results for the Dreamer (Hafner
et al., 2019a) agent and IVE variants on a modified version of the Walker
Walk task with varying degrees of reward sparsity controlled by η, where
higher η corresponds to harder exploration. A “♢” indicates methods
that use online-planning for acting. We report mean and standard error
of episodic returns (rounded to the nearest tenth) over 3 runs after 1M
steps. Higher-is-better and the performance is upper bounded by 1000.
The best performing method, per-task, is in bold. 100

5.2 Value-based planning experiments on MinAtar tasks, testing the impact of
planning with the IVE ensembled mean. The original VPN(5) (Oh et al.,
2017) is the same with our µ-IVE(5). Non-ensembled value targets (v̂1θ,
v̂5θ) lead to significant deterioration in final performance. We report mean
and standard error of episodic returns over 3 runs after 2M steps, higher-
is-better. The best performing method, per-task, is in bold. 101

B.1 ΨΦ-learner’s hyperparameters per environment. The tuning was per-
formed on a DQN (Mnih et al., 2013) baseline with population based
training (Jaderberg et al., 2017) using Weights & Biases (Biewald, 2020)
integration with Ray Tune (Liaw et al., 2018). We selected the best hyper-
parameters configuration out of 32 trials per environment and used this
for our ΨΦ-learner. 114

C.1 Results for the Dreamer (Hafner et al., 2019a) agent and IVE variants on a
modified version of the walker task with varying degrees of reward sparsity
controlled by η, where higher η corresponds to harder exploration. A “♢”
indicates methods that use gradient-based trajectory optimisation, while

“♣” indicates methods that use sample-based trajectory optimisation. We
report mean and standard error of episodic returns (rounded to the nearest
tenth) over 3 runs after 1M steps. Higher-is-better and the performance is
upper bounded by 1000. The best performing method, per-task, is in
bold. 132

List of acronyms

ΨΦLΨΦ-learning

a.k.a. also known as

AdaRIP adaptive robust imitative planning

AI artificial intelligence

BC behaviour cloning

CE certainty equivalent

CMP controlled Markov process

CVaR conditional value at risk

DIM deep imitative model

DL deep learning

e.g. exempli gratia (“for the sake of an example”)

EMVE explicit model value ensemble

EU expected utility

EVE explicit value ensemble

GPE generalised policy evaluation

GPI generalised policy improvement

GRU gated recurrent unit

i.e. id est (“it is”)

i.i.d. independent and identically distributed

iff if and only if

IL imitation learning

IRL inverse reinforcement learning

ITD inverse temporal difference

IVE implicit value ensemble

KE knowledge equivalent

KL Kullback–Leibler

LIDAR light detection and ranging

MAP maximum a posteriori

MC Monte Carlo

MDP Markov decision process

ML machine learning

MLE maximum likelihood estimation

MLP multi-layer perceptron

MPC model predictive control

MPV model-predicted value

NN neural network

OOD out-of-training distribution

PID proportional–integral–derivative controller

POMDP partially observed Markov decision process

RIP robust imitative planning

RL reinforcement learning

s.t. such that

SF successor feature

SGD stochastic gradient descent

SL supervised learning

TD temporal difference

w.r.t. with respect to

List of symbols

In §2 we provide details about the nomenclature and notation used throughout this thesis.

Φ cumulants

Ψ successor feature

A action space

B experience

C controlled Markov process

D demonstrations

γ discount factor

M Markov decision process

m∗ “true” model of the environment

p (Markov) transition dynamics

π∗ optimal policy

q action value (function)

r reward distribution (function)

S state space

T Bellman evaluation operator

Θ hypothesis space

θ parameters of learnable function

u utility function

v value (function)

“Real knowledge is to know the extent of one’s ignorance.”

— Confucius (551–479BC)

1
Introduction

Contents

1.1 Thesis statement . 2
1.2 Contributions and outline . 3

Reasoning about and acting under uncertainty is a hallmark of human intelligence. We
arguably make more decisions when facing unknowns than otherwise. But not all the
unknowns are the same. On the one hand, there is risk also known as (a.k.a.) aleatoric
or known uncertainty, which refers to uncertainty in familiar situations, e.g., the flip of
a coin, or the delay in the train schedule. On other other hand, there is ignorance a.k.a.
epistemic or unknown uncertainty, which refers to uncertainty in unfamiliar situations.
Most of the times, we do not know what we are ignorant about until we encounter it
for the first time. For instance, when we read a book and come across a “new” word.

When it comes to artificial decision-makers (i.e., agents) the story is different. First of all,
with the advent of the microprocessor, fast digital computers enabled the development of
artificial agents that operate in either fully-certain (Lindsay et al., 1993; Shortliffe, 1977)
or closed-world uncertain settings (Markowitz, 1952; Smigel, 2022). Over the last few
decades, the progress in such settings has been rapid. Key components to the success have
been planning and learning. Planning refers to the process of thinking about and deciding
on a series of actions for achieving a goal in the future. Research on animal and human
decision-making (James, 1890; Kahneman, 2011) suggests that logical and deliberate deci-
sions are planned, using an explicit or implicit model of the environment (i.e., world model).
Artificial decision-makers that plan with a perfect model of the environment (Samuel,
1959; Silver et al., 2016; Brown and Sandholm, 2019), while impressive, are limited to
problems for which their designer can specify a perfect model (e.g., board/video games).
Learning is the process of gaining knowledge. As long as the learning process does not de-

2 1. Introduction

pend on an omniscient designer/supervisor, learned models hold the promise of expanding
the range of problems that can be addressed with planning, relying only on data (i.e., ex-
perience) and weak inductive biases (Sutton, 1991). However, learned models are gen-
erally imperfect, and naive planning with them could be catastrophic (Zhou et al., 1996).

To unlock the learning and planning to (real) open-world settings, agents should be
equipped with effective mechanisms for reasoning about their ignorance, and for factoring
it into their decisions. Agents should be able to say “I do not know” and act accordingly,
e.g., either taking a safer course of action avoiding to make decisions that would lead
to novel situations or follow an exploratory strategy, aiming to learn about what they do
not know. In other words, we need learning agents that quantify and use their ignorance.

1.1 Thesis statement

We now highlight the central question addressed in this work:

Central Question

How do generally capable bounded artificial agents learn and use models to plan?

We answer this question by advancing the following thesis:

Thesis

By drawing on insights from information theory, decision theoretic planning and
robust control theory, it is possible to design efficient algorithms for learning
useful models for planning that are robust to distribution shifts, enable fast online
adaptation and scale to real-world problems.

To defend this thesis, we introduce five desiderata that articulate which learned models
are useful for planning. At a high level, these desiderata state the following:

Desiderata

Good models are easy to plan with
D1

and enable efficient learning
D2

of high value
D3

,

adaptable
D4

, robust policies
D5

.

1.2. Contributions and outline 3

We present more detail and justification for these desiderata in §2.

1.2 Contributions and outline

The central chapters of this dissertation are based on published papers. More specifi-
cally, §3, §4 and §5 are based on papers published in conference proceedings (Filos et al.,
2020, 2021, 2022). In the rest of the chapters (§2 and §6), the majority of the contributions
are original to this dissertation. The remaining defence of this thesis is organised as follows.

Chapter 2: Background

We start by reviewing decision-making under uncertainty (§2.1), providing formal def-
initions for risk, ignorance and decision-theoretic concepts such as knowledge equiva-
lents (KE). The latter is a key idea that we use in formalising and characterising ignorance-
aware agents. In particular, a KE is the amount of reward/utility an agent would be
willing to trade with its ignorance. For example, an ignorance-averse (resp. -seeking)
agent would accept a reduced (resp. increased) reward in order to avoid (resp. “find”)
ignorance. Moreover, we provide background on supervised learning (§2.2) and, in partic-
ular, scalable ignorance quantification methods for deep neural networks (§2.2.3), which
are the mechanisms we use in the remaining chapters for capturing agents’ ignorance
in scale. Then, we review the reinforcement learning (RL) problem and solution methods
(§2.3). Specifically, we study planning agents (§2.3.3) and highlight the importance of ig-
norance quantification and KEs (§2.3.5) to overcome the phenomenon of overoptimisation
of learned objectives (§2.10), which is the foundation of most failures of planning agents.

These are the main conceptual tools that subsequent chapters of this thesis build upon.
To help the reader and declutter 2, any background concepts and assumptions required
only for a specific chapter are introduced within the corresponding chapter.

Chapter 3: Plan and adapt from expert demonstrations

We study imitation learning (IL) agents that learn from (static) expert demonstrations and
demonstrate that ignorance-unaware agents are susceptible to distribution shifts due to the
overoptimisation phenomenon. Then, we propose a novel planning agent, called robust imi-
tative planning (RIP), and an adaptive, online variant of it, called adaptive robust imitative
planning (AdaRIP), which train an ignorance-aware model and plan against an ignorance-
averse KE, adhering to the principle of “pessimism in the face of ignorance”. The proposed
methods outperform the state-of-the-art methods in both prediction and control tasks in
a simulated autonomous driving environment from high-dimensional LIDAR observations.

4 1. Introduction

This chapter is based on the following publication:

Filos et al. (2020)

Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey
Levine, and Yarin Gal. Can Autonomous Vehicles Identify, Recover From, and
Adapt to Distribution Shifts? In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 3145–3153. PMLR, 2020.

Chapter 4: Plan and adapt from sub-optimal demonstrations

We relax the assumption from the previous chapter of having access to expert demon-
strations and, instead, we study RL agents that learn from sub-optimal demonstrations
in order to bootstrap their trial-and-error learning. To do so, we present two novel al-
gorithms for learning and planning with temporal difference (TD) learning. The first,
inverse temporal difference (ITD) learning, is an offline multi-task inverse reinforcement
learning (IRL) algorithm for discovering salient task-agnostic environment features from
sub-optimal demonstrations without rewards. The second, ΨΦ-learning (ΨΦL), com-
bines ITD learning with RL from online experience. Similar to the previous chapter,
the ΨΦ-learner plans against an ignorance-averse KE to avoid overoptimisation, and we
show that it scales gracefully to large scale IL, IRL, RL and few-shot RL settings.

This chapter is based on the following publication:

Filos et al. (2021)

Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, and Gregory
Farquhar. PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning. In Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 3305–3317. PMLR, 2021.

Chapter 5: Planning with model-value inconsistency

In both previous chapters, in practice, the ignorance quantification mechanism was
implemented with deep ensembles. Despite ensembles’ simplicity, they are not efficient
since N copies of the model have to be trained and queried at test (i.e., acting) time,

https://arxiv.org/abs/2006.14911
https://arxiv.org/abs/2006.14911
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2102.12560

1.2. Contributions and outline 5

increasing the computational cost by a factor N. In this chapter, we present a novel
proxy signal for capturing reinforcement learning (RL) agents’ ignorance, termed model-
value inconsistency or self-inconsistency for short. This signal is calculable by any agent
equipped with a learned (world) model and value function, and it is readily integrable
to planning objectives since it has the same units as the agents’ values. We provide
empirical evidence in both tabular and function approximation settings from pixels that
self-inconsistency is an effective signal to quantify agents’ ignorance, while being simpler
and more computationally efficient than the standard methods from the literature.

This chapter is based on the following publication:

Filos et al. (2022)

Angelos Filos, Eszter Vértes, Zita Marinho, Gregory Farquhar, Diana Borsa, Abram
Friesen, Feryal Behbahani, Tom Schaul, Andre Barreto, and Simon Osindero.
Model-Value Inconsistency as a Signal for Epistemic Uncertainty. In Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 6474–6498. PMLR, 2022.

Chapter 6: Discussion

We conclude with some insights and provide our outlook for future research.

Chapters A-C: Supplementary material

We provide supporting material for main chapters, including details on experimental
setups, implementations, ablation studies, proofs, visualisations and extensions.

https://arxiv.org/abs/2112.04153

6 1. Introduction

“One’s first step in wisdom is to question everything – and one’s
last step is to come to terms with everything.”

— Georg Christoph Lichtenberg (1742–1799)

2
Background & literature review

Contents

2.1 Decision-making under uncertainty . 8
2.1.1 Decision-making under risk . 9
2.1.2 Decision-making under ignorance . 10

2.2 Supervised learning (SL) . 14
2.2.1 Probabilistic inference . 15
2.2.2 Deep learning (DL) . 18
2.2.3 Ignorance-aware deep neural networks 19
2.2.4 Imitation learning (IL) . 21

2.3 Reinforcement learning (RL) . 23
2.3.1 Agent-environment interface & definitions 23
2.3.2 Markov decision process (MDP) solvers 27
2.3.3 Planning . 34
2.3.4 Overoptimising a learned objective . 37
2.3.5 Ignorance-aware RL agents . 39

In this chapter, we provide the preliminary material, i.e., necessary background and litera-
ture to contextualise the contributions of this thesis, and introduce the notation that will
be used throughout the thesis, borrowed from Filos et al. (2020, 2021, 2022). Where nec-
essary, background concepts, related work, and notation required only for a specific chap-
ter are introduced within the corresponding chapter, in a dedicated “background” section.

In §2.1, we introduce decision-making under uncertainty. We define and motivate terms,
such as risk, ignorance, certainty equivalent and knowledge equivalent. In §2.2, we review
supervised learning models and algorithms and, in particular, ensembles of deep neural
networks and how they can be used for ignorance quantification. In §2.3, we present the
reinforcement learning problem, in which a sequential decision-maker (i.e., agent) acts
in an unknown environments, and review solution methods from the literature.

8 2. Background & literature review

Nomenclature. We denote random variables with uppercase letters, e.g., X, Θ, and
their values with lowercase letters, e.g., x, θ. We reserve blackboard bold letters for
sets or continuous spaces, e.g., X, and we use ∆(X) to denote the space of probability
distributions over X. We use superscripts •k to indicate internal steps of the agent’s model,
which have no necessary connection to time steps •t of the environment. We reserve the
Greek letter θ for function parameters from the hypothesis space Θ ⊆ Rn and subscript
it with the function name when necessary, e.g., θf ∈ Θf, θg ∈ Θg for functions f and g,
respectively. We separate the function parameters from other inputs with a semicolon,
e.g., f(x, z; θf) ≡ fθf

. We denote functions of interest (i.e., target functions) with an

asterisk superscript, e.g., f∗, g∗, and our approximation with hat notation, e.g., f̂, ĝ.

2.1 Decision-making under uncertainty

We study a decision-maker (i.e., agent), that issues, for simplicity, a single action A ∼ π

and receives scalar reward R ∼ r(A), where π ∈ ∆(A) is the agent’s policy, A is the action
space, i.e., set of admissible actions, and r : A→ ∆(R) is the (stochastic) reward function.
The agent’s goal is to find a (stochastic) policy π∗ that leads to high rewards.

The agent’s uncertainty stems from (i) the inherent and irreducible stochasticity of the
reward function (i.e., risk), and (ii) the fact that initially the reward function is unknown
to the agent (i.e., ignorance) and can learn about it by taking actions and observing
their consequences. Next, we expand on the distinction of these two types of uncertainty.

Remark 2.1 (types of uncertainty for decision-making): There are two fundamen-
tal types of uncertainty in decision-making: risk and ignoranc (Knight, 1921). Risk,
also known as (a.k.a.) aleatoric or known or closed-world or irreducible uncertainty,
refers to the uncertainty in familiar situations where the exact outcome of an event
is uncertain but probabilities can be computed, as in coin flips or dice. In contrast,
ignorance, a.k.a. epistemic or unknown or open-world or reducible or model uncer-
tainty, applies to unfamiliar situations where the probabilities are unknown or cannot
be determined, e.g., answering whether “Cydophines are also Abordites” without
knowing the meaning of these terms (Gilboa et al., 2009; Grau-Moya et al., 2022).

We can think of an agent as taking an action in two steps: (i) assigning a scalar value
to each action, which incorporates all sources of uncertainty; and (ii) making a decision.

Next, we review decision-making under risk, i.e., we assume that the agent has direct
access to the reward function and has to deal with the fact that rewards are stochastic.

2.1.1 Decision-making under risk 9

2.1.1 Decision-making under risk

For stochastic reward functions, the designer of the agent has to pick a mechanism for
reducing the multiple reward outcomes to a single representative “optimisable” scalar
value, which is also known as (a.k.a.) the certainty equivalent (CE) in the economics
literature (Bernoulli, 1738; Von Neumann and Morgenstern, 1944; Savage, 1954).

Remark 2.2 (certainty equivalent (CE) in layman’s terms): CE is, as the name
suggests, the guaranteed reward that the agent would accept, rather than taking
a chance on a higher, but uncertain, in terms of risk, reward. It is a systematic way
to evaluate risk and convert it into the same unit with rewards.

Formally, one can think of CEs as functions that reduce distributions over rewards into
a single (deterministic) scalar, i.e., mappings of the form ∆(R)→ R. For instance, the ex-
pected value or the standard deviation or the p-percentile mean are valid such mappings.

For the rest of this section, we use the Figure 2.2a to explain and motivate different CEs.

Expected utility. In economics (Rubinstein, 1998) and reinforcement learning (§2.3, Sut-
ton and Barto, 2018), we usually conform with the expected utility (EU) paradigm, in which
an agent assigns CEs equal to the expected reward (Von Neumann and Morgenstern, 1944):

uEU(a) ≜ ER∼r(a)[R]. (2.1)

For instance, in Figure 2.2a, the EU for both actions is equal to 0 and hence the agent
is indifferent between them, despite the fact that the two reward distributions differ in
terms of other statistics, e.g., entropy. Therefore we say that the EU is a risk-neutral CE,
i.e., insensitive to the shape of the distribution over rewards except for the expected value.

Risk-sensitivity. In contrast, other CEs take into account higher-order moments of the
reward distribution, e.g., the mean-variance (utility) CE (Markowitz, 1952):

uMVU[β](a) ≜ ER∼r(a)[R] + βVarR∼r(a)[R], (2.2)

where by varying β ∈ R different risk profiles are induced: for (i) β < 0 we obtain a risk-
averse CE; (ii) β > 0 a risk-seeking CE; and (iii) β = 0 we recover EU, i.e., risk-neutral.
There are other more “extreme” risk-sensitive CEs that are only sensitive to the mini-
mum (i.e., risk-averse) or the maximum (i.e., risk-seeking) admissible value of the reward
distribution (Arrow, 1965; Pratt, 1978; Whittle, 1981; Pichler and Schlotter, 2020):

10 2. Background & literature review

uWCU(a) ≜ min
R∈support(r(a))

R and uBCU(a) ≜ max
R∈support(r(a))

R, (2.3)

where support(pX) denotes the support of the pX distribution, i.e., informally, the values
of x ∈ X for which there is non-zero probability under pX. Intuitively, the uWCU (resp.
uBCU) CE represents the reward distribution with the worst (resp. best) -case outcome.
Therefore, we often refer to this CE as an instance of the principle of “pessimism (resp.
optimism) in the face of risk” (Markowitz, 1952; Arrow, 1965; Pratt, 1978).

For example, in Figure 2.2a, risk-sensitive CEs value the two actions differently. In partic-
ular, risk-averse (resp. risk-seeking) CEs evaluate the LEFT (resp. RIGHT) action higher.

Remark 2.3 (conforming to expected utility (EU) by default): For the rest of this
thesis, unless stated otherwise, we design agents that conform to the expected utility
(EU) paradigm, i.e., a risk-neutral certainty equivalent (CE).

CEs provide a systematic mechanism to evaluate decisions under risk and hence derive
policies for settings with known unknowns. Next, we review decisions under ignorance.

2.1.2 Decision-making under ignorance

If the reward function is (partially) unknown, the agent acts under ignorance. Formally, let
parameters θ∗r from hypothesis space Θr that fully specify the “true” reward function, i.e.,

r(·; θ∗r) ≡ rθ∗
r
≜ r. (2.4)

Figure 2.1: The agent’s
beliefs about the “true”
reward function θ∗r: The
uninformed initial (a.k.a.
prior) belief p(Θr) and the
more concentrated poste-
rior belief p(Θr|D) after ob-
serving reward samples D.

For the purposes of this thesis, the agent’s ignorance about
the reward function is equivalent to uncertainty about θ∗r.
We adopt a probabilistic approach, treating θr ∈ Θr as a
random variable: The agent’s (and its designer’s) initial
belief about the reward function is encoded in the prior
p(Θr), and upon observing N samples (data) from the re-
ward function D ≜ {r(n)|r(n) ∼ rθ∗

r
(·)}Nn=1, it forms a poste-

rior belief p(Θr|D) via probabilistic inference, as depicted
in Figure 2.1.† In the limit of infinite samples, i.e., N→∞,
the posterior distribution concentrates at θ∗r and the agent
“knows” everything about the reward function, or it is not
ignorant. Otherwise, the agent needs to factor its ignorance about the reward function
into its decision-making, extending the framework CEs (see §2.1.1), which we review next.

†We provide a comprehensive review of probabilistic inference methods in §2.2.1 and §2.2.3.

2.1.2 Decision-making under ignorance 11

Knowledge equivalent. Akin to CEs for decision-making under risk in §2.1.1, an agent
integrates its ignorance about the unknown reward function into a single representative
“optimisable” scalar value, which we term knowledge equivalent (KE). In the economics
literature (Knight, 1921; Wald, 1939; Ellsberg, 1961), often, there is no distinction be-
tween CE and KE, instead CE is used to refer to both. In this work, we introduce the
term KE to highlight the difference between decision-making under risk and ignorance.

Remark 2.4 (knowledge equivalent (KE) in layman’s terms): KE is, as the name
suggests, the guaranteed reward that the agent would accept, rather than taking a
chance on a higher, but unknown (i.e., uncertain in terms of ignorance) reward. It is a
systematic way to evaluate ignorance and convert it into the same unit with rewards.

For example, in Figure 2.2b, the agent is presented with two options, where the reward
for the RIGHT action is deterministic but unknown to the agent—it can be any colour
from red (−1), white (0) or green (+1). If the agent is allowed to make repeated deci-
sions, as long as it selects the RIGHT action once, from that point onward it will know
the colour of the marble, i.e., it will eliminate its ignorance about the reward function,
and from its perspective, the reward function will be deterministic† and known. This
is different from the example in Figure 2.2a, in which the agent knows the colours of the
marbles for the RIGHT action and hence the reward function but the draw of the marbles
is stochastic. No matter how many times the agent selects the RIGHT action, the reward
function remains stochastic. This is the main distinction between ignorance (i.e., re-
ducible uncertainty in Figure 2.2b) and risk (i.e., irreducible uncertainty in Figure 2.2a).

Formally, one can think of KEs as functions that reduce the (e.g., posterior) belief over
reward functions parameters into a single reward function, i.e., mappings of the form
∆(Θr)→ θr. For instance, the expected value or the standard deviation are valid such
mappings. In the general case, a KE should be combined with a CE to evaluate a decision
under both ignorance and risk. Next, we review common in the literature KEs and to
keep the presentation general, we denote with the CE for parameters θr with uCE(·; θr).

Model average. A natural candidate for incorporating the agent’s ignorance about the
reward function, captured by the posterior over parameters θr after observing data D,
into its decision-making is to assign KE as the expected value under the model posterior:

uMA(a;D) ≜ Eθr∼p(Θr|D)uCE(a; θr), (2.5)

and we refer to this KE as the model average (Savage, 1954; Barber, 2012). For example,
in Figure 2.2b with a uniform prior/posterior, the uMA for both actions is equal to 0 and
hence the agent is indifferent between them, in spite of the fact that the two reward distri-
butions differ in terms of other statistics, e.g., variance. Therefore we say that the model
average is an ignorance-neutral KE, i.e., insensitive to the shape of the distribution.

†This is not true in general, it happens to be the case for this didactic example.

12 2. Background & literature review

Ignorance-sensitivity. Akin to the CEs in §2.1.1, there are ignorance-sensitive KEs
that incorporate information about higher-order moments of the posterior distribution:

uMVM[ξ](a;D) ≜ Eθr∼p(Θr|D)uCE(a; θr) + ξVarθr∼p(Θr|D)uCE(a; θr). (2.6)

where by varying ξ ∈ R different ignorance profiles are induced: for (i) ξ < 0 we obtain a
ignorance-averse KE; (ii) ξ > 0 a ignorance-seeking KE; and (iii) ξ = 0 we recover model
average, i.e., ignorance-neutral. There are more “extreme” ignorance-sensitive KEs that
are only sensitive to the minimum (i.e., ignorance-averse) or the maximum (i.e., ignorance-
seeking) admissible value of the reward distribution (Wald, 1939; Savage, 1954):

uWCM(a;D) ≜ min
θr∈support(p(Θr|D))

uCE(a; θr) and (2.7a)

uBCM(a;D) ≜ max
θr∈support(p(Θr|D))

uCE(a; θr). (2.7b)

For instance, the evaluation of the two actions in Figure 2.2b according to ignorance-
sensitive KEs is differently. Specifically, ignorance-averse (resp. ignorance-seeking) KEs
evaluate the LEFT (resp. RIGHT) action higher due to its higher (resp. lower) ignorance.

Example 2.1 (selecting boxes with coloured marbles under uncertainty): Consider
an agent that faces the decision-making problems in Figure 2.2, in which it is asked
to choose one of a ∈ {LEFT, RIGHT} boxes. Each box has coloured marbles and the
agent receives a reward corresponding to the colour of a marble drawn randomly
from the chosen box. There are different types of marbles: (i) the white marbles
that equal to 0 reward; (ii) the red marbles that equal to −1 reward; (iii) the green
marbles that equal to +1 reward; and (iv) the blue marbles that have unknown re-
ward and you get to only learn about their reward after selecting them.

In Figure 2.2a, the agent is presented with a decision-making problem under risk. Its
LEFT action returns a guaranteed 0 reward but its RIGHT action has a 50% chance to
return a +1 reward and otherwise −1. The agent is uncertain about the reward of
the RIGHT action but knows exactly the probabilities of each outcome. The agent’s
decision depends on the certainty equivalent (CE, see §2.1.1) its designer selected:

Certainty equivalent (CE) π∗(A = LEFT) π∗(A = RIGHT)

Risk-averse (e.g., uMVU[β<0], uWCU) 1.0 0.0

Risk-neutral (e.g., uEU) 0.5 0.5

Risk-seeking (e.g., uMVU[β>0], uBCU) 0.0 1.0

In Figure 2.2b, the agent is presented with a decision-making problem under igno-
rance. Its RIGHT action has uncertain rewards—both the outcomes and their prob-

2.1.2 Decision-making under ignorance 13

abilities are unknown. By selecting the RIGHT action, the agent can learn about the
colour of the marble and reduce its uncertainty (i.e., ignorance). The agent’s de-
signer can choose a knowledge equivalent (KE, see §2.1.2) that balances the trade-off
between ignorance and guaranteed reward, modulating the agent’s decision:

Knowledge equivalent (KE) π∗(A = LEFT) π∗(A = RIGHT)

Ignorance-averse (e.g., uMVM[ξ<0], uWCM) 1.0 0.0

Ignorance-neutral (e.g., uMA) 0.5 0.5

Ignorance-seeking (e.g., uMVM[ξ>0], uBCM) 0.0 1.0

In Figure 2.2c, the agent is presented with a decision-making problem under both
risk and ignorance. The LEFT action has risk and the RIGHT action has ignorance.
To make decisions, the agent has to be provided with both a CE and a KE, which im-
ply a trade-off between risk and ignorance. For example, according to a risk-neutral
CE and an ignorance-seeking KE, the agent prefers the RIGHT action.

a = LEFT

0 0

-1 0 +1
r(A = LEFT)

a = RIGHT

− +

-1 0 +1
r(A = RIGHT)

(a) Risk-sensitivity

a = LEFT

0 0

-1 0 +1
r(A = LEFT)

a = RIGHT

?

-1 0 +1
r(A = RIGHT)

(b) Ignorance-sensitivity

a = LEFT

− +

-1 0 +1
r(A = LEFT)

a = RIGHT

?

-1 0 +1
r(A = RIGHT)

(c) Uncertainty-sensitivity

Figure 2.2: Single-step decision-making under uncertainty. The agent selects one of
the {LEFT, RIGHT} boxes and receives a reward that depends on the colour of the ran-
domly drawn marbles: 0 reward for white marbles; +1 for green; and −1 for red. (a)
The RIGHT action has an irreducibly uncertain reward (risk). (b) The reward func-
tion for the RIGHT action is unknown (ignorance) and deterministic. (c) A decision-
making problem that involves both risk (a = LEFT) and ignorance (a = RIGHT).

So far we have presented how to design agents that made decisions under uncertainty,
assuming access to learned reward functions (i.e., models) and posterior distributions
over their parameters. Next, we review algorithms for learning such models from data.

14 2. Background & literature review

2.2 Supervised learning (SL)

We present machine learning (ML) algorithms for learning from data an unknown target
function f∗ : X→ Y, where X, Y are the “input” and “output” spaces, e.g., identifying
the unknown reward function of §2.1.2 from action→reward data. We cast the problem
of learning from data as a parameter inference problem for a function approximator:

F ≜ {f : X× Θf → Y}, (2.8)

where Θf is the hypothesis space of “learnable” parameters, i.e., finding the “best”:

θ∗f ∈ Θf, such that (s.t.) fθ∗
f
≈ f∗. (2.9)

Data. In supervised learning (SL), we assume access to input-output pair samples from f∗:

Dtrain ≜
{(

x(n), y(n)
)}N

n=1
, s.t. y(n) = f∗(x(n)) and

{
x(n)

}N

n=1
∼ PX, (2.10)

where PX ∈ ∆(X) is the unknown (to the agent) input data (generating) distribution.
The objective of a supervised learner is to identify the target function f∗, or, in practice,
find the “best” parameters θ∗f of Eqn. (2.9), e.g., using probabilistic inference methods.

Generalisation. The selection of θ∗f is made based on some data Dtrain, and the
expectation is that it generalises, i.e., it performs sufficiently well on some unseen data
Dtest. It can be shown that without any further assumptions on Dtest, the problem of
generalisation is ill-posed and uninteresting (see “no free lunch theorem”, Wolpert and
Macready, 1997). In statistical learning theory, if both Dtrain and Dtest are independent

and identically distributed (i.i.d.) samples from a sample space D, i.e., Dtrain,Dtest i.i.d.
∼ D,

then, under non-trivial assumptions, the performance on the data Dtest of a model trained
on Dtrain can be lower-bounded (Vapnik and Chervonenkis, 1971; Baum and Haussler,
1988; McAllester, 1998; Vapnik, 1999; Bousquet and Elisseeff, 2002), providing us with
provable guarantees about the performance of a learned model. Nonetheless, the looseness
of this bound and the fact that, in practice, the i.i.d. assumption is most of the times
violated, make these results over-pessimistic and hence impractical.

··· · ·· ·
OOD

in-distribution

Figure 2.3: Data distribution.

Informally, we refer to Dtest and other data from
D for which the i.i.d. assumption holds as the in-
distribution data, and, otherwise, we call it out-
of-training distribution (OOD) data, as illus-
trated in Figure 2.3. When using a ML model
with OOD data, we say that it experiences a dis-
tribution shift, and, in this regime, the level of its
performance cannot be predicted or guaranteed.

2.2.1 Probabilistic inference 15

2.2.1 Probabilistic inference

In this section, we treat θf as the parameters of a conditional density model:

p(Y = y|x; θf): likelihood of y given x, under model parameters θf, (2.11)

and the data is assumed to be conditionally independent given model parameters:

p(Dtrain|θf) =

N∏
n=1

p(Y = y(n)|x(n); θf). (2.12)

For instance, (i) if Y is a continuous space, p(Y = y|x; θf) is the density of a conditional
multivariate normal distribution, and θf is the mean vector and the covariance matrix, and
(ii) if Y is a discrete set, p(Y = y|x; θf) is the probability of a conditional categorical distri-
bution, and θf is the vector of event probabilities. Throughout this section, we use the re-
ward modelling Example 2.2 to compare different SL methods, in which p(Y = y|x; θf) is
a normal distribution with mean θf and fixed (not learned) standard deviation parameter.

Bayesian inference. We treat the model parameters as random variables, i.e., we place
a prior distribution p(Θf) over possible model parameters θf ∈ Θf, and after observing
the data Dtrain, we update it to the posterior distribution according to the Bayes’ rule:

p(θf|D
train)

posterior

≜

likelihood

p(Dtrain|θf)

prior

p(Θf)

p(Dtrain)
evidence

. (2.13)

Remark 2.5 (posterior predictive and types of uncertainty for supervised learning
(SL)): The posterior distribution over model parameters allows us to make predictions,
using the posterior predictive distribution, a.k.a. Bayesian model average, given by:

p(Y = y|x;Dtrain) =

∫
Θf

p(Y = y|x; θf)p(Θf = θf|D
train)dθf, (2.14)

which intuitively answers to the question: ‘What is the posterior distribution of the
model output y ∈ Y for an input x, after observing data Dtrain?’. The posterior pre-
dictive captures both sources of uncertainty: (i) the inherent and irreducible stochas-
ticity of the data, i.e., aleatoric uncertainty a.k.a. risk ; and (ii) the reducible (in the
limit of infinite data) learner’s ignorance about the correct model, a.k.a. epistemic
uncertainty or model uncertainty or ambiguity (Remark 2.1; Knight, 1921).

16 2. Background & literature review

In Figure 2.4c, we visualise the mean (in solid purple) and the 3-standard deviations inter-
val of the posterior predictive distribution, assuming a multivariate diagonal normal prior
distribution with zero mean and standard deviation one, i.e., p(Θr) = N(θr; 0, I). The
choice of prior is intended to match the likelihood (i.e., conjugate prior, Bishop, 2006) so
that the posterior distribution can be computed analytically. As expected, the mean tracks
the observed data and the standard deviation is low close to the data and high in OOD.

Next, we present point estimation inference methods, which select a single parameter
configuration θf and hence are, generally, more scalable than exact Bayesian inference.

Maximum likelihood estimation. A popular point estimation method is maximum
likelihood estimation (MLE), i.e., to maximise the (log-)likelihood of the observed data:

θMLE ≜ arg max
θf∈Θf

log p(Dtrain|θf) (2.15a)

(2.12)
= arg max

θf∈Θf

log

(
N∏

n=1

p(y(n)|x(n); θf)

)
(2.15b)

= arg max
θf∈Θf

N∑
n=1

log p(y(n)|x(n); θf). (2.15c)

For the reward modelling Example 2.2, there is a closed-form for the MLE solution to the
Eqn. (2.15), visualised in Figure 2.4b. Although the MLE solution perfectly fits the train-
ing data, i.e., in-sample, it does not generalise since it is not tracking the target function
f∗ out-of-sample. We refer to this phenomenon as overfitting (Vapnik and Chervonenkis,
1971; Bishop, 2006) and, next, we discuss a regularisation technique to alleviate it.

Maximum a posteriori inference. To constraint, i.e., regularise, the impact of the
likelihood and avoid overfitting, the maximum a posteriori (MAP) inference advocates for
selecting the mode of the posterior distribution over model parameters (see Eqn. (2.13)):

θMAP ≜ arg max
θf∈Θf

log p(θf|D
train) (2.16a)

(2.13)
= arg max

θf∈Θf

log

(
p(Dtrain|θf)p(Θf)

p(Dtrain)

)
(2.16b)

= arg max
θf∈Θf

 log p(Dtrain|θf)
MLE

+ log p(Θf)
prior/

regulariser

−�������
log p(Dtrain)

∂/∂θf=0

 (2.16c)

(2.15)
= arg max

θf∈Θf

(
N∑

n=1

log p(y(n)|x(n); θf) + log p(Θf)

)
, (2.16d)

2.2.1 Probabilistic inference 17

where the evidence term log p(Dtrain) is cancelled in Eqn. (2.16c) since it is not a func-
tion of the optimising variable θf. The MAP objective ends up being in Eqn. (2.16d)
similar to the MLE solution, with an extra prior/regularisation term.

For instance, in the reward modelling Example 2.2, we assume a multivariate diagonal nor-
mal prior distribution with zero mean and standard deviation one, i.e., p(Θr) = N(θr; 0, I).
In Figure 2.4b, we note that the (regularised) MAP solution generalises better than the
MLE solution, especially between the observed data points. Nonetheless, both solutions
perform poorly outside the range of the observed data.

Remark 2.6 (point estimates and ignorance quantification): The MLE and MAP
estimators, and more broadly, point estimation methods lack a mechanism for quan-
tifying ignorance (MacKay, 1992; Bishop, 2006; Barber, 2012; Gal, 2016).

Example 2.2 (supervised learning (SL) for reward modelling with polynomial func-
tions): Consider the SL problem with scalar input-output pairs, i.e., reward mod-
elling from scalar continuous action to stochastic reward, illustrated in Figure 2.4a:

r(n) = r∗(a(n)) + ϵ(n), (2.17a)

where r∗(a) = sin(πa) + 0.2cos(4πa) − 0.3a and ϵ(n) ∼ N(0, 0.1). (2.17b)

We choose 20-th degree polynomials as the class of functions to parametrise the
mean of a normal distribution with mean θr, and fixed standard deviation:

p(R = r|a; θr) = N(r; rpoly-20(a; θr), σ
2
fixed), (2.18a)

where rpoly-20(a; θr) ≜ θr,0 + θr,1a+ θr,2a
2 + · · ·+ θr,20a

20. (2.18b)

A risk-neutral, e.g., expected utility (EU), agent (see 2.1.1 and Remark 2.3), needs
to only model the expected reward. An ignorance-neutral, e.g., model average, agent
(see §2.1.2), can make a decision by maximising either the point estimates in Fig-
ure 2.4b or the mean of the posterior in Figure 2.4c. In contrast, an ignorance-
sensitive agent cannot do without quantifying its ignorance about the reward func-
tion and, as of Remark 2.6, cannot rely on point estimators.

data r* MLE MAP Bayesian

a

r

(a) Noisy data

a

r

(b) Point estimates

a

r

(c) Ignorance-aware model

Figure 2.4: Supervised learning (SL) with probabilistic inference for the coefficients
of 20-th degree polynomial functions. (a) The input-output pairs, with additive
i.i.d. normal noise. (b) The maximum likelihood estimation (MLE) and maximum a

18 2. Background & literature review

posteriori (MAP) point estimates. (c) The mean and 3 standard deviations interval
of the posterior predictive distribution, using exact Bayesian inference.

So far, we operate under the assumption that a class of parametric functions (see Eqn. (2.8))
is given to us and we reviewed methods to learning their parameters that best explained the
data. Next, we focus on a flexible, high-capacity class of functions, called neural networks.

2.2.2 Deep learning (DL)

We refer to SL with deep neural networks (NNs, McCulloch and Pitts, 1943; Rosen-
blatt, 1958; Fukushima, 1980; Hochreiter and Schmidhuber, 1997; LeCun et al., 1998;
Krizhevsky et al., 2012; He et al., 2016b) as deep learning (DL). A L-layers deep NN
comprises of the composition of L interleaving linear and non-linear activation layers:

fNN(x; θf) = WLν (· · ·ν (W2ν (W1x+ b1) + b2) · · ·) + bL, (2.19)

where ν is a parameter-free non-linear function, e.g., the sigmoid function, and the “learn-
able” model parameters are the weights and biases, i.e., θf ≜ [W1, b1, · · · ,WL, bL].

Gradient-based optimisation. In contrast to the simple linear models in Example 2.2,
there are no closed-form solutions for the MLE and MAP estimates in Eqns. (2.15, 2.16)
for a NN. Instead, we can use first-order gradient-based optimisation (Boyd et al., 2004),
such as stochastic gradient descent (SGD), to efficiently optimise them:

θ′f ← θf − η∇θf
L(θf,D) = θf − η

∂L

∂f

∂f

∂θf
, (2.20)

where the loss function L(θf,D) is the negative log-likelihood (resp. with a regulariser)
for the MLE (resp. MAP) estimate,† and η ∈ R+ is the learning rate. For a non-trivial hy-
pothesis space Θf, the loss function L is not convex w.r.t. the function parameters θf and
therefore the iterative parameter updates in Eqn. (2.20) converge‡ to a local minimum.
However, it has been conjectured (Choromanska et al., 2015) and shown empirically that
SGD converge to high quality local minima and therefore Eqn. (2.20) is a sensible and
scalable learning algorithm. Next, we see how to efficiently calculate the ∂f/∂θf term.

Back-propagation. Reverse-mode automatic differentiation techniques (Rall, 1981)
and, in particular, the back-propagation algorithm (Rumelhart et al., 1986) can be used
for efficiently calculating the gradient of the NN output w.r.t. its parameters, i.e.,

∂f

∂θf
≜

∂ŷ

∂θf

∣∣∣∣
ŷ=f(x;θf)

. (2.21)

†Generalises to other functions too, as long as the partial derivative ∂L/∂f exists and it’s finite.
‡Convergence is guaranteed for some principled adaptive learning rates (Robbins and Monro, 1951).

2.2.3 Ignorance-aware deep neural networks 19

Next, we review methods for ignorance quantification that scale to deep NNs.

2.2.3 Ignorance-aware deep neural networks

Exact Bayesian inference for the parameters of a non-trivial NNs is intractable. Approxi-
mate Bayesian inference algorithms have been used instead, such as the Laplace’s method
(MacKay, 1992; Tishby et al., 1989; Rue et al., 2009; Ritter et al., 2018), variational in-
ference (Hinton and Van Camp, 1993; Graves, 2011; Blundell et al., 2015; Kingma et al.,
2015; Gal and Ghahramani, 2016; Louizos and Welling, 2017; Farquhar et al., 2020) and
expectation propagation (Minka, 2001; Hernández-Lobato and Adams, 2015).

Modern NNs have up to hundreds of billions of parameters, making the exact computation
of the posterior predictive distribution for even a single input in Eqn. (2.14) practically
impossible. In practice, we approximate the calculation of the integral with Monte Carlo
(MC) sampling from the (approximate) posterior distribution over the model parameters:

p(Y = y|x;Dtrain) ≈ 1

K

K∑
k=1

p(Y = y|x; θ̂f,k), s.t.
{
θ̂f,k

}K

k=1
∼ p(Θf|D

train). (2.22)

Certain methods aim to directly draw approximate samples from the posterior over model
parameters θ̂f,1, θ̂f,2, . . . , θ̂f,K (Chen et al., 2014), embracing the fact that an accurate
representation of the posterior over model parameters p(Θf|D

train) is intractable both
to obtain and to use, e.g., for computing the posterior predictive or other statistics.

Ensemble methods. One simple and scalable family of methods in DL for approximate
sampling from the posterior are the (deep) ensembles (Lakshminarayanan et al., 2017; Os-
band et al., 2016). A deep ensemble comprises of K components (a.k.a. members), which
are K NNs with separate parameters, trained either independently or jointly (Lakshmi-
narayanan et al., 2017; Pearce et al., 2020). Independent training is a lot more scalable
since it can be perfectly parallelised in hardware but it is less principled (Wenzel et al.,
2020). It has been argued that the diversity of independently trained ensemble members
is important for approximating the posterior predictive distribution (Lakshminarayanan
et al., 2017; Osband et al., 2018; Fort et al., 2019; Wilson and Izmailov, 2020) and, to
that end, various noise injections techniques per member have been used to achieve it.

Remark 2.7 (general implementation strategy for deep ensembles): In this thesis,
unless explicitly stated otherwise, we independently train deep ensembles members
with MAP inference by: (i) randomising the parameters initialisation per member
(Lakshminarayanan et al., 2017; Izmailov et al., 2021); (ii) using a different subset
of data via bootstrapping for each member (Tibshirani, 1996; Osband et al., 2016);
and (iii) adding structured noise (e.g., randomised priors, Osband et al., 2018).

20 2. Background & literature review

Intuitively, we expect the ensemble members’ predictions to “agree” on the in-distribution
data. Moreover, due to the aforementioned noise injection mechanisms, the ensemble
members are expected to generalise differently in OOD regimes and, therefore, their predic-
tions to “disagree” there. Figure 2.5 confirms this intuition in a simple regression problem.

Empirical validation. Deep ensembles are the default approach to ignorance quan-
tification in DL not only due to their simplicity in their implementation but also due
to their empirically validated superior performance, compared to the “more principled”
approximate inference approaches (Ovadia et al., 2019). Despite being “less Bayesian”,
deep ensembles are shown to lead to better (i) ignorance quantification (Wilson and Iz-
mailov, 2020); and (ii) predictive performance with orders of magnitude improved sample
and hence computational efficiency (Ashukha et al., 2020).

Remark 2.8 (deep ensembles for ignorance quantification by default): For the
remaining of this thesis, we are using deep ensembles as the main mechanism for
ignorance quantification for NNs, with the training strategy outlined in Remark 2.7.
The key contributions lie in to how these ignorance estimates are used for sequential
decision-making via planning and not how they are obtained. We expect our con-
tributions to be compatible with future improvements in ignorance quantification.

Example 2.3 (deep ensembles for ignorance-aware reward modelling): Consider
the problem setting of Example 2.2, i.e., SL with the data in Figure 2.5a but in-
stead of polynomial functions, we use 2-layer multi-layer perceptrons (MLPs) with
1024 hidden units as the function class to approximate f∗ (see Eqn. (2.17)). We fol-
low the training strategy in Remark 2.7 for an ensemble of K = 32 members with
the AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017) optimiser with
a linearly scheduled learning rate that decays from 4e-4 to 0 after 10, 000 steps.

data r* ensemble members ensemble average ensemble min ensemble max

a

r

(a) Noisy data

a

r

(b) At initialisation

a

r

(c) After training

a

r

(d) KEs

Figure 2.5: Ensemble of deep neural networks (NNs) for ignorance quantification.
(a) The action→reward pairs, with additive i.i.d. normal noise. (b) The diversely
initialised ensemble members. (c) The ensemble members’ predictions at the end of
training, where the members “agree” in-distribution, i.e., close to the data, and dis-
agree in OOD inputs and hence forming useful ignorance estimates. (d) Knowledge
equivalents (KEs) for ignorance-aware agents (see §2.1.2) using ensemble statistics.
Note that an ignorance-seeking (resp. -averse) agent that maximises the ensemble
max (resp. min) would pick an action far from (resp. close to) the observed data.

2.2.4 Imitation learning (IL) 21

Next, we present a sequential decision-making setting, in which the agent has access to
expert demonstrations and hence it can use SL methods to solve it.

2.2.4 Imitation learning (IL)

In many real-world settings, such as autonomous driving, expert demonstrations are avail-
able (Sun et al., 2020) or can be efficiently gathered (Behbahani et al., 2019). Imitation
learning (IL, Widrow, 1964; Pomerleau, 1989; Atkeson and Schaal, 1997) is a framework
for learning sequential decision-making policies when expert demonstrations are available:

D ≜
{(

s(n), a(n)
)}N

n=1
, s.t. a(n) ∼ π∗(·|s(n)). (2.23)

The goal in IL is to match the expert policy that generated the high-quality demon-
strations (Pomerleau, 1991; Heskes, 1998; Ng et al., 2000; Abbeel and Ng, 2004). The
dominant approaches to IL are (i) behaviour cloning (BC, Widrow, 1964; Pomerleau,
1989); and (ii) inverse reinforcement learning (IRL, Kalman, 1964; Russell, 1998).

Behaviour cloning. The agent tries to identify, i.e., behaviourally clone (BC), the expert
policy mapping† π∗ : S→ A from the expert demonstrations D, e.g., using SL methods.
Both point estimation methods, such as MLE and MAP inference (Widrow, 1964; Pomer-
leau, 1989; Heskes, 1998; Billard et al., 2008; Argall et al., 2009; Codevilla et al., 2018) and
(approximate) Bayesian inference (Menda et al., 2019) have been used for BC with NNs.

Example 2.4 (behaviour cloning (BC) an expert gridworld policy): Consider a 7×7
gridworld environment and access to expert demonstrations, depicted in Figure 2.6a.
The goal of the agent is to navigate to the (green) goal cell without falling into
the (red) trap cell. When the goal (respectively, trap) cell is reached, the episode
terminates, and the agent receives +1 (respectively −1) reward and the environment
resets, randomly placing the agent in an empty cell.

The agent learns to act from the expert demonstrations via BC. It approximates the
optimal policy with a 2-layers deep multi-layer perceptron (MLP, Rosenblatt, 1958;
Ivakhnenko and Lapa, 1966) neural network, trained with SGD (see (2.20)) and on
the negative log-likelihood (see Eqn. (2.15)), illustrated in Figure 2.6b.

Figure 2.6c shows that the BC agent effectively approximates the expert policy,
performing on par with it and clearly overperforming a baseline random agent.

†In §2.3, we provide a formalisation of policies as mappings from a state to distribution over actions.

22 2. Background & literature review

(a) Expert demonstrations

0 2500 5000
learning steps

0.5

1.0

1.5

2.0

Ne
ga

tiv
e

lo
g-

lik
el

ih
od

d
(b) Loss minimisation

Expert Random BC
Agent

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

(c) Performance

Figure 2.6: Learning to act from expert demonstrations in a gridworld via be-
haviour cloning (BC) with a multi-layer perceptron (MLP) neural network policy.
(a) Example trajectories of the expert agent ■, which navigates to the goal ■ while
avoiding the trap ■. (b) The loss function (see Eqn. (2.15)) decreases as more gra-
dient update (i.e., learning) steps (see 2.20) are performed. (c) The performance,
quantified as the episode return (see Eqn. (2.30)), of the BC agent, compared to
the expert agent and an agent that selects actions uniformly randomly.

Inverse reinforcement learning. The agent tries to identify the reward function r∗ :
S×A→ ∆(R) from the expert demonstrations D, using function approximation techniques.
Ng et al. (1999) showed that there are infinitely many reward functions, under which the
demonstrator policy is optimal, and since, numerous constraints have been proposed to
select among the available options (Abbeel and Ng, 2004; Ratliff et al., 2006; Ramachan-
dran and Amir, 2007; Neu and Szepesvári, 2009; Ziebart et al., 2008; Ni et al., 2021).

While the agent’s main objective is not to learn an accurate model of the “true” reward
function but to find a policy for taking good actions in the environment, there may be good
reasons to do it as a means to an end. In particular, learning a reward model should be
preferred over learning the direct mapping of states to actions via BC when (i) the number
of available expert demonstrations is small to accurately (globally) identify the optimal
policy; and (ii) the reward function is easier to identify from the demonstrations (Ng et al.,
2000; Finn et al., 2016). In §4, we also show how to use IRL for making effective use of
sub-optimal demonstrations in multi-task settings, which would not be possible with BC.

Next, we review the sequential decision-making problem setting and solution methods
that make use of the reward function for learning policies.

2.3. Reinforcement learning (RL) 23

2.3 Reinforcement learning (RL)

In this section, we review data-driven sequential decision-making under uncertainty, ex-
tending the formulations from §2.1 and making use of the learning algorithms from §2.2.

2.3.1 Agent-environment interface & definitions

We study a decision-maker (i.e., agent), acting in a stochastic environment by sequentially
choosing actions over a sequence of discrete time steps, indexed by t, to maximise an
objective (i.e., utility). The agent exchanges symbols with the environment. At any dis-
crete time step t ⩾ 0, the agent receives the (fully observable) environment state st ∈ S,
takes an action at ∈ A and this interaction repeats, giving rise to a state-action sequence:

S0A0S1A1S2A2 · · ·SτAτ · · · ≜ (St, At)t⩾0. (2.24)

We consider† states that satisfy the Markov property, as in Example 2.5:

p(St+1|(Sτ, Aτ)τ⩽t) = p(St+1|St, At), ∀τ. (2.25)

We can model the agent-environment interaction as a controlled Markov process (CMP):

C ≜ ⟨S,A, p, ρ0⟩ , (2.26)

where S and A represent the state and action spaces, respectively, ρ0 the initial state distri-
bution and p : S×A→ ∆(S) is the transition dynamics, i.e., S0 ∼ ρ0 and St+1 ∼ p(·|st, at).

Example 2.5 (controlled Markov process (CMP) 1D gridworld): For instance,
consider a navigation agent in an 1D gridworld environment, as depicted in Figure 2.7.

s0 = 1

a0 = LEFT a0 = RIGHT

s1 = 0 s1 = 1

p = 0.1

s1 = 2

Figure 2.7: An agent navigates in
an 1D gridworld environment, mod-
elled as a controlled Markov pro-
cess (CMP). The white nodes rep-
resent the environment states and
the black nodes the agent actions.

The state of the environment is the posi-
tion of the agent in the gridworld, i.e., s ∈
{0, 1, 2, 3} = S and the available actions are
a ∈ {LEFT, RIGHT} = A. The RIGHT action de-
terministically moves the agent one cell to the
right, while the LEFT action with probability 0.9

moves the agent one cell to the left and leave its
position unchanged otherwise. Therefore, the
environment states satisfy the Markov property
Eqn. (2.25) and hence the agent-environment
interaction can be modelled as a CMP.

†We focus on the simpler fully observable setting to most clearly communicate the contributions of
this work. In later chapters, we show empirically that the results extend to the k-order MDPs (Puterman,
2014) and partially observed Markov decision processes (POMDPs, Kaelbling et al., 1998) models.

24 2. Background & literature review

Task. In this work, we study goal-directed agents, which take actions in an environment to
solve tasks. A task is formulated as a Markov decision process (MDP, Bellman, 1957b):

M ≜ ⟨S,A, p, ρ0, r⟩
(2.26)
= ⟨C, r⟩ ≜ Cr, (2.27)

extending the CMP model with the (stochastic) reward function r : S× A→ ∆(R).

Remark 2.9 (multi-task setting with shared dynamics): The CMP-based formu-
lation of a task, as in Eqn. (2.27), is useful in multi-task settings, in which an agent
has to solve multiple MDPs with the same state, action spaces and state-transition
dynamics but different reward functions (§4; Dayan, 1993; Filos et al., 2021).

Extending the decision-making setup of §2.1 to multiple steps, at any discrete time step t ⩾
0, the agent is in state st ∈ S, takes an action at ∈ A, according to a policy π : S→ ∆(A),
then receives reward Rt+1 ∼ r(·|st, at) ∈ R and transitions to the state St+1 ∼ p(·|st, at).
For brevity, the “true” environment (world) model is denoted by m∗ ≜ (p, r) and we write:

St+1, Rt+1 ∼ m∗(·, ·|st, at). (2.28)

When it is clear from the context, we omit the subscript time index notation and use
instead the “prime” notation for successive time steps, i.e., S ′, R ′ ∼ m∗(·, ·|s, a).

Objective. The agent’s goal is to find a policy π∗ that maximises the value† of states:

π∗ ∈ arg max
π

E[vπ(S)|S ∼ ρ0]

≜J(π)

(2.29a)

s.t. vπ(s) ≜ E[
∑
t⩾0

γtRt+1|S0 = s,At ∼ π(·|St), (St+1, Rt+1) ∼ m∗(·, ·|St, At)], (2.29b)

= E[
∑
t⩾0

γtRt+1|S0 = s;π,m∗] (2.29c)

= Eπ,m∗ [
∑
t⩾0

γtRt+1|S0 = s], (2.29d)

where γ ∈ [0, 1) is the discount factor and Eπ,m∗ [·] denotes the expectation over the tra-
jectories induced by running policy π in the environment m∗, starting from state s. We
refer to the argument of the expectation in Eqn. (2.29d) as the return random variable:

Gπ
s ≜

∑
t⩾0

γtRt+1|S0 = s;π,m∗ ⇒ vπ(s)
(2.29d)
= Eπ,m∗ [Gπ

s |S0 = s]. (2.30)

†We focus on the standard, infinite horizon, geometric discounting return setting. The results should
be extendable to other settings, e.g., finite horizon undiscounted return. This results in an expected
utility (EU) agent, i.e., which maximises a risk-neutral certainty equivalent (CE), following Remark 2.3.

2.3.1 Agent-environment interface & definitions 25

Discounting. The discount factor determines the present value of future rewards: imme-
diate rewards are valued more than future rewards. A reward received k time steps in the
future is worth γk−1(< 1) times what it would be worth if it was received immediately.

Example 2.6 (Markov decision process (MDP) 1D gridworld): Consider the
sequential decision-making problem setting in Figure 2.8.

s0 = 1

a0 = RIGHT

s1=2
r1=0

a1 = RIGHT

s2=3
r2=1

Figure 2.8: An agent navigates in an
1D gridworld environment to reach a
rewarding goal, modelled as a Markov
decision process (MDP). The white
nodes represent the environment
states, the black nodes the agent ac-
tions and the grey square nodes the
terminal environment states, i.e., goal.

The agent navigates the modified 1D grid-
world environment of Figure 2.7, in which
it receives a positive reward +1 when it en-
ters the most right cell (goal), i.e., s = 3,
and reward 0 otherwise. The interaction
(episode) terminates upon reaching the goal
state. Therefore, the dynamics of the en-
vironment are unchanged from the CMP
in Figure 2.7, the reward function satisfies
Eqn. (2.28) and hence the agent-environment
interaction can be modelled as a MDP. For
any (non-zero) discount factor, i.e., γ ∈ (0, 1),
it can be shown that the optimal policy is:

π∗(A = RIGHT|s) = 1, ∀s ∈ S,

and its (optimal) value, i.e., vπ
∗
≜ v∗, is:

v∗(s = 0) = γ2

v∗(s = 1) = γ

v∗(s = 2) = 1

v∗(s = 3) = 0.

Intuitively, the value function vπ(s) answers to the question: ‘How good is it to be in
state s when following policy π?’. It allows us to compare states, e.g., state sA should be
preferred over sB under policy π if and only if (iff) vπ(sA) > vπ(sB), but it does not offer
us a way to search over actions and, by extension, improved policies to solve Eqn. (2.29a).

Action values. Consider a policy that first selects action a and thereafter follows pol-
icy π, which we call one-step lookahead policy w.r.t. π. Its value function, for all actions
a ∈ A, is termed the action-value function (a.k.a. Q-function), and it is given by:

qπ(s, a) ≜ Eπ,m∗ [
∑
t⩾0

γtRt+1|S0 = s,A0 = a], ∀s ∈ S, a ∈ A (2.31a)

26 2. Background & literature review

= Eπ,m∗ [R1 + γ
∑
t⩾1

γtRt+1|S0 = s,A0 = a] (2.31b)

= Eπ,m∗ [R1 + γvπ(S1)|S0 = s,A0 = a], (2.31c)

where Eqn. (2.31c) connects the action value qπ to the (state) value vπ, and vice versa:

vπ(s)
(2.29d)

≜ Eπ,m∗ [
∑
t⩾0

γtRt+1|S0 = s] (2.32a)

= Eπ,m∗ [R1 + γvπ(S1)|S0 = s] (2.32b)

(2.31)
= EA∼π(·|s)[q

π(s,A)]. (2.32c)

Intuitively, the action-value function qπ(s, a) answers to the question: ‘How good is it to
take action a in state s and then follow policy π?’, enabling us to locally search for the
value maximising actions and, by extension, policies, towards solving Eqn. (2.29a). We
can show (Bellman, 1957a) that the greedy w.r.t. the action-value function policy πgreedy

is guaranteed to be a strict improvement over the policy π (unless already optimal) i.e.,

πgreedy(A = a|s) ≜

{
1, if a = arg maxb∈A qπ(s, b)

0, otherwise
, † (2.33a)

then vπ(s) ⩽ vπgreedy(s), ∀s ∈ S. (2.33b)

We can generalised the concept of action-value functions to multi-step lookahead policies:

qπ(s, a0:k−1) ≜ Eπ,m∗ [
∑
t⩾0

γtRt+1|S0 = s,A0:k−1 = a0:k−1], (2.34)

where a0:k−1 ≜ (a0, a1, · · · , ak−1) is a k-step (open-loop) action sequence (i.e., plan).
Note that for k = 1 in Eqn. (2.34) we obtain the action-value function of Eqn. (2.31).

The reinforcement learning problem. The environment model m∗ is unknown to the
agent and therefore it cannot directly compute π∗ from Eqn. (2.29). Instead, the agent
has access to samples of agent-environment interactions, generated by some agent(s),
including itself, which it leverages for finding the optimal policy. This setting, i.e., se-
quential decision-making in an unknown environment, is termed the reinforcement learn-
ing (RL, Sutton and Barto, 2018) problem and it is the main focus of this thesis.

Data. The agent learns from state-reward-action sequences, a.k.a. experience or rollouts :

B ≜

{(
s
(n)
t , r

(n)
t , a

(n)
t

)
t⩾0

}N

n=1

, s.t.

{
s
(n)
t+1, r

(n)
t+1 ∼ m∗(·, ·|s(n)

t , a
(n)
t)

a
(n)
t ∼ πβ(·|s

(n)
t)

, (2.35)

†Without loss of generality, we assume that the action-value per-state has a unique maximiser,
e.g., we can enforce it by deterministically breaking ties (Sutton and Barto, 2018).

2.3.2 Markov decision process (MDP) solvers 27

where, crucially, in contrast to the IL setting in Eqn. (2.23), the actions {a
(n)
t }t,n can be

sampled from any (possibly sub-optimal) behavioural policy πβ. We refer to rollouts, and
as a consequence to algorithms, as on-policy when the behavioural policy is the agent’s
policy, i.e., πβ = πagent, and as off-policy, otherwise (Sutton and Barto, 2018).

Next, we present data-driven solution methods for the RL problem for learning policies, val-
ues or/and world models, making use of the supervised learning (SL) algorithms from §2.2.

2.3.2 Markov decision process (MDP) solvers

For many real-world problems, such as balloons navigation (Bellemare et al., 2020) and
the natural sciences (Degrave et al., 2022), expert demonstrations (see Eqn. (2.23)) may
be expensive or impossible to gather. Instead, the specification of a reward function can
be (more) tractable. Reinforcement learning (RL, Sutton and Barto, 2018) is a framework
for learning sequential decision-making policies when a reward function can be specified
(or efficiently learned) and the problem of interest can be formulated as a MDP.

Remark 2.10 (intuition behind most reinforcement learning (RL) algorithms): A
RL algorithm makes use of the reward information in rollouts (see Eqn. (2.35)) to de-
cide which actions to do more in the future (positively reinforced) and which ones to
do less (negatively reinforced). In particular, it reinforces actions that maximise the
expected future (discounted) cumulative rewards, i.e., the agent’s value (see 2.29).

Targets. In §2.2, we presented how to learn the parameters of an unknown function
with SL, provided (possibly) noisy input-output sampled pairs from it. SL cannot be
used out of the box to solve the RL problem since we do not have access to samples from,
e.g., the optimal (action-)value function or the optimal policy. Instead, we need to form
estimates of these quantities from the provided or generated rollouts. We refer to these
estimates as value and policy targets and use the hat notation, i.e., vπ ≈ v̂ and π ′ ≈ π̂.

Function approximation for reinforcement learning. For most practical settings,
the state and action spaces are continuous or so large that it is not possible to represent
learned policies or values without parametric (i.e., fixed size) models. To that end, in
this thesis, we use parametric function approximators (see §2.2). In particular, we denote
with the explicit parameter subscript or semicolon notation the parametric approxima-
tions, e.g., vθv

is a deep neural network (NN) with parameters θv trained to approximate
the (empirical) mapping s 7→ v̂ and, as a consequence, vθv

≈ v̂ ≈ vπ. We refer to this
setting as deep RL to highlight the use of deep NNs with RL agents (Mnih et al., 2013).

28 2. Background & literature review

Value learning

Let parametric (action-)value function approximator vθv
: S→ R (resp. qθq

: S×A→ R).
As a reminder, see Eqns. (2.30, 2.29d), the value of a policy π is the expected discounted
cumulative rewards, a.k.a. return. In the most interesting settings, the exact computa-
tion of this expectation is intractable without access to the environment model m∗ or for
large state and/or action spaces. To that end, different estimators are used instead, to

obtain value targets for states from B, i.e.,(s
(n)
t , v̂

(n)
t)t,n ∼ value estimator(B). Hence

the value function parameters θv are trained to fit the (estimated) value targets, i.e.,

Lv(θv) ≜
∑
t,n

∥vθv
(s

(n)
t) − v̂

(n)
t ∥, (2.36)

which can be minimised via gradient-based optimisation, in the case of deep RL:

θ ′
v ← θv − η∇θv

Lv(θv), (2.37)

where η ∈ R+ is the learning rate (a.k.a. step size).

Next, we present common in the literature value estimation methods.

Monte Carlo value estimation. A simple method for estimating expected values is
Monte Carlo (MC) integration. In particular, let rollouts B, generating by π and m∗, then:

v̂MC(s) ≜
∑
n,t

1[s(n)
t = s]g

(n)
t∑

n,t 1[s(n)
t = s]

≈ vπ(s), s.t. g
(n)
t

(2.30)
=

∑
τ⩾t

γτ−tr
(n)
t , (2.38)

where 1[x = y] is the indicator function, i.e., equal to 1 when x = y and 0 otherwise.
The MC value estimator can be used for estimating the action value qπ(s, a), too, by

replacing in Eqn. (2.38) the indicator function ������
1[s(n)

t = s] with 1[s(n)
t = s, a

(n)
t = a]:

q̂MC(s, a) ≜
∑
n,t

1[s(n)
t = s, a

(n)
t = a]g

(n)
t∑

n,t 1[s(n)
t = s, a

(n)
t = a]

≈ qπ(s, a). (2.39)

Despite its simplicity, MC value estimation has some major weaknesses (Sutton and
Barto, 2018): it is (i) a high variance estimator; (ii) sample inefficient since all the sam-
ples for which the indicator function is 0 do not contribute, either directly or indirectly,
to the value estimation; and (iii) incompatible with the infinite horizon discounted setting

since it is not possible to compute the return g
(n)
t in Eqn. (2.38) when τ→∞ and there-

fore a truncated return is used in practice, i.e., τ < T for some finite T , introducing bias.†

†However, for τ− t >> 1/(1−γ), this bias can be trivial but it is often not in practice (Sutton, 1988).

2.3.2 Markov decision process (MDP) solvers 29

Temporal difference learning. A class of value learning algorithms that trade-off
variance and sample inefficiency with bias is called temporal difference (TD) learning
methods (Sutton, 1988). TD learning exploit the recursive nature of the value function:

vπ(s)
(2.29d)

≜ Eπ,m∗ [
∑
t⩾0

γtRt+1|S0 = s] (2.40a)

= Eπ,m∗ [R1 + γ
∑
t⩾1

γtRt+1

vπ(S1)

|S0 = s] (2.40b)

= Eπ,m∗ [R1 + γvπ(S1)|S0 = s] (2.40c)

qπ(s, a)
(2.31c)

≜ Eπ,m∗ [R1 + γqπ(S1, A1)|S0 = s,A0 = a], (2.40d)

and employ the stochastic approximation method (Robbins and Monro, 1951) to esti-
mate the expectations in Eqn. (2.40) with a single sampled transition (s, a, r ′, s ′, a ′):†

v̂TD(0)(s) ≜ r ′ + γv̂TD(0)(s
′) (2.41a)

q̂TD(0)(s, a) ≜ r ′ + γq̂TD(0)(s
′, a ′). (2.41b)

We note that the estimate of the value at the state s depends on the value of the subse-
quent state s ′, a method that we refer to as bootstrapping (Sutton and Barto, 2018). Due
to the bootstrapping, the TD estimators are biased. We can design TD estimators with
lower bias, in the expense of variance, by noting that the value functions in Eqn. (2.40)
can be re-written as a sum of k reward terms and a γk-discounted value (bootstrap) term:

vπ(s)
(2.29d)

≜ Eπ,m∗ [

k∑
t⩾0

(γtRt+1) + γkvπ(Sk)|S0 = s]. (2.42)

If we apply the stochastic approximation method of Robbins and Monro (1951) on
Eqn. (2.42), we obtain the lower bias (higher variance) k-step TD estimator, given by:

v̂k-step TD(s) ≜
k∑

t⩾0

(γtrt+1) + γkv̂k-step TD(sk). (2.43)

Note that as k→∞, we recover the (single sample) MC value estimator. Therefore, we
can treat k as a hyperparameter for trading off bias and variance: for k = 1 the bias
is the highest and for k → ∞ the variance is the highest. Sutton (1988) showed that
convex combinations of TD learning estimators with different values of k are valid value
estimators and the most commonly used one is TD(λ), i.e., a geometric weighted mixture

†In Eqn. (2.41b), we present the SARSA (Sutton, 1988) algorithm and therefore need the sampled
action a ′. There are others algorithms, e.g., expected SARSA (Van Seijen et al., 2009; Sutton and Barto,
2018), for which we only need (s, a, r ′, s ′) sampled transitions for forming TD(0) action-value targets.

30 2. Background & literature review

of different k-step TD learning targets with hyperparameter λ ∈ [0, 1].

Q-learning. Similar to TD learning algorithms for estimating the value of a policy, Q-
learning (Watkins, 1989) can be used for computing the optimal action-value function
q∗ (the value function of the optimal policy π∗) from a sampled transition (s, a, r, s ′):

q̂QL(s, a) ≜ r+ γmax
a ′∈A

q̂QL(s
′, a ′). (2.44)

Eqn. (2.29d) suggest that the reason for computing the value function of a policy is to help
us find an improved policy. Next, we present MDP solvers that act on this observation.

Policy learning

Let parametric policy πθπ
: S→ ∆(A), we review algorithms that update the policy pa-

rameters θπ in order to maximise the regularised policy optimisation objective, given by:

J(π) = ES∼ρ0
[vπ(S)] +Ω(π), (2.45)

a modification to the original RL objective in Eqn. (2.29) that includes the regulariser
Ω : Π → R, e.g., action entropy (Williams and Peng, 1991) for discouraging the col-
lapse to a deterministic policy and hence hurt exploration or a trust region (Schulman
et al., 2015a; Abdolmaleki et al., 2018) for avoiding overoptimisation. Sutton et al. (1999)
showed that the policy gradient of the objective in Eqn. (2.45) w.r.t. θπ is given by:

∂J

∂θπ

∣∣∣∣
S0=s

≜ δPG(s) = Eπθπ
[(qπθπ (s, a) − b(s))∇θπ

logπθπ
(a|s)] +∇θπ

Ω(πθπ
), (2.46)

where b : S→ R is any (state-only) baseline function. The policy gradient† in Eqn. (2.46)
can be used to improve the policy via gradient-based optimisation using rollouts B:

θ ′
π ← θπ + η

∑
n,t

δPG(s
(n)
t), (2.47)

where η ∈ R+ is the learning rate (a.k.a. step size). There is adaptive step size scheme,
for which J(θ ′

π) ⩾ J(θπ) (Boyd et al., 2004). The computation of the policy gradient in
Eqn. (2.46) requires an estimate of the action-value. Different estimators for the action-
value function give rise to different policy gradient methods and we review a few next.

†Vieillard et al. (2020) refers to policy gradient methods as indirect policy optimisation methods
since they do not directly fit the policy parameters towards an improved policy target, instead they
follow the gradient that indirectly leads to an improvement. However, Ghosh et al. (2020) showed that
there is an equivalent formulation of policy gradient methods as implicit direct methods. Therefore,
in this thesis, we do not make any distinction between direct and indirect methods.

2.3.2 Markov decision process (MDP) solvers 31

REINFORCE. The first policy gradient algorithm is Williams’s (1992) REINFORCE,
given by (i) a zero baseline function; and (ii) single sample MC action-value estimation:

δREINFORCE(s
(n)
t) = g

(n)
t ∇θπ

logπθπ
(a

(n)
t |s

(n)
t). (2.48)

Non-trivial baseline functions, e.g., a learned state-value function as well as more advanced
control variates (Foerster et al., 2018; Weber et al., 2019), can be used to reduce the vari-
ance of the REINFORCE gradient estimator (Weaver and Tao, 2001). Williams and Peng
(1991); Mnih et al. (2016) also used an action entropy regulariser, i.e., Ω(π) = Eπ[logπ].

Actor-critic. A learned action-value function (approximator), i.e., qθq
≈ qπθπ , a.k.a.

critic, in this context, can be used along with the learned policy πθπ
, a.k.a. actor, in this

context, to estimate the policy gradient in Eqn. (2.46). Sutton et al. (1999); Sutton and
Barto (2018) termed this class of methods as actor-critic methods, which have been some
of the most successful deep RL algorithms (Mnih et al., 2016; Schulman et al., 2015a,
2017; Espeholt et al., 2018; Abdolmaleki et al., 2018; Haarnoja et al., 2018; Hessel et al.,
2021). In practice, most of these algorithms estimate and use the advantage, given by:

Aπ(s, a) ≜ qπ(s, a) − vπ(s)
(2.32c)
= qπ(s, a) − EA∼π(·|s)[q

π(s,A)], (2.49)

in place of the action-value minus the baseline term in Eqn. (2.46), i.e.,

δAC(s
(n)
t) = Â(s

(n)
t , a

(n)
t)∇θπ

logπθπ
(a

(n)
t |s

(n)
t), (2.50)

where the advantage estimate Â is usually derived from a parametric (action-)value func-
tion approximator, e.g., using generalised advantage estimation (GAE, Schulman et al.,
2015b; Kimura et al., 1998; Wawrzyński, 2009) — TD(λ) estimation for advantages.

So far the MDP solvers we have reviewed leverage the (real) rollouts B to learn directly
value functions or policies or both. There are methods that also use model-generated
rollouts for solving the MDP. Next we present algorithms for learning world models.

Model learning

Let learned (a.k.a. world) model mθm
: S×A→ (∆(S), ∆(R)), with learnable parameters

θm using rollouts B to approximate the “true” environment model m∗ from Eqn. (2.28).
Learned models can be useful to RL agents in various ways, such as: (i) action selec-
tion via planning (Richalet et al., 1978; Hafner et al., 2019b); (ii) representation learn-
ing (Schmidhuber, 1990; Jaderberg et al., 2016; Lee et al., 2019a; Guez et al., 2020; Hes-
sel et al., 2021); (iii) planning for policy optimisation or value learning (Werbos, 1987;
Sutton, 1991; Hafner et al., 2019b; Byravan et al., 2020); or (iv) a combination of all of
them (Schrittwieser et al., 2020). In §5, we propose a novel use case for learned world

32 2. Background & literature review

s

hθh

z

(a) Representation

z mθm

a

r ′

z ′

(b) Dynamics

z

fθf

s

(c) Reconstruction

z

fθf

y

(d) Partial

Figure 2.9: Latent world model sub-neural networks (NNs). (a) The representation
network that embeds the observed environment state to a latent state (a.k.a. embed-
ding). (b) The action-conditioned latent dynamics network. (c) The reconstruction
network that decodes a latent state to an environment state. (d) The partial model’s
prediction network that predicts a partial view of the environment state, such as an
estimate of the state value function or the optimal policy, from the latent state.

models, i.e., an ignorance quantification method for value functions, which relies on a
single point estimate of a world model and a value function (Filos et al., 2022).

Reconstruction models. A popular, in the literature, class of model learning algo-
rithms, rely on generative modelling (a.k.a. reconstruction) of observed states and rewards
(Richalet et al., 1978; Sutton, 1991; Kumar and Varaiya, 2015; Sutton and Barto, 2018),
originally rooted in system identification for optimal control (Bertsekas, 2012; Zhou et al.,
1996). Given rollouts (s, a, r ′, s ′) ∼ B, the world model parameters θm are trained with
SL algorithms, e.g., MLE or MAP, to approximate the empirical mapping (s, a) 7→ (s ′, r ′).

Latent variable models, e.g., action-conditioned hidden Markov models (Watter et al.,
2015; Buesing et al., 2018; Hafner et al., 2019b), have been used to scale reconstruction-
based methods to high-dimensional environments, e.g., with pixel observations. In par-
ticular, the underlying modelling assumption is that the state space S is compressible
to a latent state space Z, which also satisfies the Markov property in Eqn. (2.25). Using
NNs, a (latent) world model is comprised of three sub-networks, illustrated in Figure 2.9:
(i) the representation network that compresses environment states down to latent states
(a.k.a. embeddings), i.e., hθh

: S→ Z; (ii) the reconstruction network, which maps the
latent states to environment states, i.e., fθf

: Z→ S; and (iii) the latent dynamics net-
work, i.e., mθm

: Z× A→ (∆(Z), ∆(R)) or more explicitly pθm
: Z× A→ ∆(Z) and rθm

:
Z× A→ ∆(R), where (pθm

, rθm
) = mθm

. The hθh
and fθf

networks can also be stochas-
tic, e.g., trained with variational inference (Watter et al., 2015; Hafner et al., 2019b).

To train the sub-networks we minimise the following loss w.r.t. the model parameters:

Lrec-WM(θh, θm, θf) ≜ Ls-rec(θh, θf) + Lz-dynamics(θm) + Lr-dynamics(θh, θm), (2.51)

where the constituent losses are given by:

2.3.2 Markov decision process (MDP) solvers 33

Ls-rec(θh, θf) ≜ ∥fθf
(hθh

(s)) − s∥ (2.52a)

Lz-dynamics(θm) ≜ − log pθm
(SG[hθh

(s ′)]| SG[hθh
(s)], a) (2.52b)

Lr-dynamics(θh, θm) ≜ − log rθm
(r ′|hθh

(s), a), (2.52c)

where SG[·] denotes the “stop-gradient” operation, indicating that we treat its arguments
as constants when computing derivatives. It is important to stop the gradients w.r.t.
the representation network in Lz-dynamics, detaching the representation learning from the
latent dynamics learning problems (Ha and Schmidhuber, 2018; Hafner et al., 2019a), in
order to avoid interference between the two losses. E.g., a trivial latent state transition
model hθh

(s) = 0, ∀s ∈ S minimises the Lz-dynamics but in expense of hurting Ls-rec.

Despite their simplicity, in practice, reconstruction-based world models are shown to in-
terfere with the policy and value learning, i.e., lacking a mechanism to prioritise modelling
aspects of the state space and dynamics that impact the most for sequential decision-
making (Sutton, 1995; Farahmand et al., 2017; Lambert et al., 2020; Grimm et al., 2020).

Partial models. An alternative to reconstruction-based world models, are partial (world)
models, i.e., models which instead of reconstructing the full state, they reconstruct some
function (i.e., partial view) of the state, such as estimates of the state-value function or the
optimal policy (Sutton, 1995; Oh et al., 2017; Farquhar et al., 2017; Farahmand et al., 2017;
Amos et al., 2018; Gregor et al., 2019; Schrittwieser et al., 2020; Hessel et al., 2021). Fol-
lowing Rezende et al.’s (2020) notation, we write yt for the partial view of the state st and,
instead of the reconstruction loss, the prediction network, see Figure 2.9d, is trained with:

Lpartial(θf, θh) ≜ ∥fθf
(hθh

(st)) − yt∥. (2.53)

Note that for yt = st we recover the reconstruction world model loss Lrec as a special case.

Multi-step models. So far we have focused on training one-step world models since, in
theory, they are sufficient for planning (§2.3.3; Sutton, 1995; Sutton and Barto, 2018).
However, in practice, we usually unroll the learned models for more than one steps, which
leads to compounding model errors and hence poor performance (Sun et al., 2018). To that
end, Amos et al. (2018); Luo et al. (2018); Guo et al. (2018); Gregor et al. (2019); Asadi
et al. (2019); Schrittwieser et al. (2020); Hessel et al. (2021) train world models to make
multi-step (open-loop) action-conditioned predictions, e.g., for some positive integer K:

LK-partial(θh, θm, θf) ≜
K∑

k=0

∥fθf
(zkt) − yt+k∥, (2.54)

where (zkt , r
k
t) ∼ mθm

(·, ·|zk−1
t , at+k−1), z

0
t = zt = hθh

(st) and zkt indicate the latent
state reached after unrolling the model for k-step starting from latent state zt and taking

34 2. Background & literature review

actions (at, at+1, . . . , at+k−1) ≜ at:t+k−1. Note that since LK-partial is a function of all
the sub-network parameters, i.e., (θh, θm, θf), we can train a world model by just minimis-
ing LK-partial (and Lr-dynamics), e.g., eliminating the latent state dynamics loss Lz-dynamics.

Example 2.7 (MuZero model learning): The MuZero (Schrittwieser et al., 2020)
world model is a multi-step partial model, which uses estimates of the state-value func-
tion and optimal policy as the state’s partial view, i.e., yt = (π̂t, v̂t), trained with:

LMuZero(θh, θm, θf) ≜
K∑

k=0

(lkv + lkπ + lkr), (2.55)

where lkv ≜ ∥vθf
(zkt) − v̂t+k∥, lkπ ≜ ∥πθf

(zkt) − π̂t+k∥ and lkr ≜ ∥rθm
(zkt) − rt+k∥.

2.3.3 Planning

Provided a (world) model of the environment, the agent can make counterfactual predic-
tions and plans for either action selection (planning for behaviour/acting, Richalet et al.,
1978) or policy/value learning (planning for learning, Sutton and Barto, 2018; Hamrick
et al., 2020). Intuitively, we refer to planning as any computational process that refines
policy and/or value estimates† (v̂, π̂) using a (learned) model of the environment m̂, i.e.,

planning(v̂, π̂; m̂) 7→ (v̄, π̄), s.t.

{
∥v̄− vπ∥ ⩽ ∥v̂− vπ∥ (a)

vπ̄ ⪰ vπ̂ (b)
. (2.56)

We should interpret Eqn. (2.56) as a desideratum rather than a constraint since the valid-
ity of the inequalities highly depends on the quality of the model m̂. We expect that a plan-
ning algorithm, if given the “true” environment model m∗, it should satisfy Eqn. (2.56).

On the one hand, when we plan for behaviour (Richalet et al., 1978), we act according to
the refined policy π̄, computed just for the state of interest s. The better the world model
and the greater the compute budget, we can render significant improvement over the
“baseline” policy π̂ (Silver et al., 2016; Brown and Sandholm, 2019; Lerer et al., 2020).

On the other hand, when we plan for learning (Werbos, 1987; Sutton, 1991), we compute
the refined predictions (v̄, π̄) for replayed states from the rollouts B and distil the improved
via planning estimates to the parametric function approximators, e.g., by minimising:

L(v,π)-distillation(θv, θπ) ≜ Est∼B[∥v̄t − vθv
(st)∥+ KL[π̄t∥πθπ

(·|st)]], (2.57)

where KL[·∥·] denotes the Kullback–Leibler (KL, Kullback and Leibler, 1951) divergence.
It is also common for RL agents to plan for both behaviour and learning (Schrittwieser

†A similar formulation can be made using action value estimates q̂, as in (Sutton, 1991).

2.3.3 Planning 35

et al., 2020). Next, we review planning algorithms that are used later in this thesis.

Dynamic programming. Bellman (1957b) exploited the recursive nature of the value
and action-value functions (see Eqns. (2.40, 2.42)) and showed that the computation of
the value of a policy (a.k.a. policy evaluation) and can be concisely formulated using Bell-
man evaluation operators. In particular, the one-step Bellman evaluation operator, ap-
plied on a state-(to-scalar) function v ∈ V ≜ {f : S→ R} is formally defined, next.

Definition 2.1 (Bellman evaluation operator): Given the “true” environment
model m∗ and a policy π, the one-step Bellman evaluation operator T π : V→ V is
induced, and its application on a state-function v ∈ V, for all s ∈ S, is given by:

T πv(s) ≜ Eπ,m∗ [R1 + γv(S1)|S0 = s] . (2.58)

The Bellman operator, T π, can be self-cascaded, i.e., the k-times repeated application
of the one-step Bellman operator gives rise to the k-step Bellman operator, i.e.,

(T π)kv ≜ T π · · ·T π

k-times
v. (2.59)

The Bellman evaluation operator, T π, is a contraction mapping (Bellman, 1957b; Bert-
sekas, 2012; Puterman, 2014), and its fixed point is the value of the policy π, i.e.,

lim
n→∞(T π)nv = vπ, ∀v ∈ V. (2.60)

Therefore, the Bellman evaluation operators satisfy the desideratum (a) in Eqn. (2.56)
and hence give rise to planning algorithms that, given m∗, improve the value estimates.
Similarly we define Bellman optimality operators for the optimal value function.

Definition 2.2 (Bellman optimality operator): Given the “true” environment
model m∗, the one-step Bellman optimality operator T ∗ : V→ V is induced, and its
application on a state-function v ∈ V, for all s ∈ S, is given by:

T ∗v(s) ≜ max
a∈A

Em∗ [R0 + γv(S1)|S0 = s,A0 = a] . (2.61)

The Bellman optimality operator, T ∗, is also a contraction mapping (Bellman, 1957b;
Bertsekas, 2012; Puterman, 2014), and its fixed point is the optimal value function, i.e.,

lim
n→∞(T ∗)nv = v∗, ∀v ∈ V. (2.62)

Model-induced Bellman operators. A model m̂ and policy π induce a Bellman evalua-
tion (resp. optimality) operator T π

m̂ (resp.T ∗
m̂) with a fixed point vπm̂ (resp. v∗m̂).

36 2. Background & literature review

Definition 2.3 (model-induced Bellman evaluation operator): Given world model
m̂ and a policy π, the one-step Bellman evaluation operator T π

m̂ : V→ V is induced,
and its application on a state-function v ∈ V, for all s ∈ S, is given by:

T π
m̂v(s) ≜ Eπ,m̂ [R1 + γv(S1)|S0 = s] . (2.63)

Definition 2.4 (model-induced Bellman optimality operator): Given world model
m̂, the one-step Bellman optimality operator T ∗

m̂ : V → V is induced, and its
application on a state-function v ∈ V, for all s ∈ S, is given by:

T ∗
m̂v(s) ≜ max

a∈A
Em̂ [R1 + γv(S1)|S0 = s,A0 = a] . (2.64)

Similar to Eqn. (2.59), a k-step model-induced Bellman operator is given by:

(T π
m̂)kv = T π

m̂ · · ·T
π
m̂

k-times

v. (2.65)

In §5, we use the model-induced Bellman operator to construct multiple value estimates
from a point estimate of a learned world model, which in turn use to quantify ignorance.

Despite their simplicity and theoretical guarantees, for most problems of interest, it is
impractical to apply exactly Bellman operators since they involve the calculation of com-
putationally intractable expectations. Instead, sampling-based approximations are used,
which are reminiscent of temporal difference (TD) value estimators, introduced in §2.3.2,
applied on model-generated rollouts (Sutton, 1991; Heess et al., 2015; Feinberg et al.,
2018; Hafner et al., 2019b; Byravan et al., 2020). For instance, the single-sample, k-step
model-based value estimation of the policy π, with prior value estimator v̂, is given by:

q̂k(s, a) =

k−1∑
i=0

(γiri+1) + γkv̂(sk), (2.66)

where s0 = s, the model samples (si+1, ri+1) ∼ m̂(·, ·|si, ai) and actions ai ∼ π(·|si).

Open-loop lookahead planning. We can form model-based estimates of the value
of the k-step lookahead policy, denotes as q̂(s, a0:k−1) and defined in Eqn. (2.34), by re-
placing the policy-sampled actions in Eqn. (2.66) with the open-loop plan a0:k−1. Then
the agent selects the plan that maximises the model-based action-value estimate, i.e.,

â ≜ arg max
a∈Ak

q̂(s,a), (2.67)

In the case of deep RL with continuous actions, we can use gradient-based optimisation
to solve the problem in Eqn. (2.67), a method that is termed planning with value gradi-

2.3.4 Overoptimising a learned objective 37

ents (Heess et al., 2015). With discrete actions, biased gradient estimators (Hafner et al.,
2020) or zero-order optimisation methods (Hafner et al., 2019b) can be used.

Model predictive control. In open-loop lookahead planning for behaviour, it is common
that the agent executes only the first action â1 from â to the environment, observes the
new environment state and reward and re-plans. This iterative process is also known as
receding horizon planning and model predictive control (MPC, Richalet et al., 1978).

2.3.4 Overoptimising a learned objective

A recurring theme in a number of sequential-decision making settings and methods, have
been the requirement to optimise some quantity that is the output of a learned model. A
few examples are: (i) in behaviour cloning (BC, see §2.2.4), the agent selects the action
that maximises the likelihood under a learned approximation of the expert policy; (ii) in
Q-learning (see §2.3.2), the agent selects the action that maximises its learned action-
value function approximation; (iii) in actor-critic methods (see §2.3.2), the agent updates
its policy in such a way that it maximises its learned action-value (or advantage) function;
and (iv) in planning with a learned model (see §2.3.3), the agent both selects actions and
updates its policy based on rollouts that are purely generated from a learned model.

Naively treating these settings as regular optimisation problems and employing power-
ful solvers to the learned objectives,† can eventually damage the true objectives, a phe-
nomenon that we refer to as overoptimisation (Gao et al., 2023). Overoptimisation can be
seen as a special case of Goodhart’s Law‡ (Hoskin, 1996) or specification gaming (Krakovna
et al., 2020). In the context of deep learning (DL), overoptimisation is popularised in the
field of adversarial robustness (Chakraborty et al., 2018), in which it can be shown that by
taking a regular pre-trained neural network (NN) and freezing its learned parameters, we
can find, via gradient-descent or even zero-order optimisers, perturbations to the inputs
that while qualitatively§ trivial, they cause the model to generate arbitrarily bad predic-
tions. In model-based RL, it is often the case that naively planning with a learned model
leads to overoptimisation due to compounding model errors that lead to degenerate per-
formance, despite the learned objective being successfully optimised (Janner et al., 2019).

A commonly proposed solution in the literature to the problem of overoptimisation of
a learned objective is ignorance-aware optimisation (Deisenroth et al., 2014; Stadie et al.,
2015; Rajeswaran et al., 2016; Pathak et al., 2017; Kahn et al., 2017; Chua et al., 2018;
Kenton et al., 2019; Gleave and Irving, 2022). In particular, these methods modify the op-
timisation objective, factoring in ignorance estimates, e.g., avoid optimisation close to re-
gions with high ignorance. The concept of knowledge equivalent (KE) from economics that

†A quantity that is derived from a learned model and is used as an optimisation target.
‡“When a measure becomes a target, it ceases to be a good measure.”
§Most of the times there is a human-in-the-loop evaluation/verification for this.

38 2. Background & literature review

we introduce in §2.1.2 (see Remark 2.4) formalises this class of methods, and it will be our
main approach for tackling overoptimisation of learned objectives in this thesis.

Example 2.8 (overoptimising a learned ignorance-aware reward model): We re-
visit the results of the Example 2.3. In particular, we study if optimising against the
learned reward model(s) leads to overoptimisation and then how ignorance quantifica-
tion and different KEs impact on the optimality gap and hallucination gap. The opti-
mality gap is defined as the difference in “true” reward of the optimal action (which is
unknown to the agent) and the action the agent selects according to its learned model,
i.e., regret to the optimal policy. The hallucination gap is defined as the difference be-
tween the agent’s belief about the reward of the selected action and its “true” reward.

As a reminder, we train a deep ensemble of reward models, {rθk
: A → R}32k=1, ac-

cording to the training strategy in Remark 2.7 on the finite aciont→reward pairs, de-
picted in Figure 2.5a. The per-ensemble member predictions and the corresponding
KEs (e.g., ensemble average, minimum and maximum) are illustrated in Figure 2.5d.

The agent selects the action that maximises its reward model (or some KE in the
case of ignorance-aware reward model). In Figure 2.10a (resp. 2.10b), we visualise
in solid blue the optimality gap (resp. hallucination error) of the agent that acts
greedily with respect to each of the K = 32 ensemble members (sorted from low
to high for illustration purposes) and the average (across the ensemble members)
optimality gap (resp. hallucination error) is depicted with the dashed blue line.

We observe that the ignorance-averse and -seeking KEs incur the lowest overoptimisa-
tion/error, even smaller than the average of the ensemble members, and the ignorance-
seeking KE has the highest error. This observation justifies the use of ignorance-
averse KEs for robustness and ignorance-seeking KEs for exploration (Savage, 1954).

ensemble members ensemble average ensemble min ensemble max

0 10 20 30
Ensemble member index

2

4

Op
tim

al
ity

ga
p

(a) Optimality gap

0 10 20 30
Ensemble member index

0

10

20

Ha
llu

cin
at

io
n

er
ro

r

(b) Hallucination error

Figure 2.10: Overoptimisation with an ensemble of reward models. (a) The op-
timality gap, i.e., agent’s regret to the optimal policy. (b) The hallucination error,
i.e., difference between the agent’s reward estimate for its action and its true value.

2.3.5 Ignorance-aware RL agents 39

2.3.5 Ignorance-aware RL agents

In §2.3.4, we noted that numerous RL agents, such as Q-learning (see §2.3.2), actor-critic
methods (see §2.3.2), agents that plan with a learned world model (see §2.3.3), are sus-
ceptible to the overoptimisation phenomenon. To that end, ignorance-aware variants of
these methods can be found in the literature (Dearden et al., 1998, 1999; Osband et al.,
2016; Kurutach et al., 2018), which often comprise of: (i) an ignorance quantification
mechanism; and (ii) a KE as the learning/planning objective.

Ignorance quantification for RL. In tabular settings (i.e., environments with small
and finite number of states and actions), exact Bayesian inference (see §2.2.1) can be used
for quantifying the agents’ ignorance about both their value function (Dearden et al.,
1998) and world model (Dearden et al., 1999). However, in complex RL problems, since
exact Bayesian inference is intractable, proxy signals are often used instead, including
prediction error (Lopes et al., 2012), approximate state visitation counts (Bellemare et al.,
2016) and disagreement of samples from either approximate posterior distributions over
learned parameters (Blundell et al., 2015) or explicit ensembles of value functions (Osband
et al., 2016; Lowrey et al., 2018) or world models (Chua et al., 2018; Sekar et al., 2020).

Ensemble-based RL methods. Deep ensembles (see §2.2.3) of learned (action-)value
functions and world models can be used with an appropriately selected KE for: (i)
stabilising learning (§2.3.4; Faußer and Schwenker, 2015; Anschel et al., 2017; Kalweit
and Boedecker, 2017; Kurutach et al., 2018; Chua et al., 2018; Liang et al., 2022); (ii)
ignorance-driven exploration (§2.1.2, Osband et al., 2016; Shyam et al., 2019; Pathak
et al., 2019; Flennerhag et al., 2020; Ball et al., 2020; Sekar et al., 2020); and (iii) robust-
ness to distribution shifts (Lowrey et al., 2018; Kenton et al., 2019; Agarwal et al., 2020).

Example 2.9 (deep ensemble of action-value functions and knowledge equivalent
(KE) optimisation): Consider an ensembles of K action-value functions {qθq,k

}Kk=1,
trained on some rollouts B with the training protocol in Remark 2.7. Then to sta-
bilise learning, e.g., with Averaged Q-learning, Anschel et al. (2017) uses as value
target the ensemble average (see Eqn. (2.5)) (ignorance-neutral) KE, given by:

q̂Averaged−QL(s, a) ≜ r+ γmaxa ′∈A(
1

K

∑
k

qθq,k
(s ′, a ′)). (2.68)

For exploration (resp. robustness), we select actions by maximising the ignorance-
seeking ensemble max (resp. ignorance-averse ensemble min) KE in Eqn. (2.7b)
(resp. Eqn. (2.7a)), i.e., “optimism (resp. pessimism) in the face of ignorance”:

πexplore(s) = max
a∈A

max
k

qθq,k
(s, a) (resp. πsafe(s) = max

a∈A
min
k

qθq,k
(s, a)). (2.69)

40 2. Background & literature review

“It does not do to leave a live dragon out of your calculations, if
you live near one.”

— John Ronald Reuel Tolkien (1892–1973)

3
Plan and adapt

from expert demonstrations

Contents

3.1 Background & problem setting . 43
3.2 Methods . 47

3.2.1 Robust imitative planning (RIP) . 47
3.2.2 Adaptive robust imitative planning (AdaRIP) 51

3.3 Experiments . 52
3.3.1 Detecting distribution shifts . 56
3.3.2 Recovering from distribution shifts . 57
3.3.3 Adapting to distribution shifts . 58

3.4 Related work . 59
3.5 Conclusion & discussion . 61

Out-of-training distribution (OOD) scenarios are a common challenge for learning agents,
which usually leads to arbitrary deductions and poorly informed decisions due to their
failure to generalise (Sugiyama and Kawanabe, 2012; Amodei et al., 2016; Snoek et al.,
2019). In §2.2, we defined OOD data as samples for which the independent and identically
distributed (i.i.d.) assumption with respect to (w.r.t.) the training distribution does not
hold, and we illustrated an example in Figure 2.3. In the context of imitation learning (IL,
see §2.2.4), which is the focus of this chapter, and sequential decision-making, more
broadly, there are two main reasons for which agents encounter OOD states, i.e., they
undergo a distribution shift, visualised in Figure 3.1: (i) the agents are deployed in states
that are far from the training distribution, as shown in Figure 3.1a; or (ii) the agents are
deployed in in-distribution states but small deviations from the demonstrated expert be-

∗This chapter is based on the (Filos et al., 2020) publication.

42 3. Plan and adapt from expert demonstrations

in-distribution OOD test distribution & trajectory

(a) Domain shift (b) Covariate shift

Figure 3.1: Sequential decision-making and out-of-training distribution (OOD) settings.
The agent is trained on the in-distribution states and deployed on the test states, from
which it follows a trajectory in OOD states. (a) The agent is deployed in novel/OOD sce-
narios, i.e., it undergoes a domain shift. (b) The agent is deployed in in-distribution ac-
tions but its model imperfections lead to compounding errors that finally push it in OOD
states, i.e., it undergoes a covariate shift. We refer to both settings as distribution shift.

haviour, due to modelling errors, compound and drift the agents to OOD states, in which
the agents make uninformed decisions that keep pushing them to OOD states, leading
to a vicious circle (a.k.a. “avalanche” phenomenon or covariate shift) (Ross et al., 2011),
depicted in Figure 3.1b. Therefore, IL agents, unless they have been trained with expert
demonstrations that exhaustively cover nearly all the state-action space, they should
be designed with the prospect of encountering distribution shifts upon deployment.

In principle, detection of and adaptation to OOD situations can mitigate their adverse
effects. In this chapter, we highlight the limitations of current state-of-the-art density
estimation approaches to imitation learning (IL) and we present a novel ignorance-
aware algorithm for robust planning from expert demonstrations, called robust imitative
planning (RIP). Our method relies on distinctly modelling the agent’s ignorance, and the
inherent randomness of the expert demonstrations, i.e., risk, as defined in Remark 2.1.
Then the agent uses its ignorance quantification mechanism to detect potential distribution
shifts and recover from some of them by penalising decisions with high ignorance,
i.e., optimising a ignorance-averse knowledge equivalent (KE), as presented in §2.1.2.

Moreover, if the agent’s ignorance is too great to suggest a safe course of action, it can in-
stead query an expert for feedback, enabling sample-efficient online adaptation—an online,
adaptive variant of our method we term adaptive robust imitative planning (AdaRIP).

We provide empirical evidence in both online experiments in a simulated autonomous driv-
ing environment (CARLA, Dosovitskiy et al., 2017) and the offline prediction nuScenes chal-
lenge (Caesar et al., 2019) that our proposed methods: (i) can scale to high-dimensional LI-
DAR observations; (ii) highlight the important role of ignorance-aware models for de-
tecting, recovering from and adapting to OOD scenarios. The key contributions are:

3.1. Background & problem setting 43

List of contributions §3 (plan and adapt from expert demonstrations):

1. Ignorance-aware planning from expert demonstrations: We present an
ignorance-aware agent that plans from expert demonstrations, called robust im-
itative planning (RIP). It comprises of a likelihood model, e.g., autoregressive
normalising flows (Rezende and Mohamed, 2015), learned with maximum like-
lihood estimation (MLE) given the expert demonstrations that quantifies igno-
rance, e.g., deep ensemble (Lakshminarayanan et al., 2017). The principle of
“pessimism in the face of uncertainty (ignorance)” is used for RIP and therefore
the agent plans by maximising an ignorance-averse knowledge equivalent (KE),
such as the ensemble min (see §2.1.2), allowing for robustness to and recovery
from distribution shifts. A didactic example of RIP is depicted in Figure 3.6.

2. Ignorance-driven sample-efficient adaptation: Provided a mechanism for
online feedback from an expert, the quantified ignorance is used to efficiently
query the expert for feedback—only when insufficiently certain about what to
do. We term this online and adaptive variant of RIP as adaptive robust imitative
planning (AdaRIP) and demonstrate in a simulated autonomous driving envi-
ronment that with a handful of targeted queries to an expert, it can successfully
adapt and solve originally OOD tasks that RIP and baselines struggle with.

3. Autonomous driving robustness benchmark: We introduce an au-
tonomous driving benchmark, called CARNOVEL, to assess the robustness of
autonomous driving methods to a suite of OOD tasks. In particular, we evalu-
ate them in terms of their ability to: (i) detect OOD events, measured by the
correlation of infractions and model uncertainty; (ii) recover from distribution
shifts, quantified by the percentage of successful manoeuvres in novel scenes
and (iii) efficiently adapt to OOD scenarios, provided online supervision, as-
sessed by their few-shot adaptation performance.

3.1 Background & problem setting

We model the agent’s interaction with the environment as a Markov decision pro-
cess (MDP, Puterman, 2014), i.e., M ≜ ⟨S,A, p, ρ0, r⟩, as formulated in §2.3.1 and
Eqn. (2.27). The agent does not get to observe the reward function, r : S×A→ R, or sam-
ple from it, but has access to rollouts from an optimal policy, as defined in Eqn. (2.29a).

Learning from expert demonstrations. The agent’s goal is to approximate the un-
known expert demonstrator’s policy, π∗, using imitation learning (IL, Widrow, 1964;
Pomerleau, 1989) methods on the expert demonstrations, as described in §2.2.4. The
agent is then evaluated: (i) offline for its predictions to a held-out set of expert demon-
strations; (ii) online by interaction with an environment without online supervision; and
(iii) with online expert supervision (i.e., fine-tuning on few-shot expert demonstrations).

44 3. Plan and adapt from expert demonstrations

Formally, the (finite number of N) expert demonstrations are given by:

D ≜
{(

s(n), a(n)
)}N

n=1
, s.t. a(n) ∼ π∗(·|s(n)). (2.23)

Without loss of generality, we assume that the optimal policy is stochastic. For brevity,
we denote T -step long expert plans with a and denote expert demonstrations with:

D ≜
{(

s(i),a(i)
)}I

i=1
, s.t.

(
s(i),a(i)

)
≜
(
s
(n)
t , a

(n)
t:t+T

)
, for some I ∈ N. (3.1)

Figure 3.2: Expert
demonstrations coverage.

While, in general, for any MDP there is an optimal deter-
ministic policy (Puterman and Shin, 1978; Sutton and Barto,
2018), it is too restrictive to make this assumption here since
the gathering of the demonstrations is not under our control.
For example, in Figure 3.2, we visualise the aggregated coor-
dinates of expert driving demonstrations, used in §3.3. We
observe that the trajectories followed by the expert are multi-
modal, e.g., both right and left turns from (almost) the same
starting positions, especially at intersection points.

Imitative model. We can perform state-conditioned density estimation (see Eqn. (2.11))
of the distribution over expert’s future sequence of actions (i.e., plans), using a proba-
bilistic model q(A|s; θ), with learnable parameters θ ∈ Θ, trained on the expert demon-
strations D, e.g., via maximum likelihood estimation (MLE, Eqn. (2.15)):

θMLE ≜ arg max
θ

E(s(i),a(i))∼D

[
logq(A = a(i)|s(i); θ)

]
. (3.2)

We refer to this class of models as imitative models, since we are borrowing Rhinehart
et al.’s (2020) deep imitative model (DIM) neural network (NN) architecture. In par-
ticular, we represent q(A|s; θ) as an autoregressive neural density estimator (Larochelle
and Murray, 2011; Graves, 2013; Gregor et al., 2014), and the likelihood of a plan
a ≜ (a0, a1, a2, . . . , aT) in state s to come from an expert under the model is given by:

q(A = a|s; θ) =

T∏
t=1

q(At = at|a<t, s; θ), (3.3)

where a<t ≜ (a1, a2, . . . , at−1) is the sub-plan up to (without including) time-step t.
For brevity, we refer to q(A = a|s; θ) as the imitative score of plan a under model θ.

We decompose the likelihood as a telescopic product,† and in the case of a continuous

†We consider here a causal factorisation of the joint distribution to have a fair comparison with the
baselines which make a similar decision. Our method does not depend on this and hence any other valid,

3.1. Background & problem setting 45

s

hθh

z0

fθf

µ0 Σ0

mθm

a0

z1

fθf

µ1 Σ1

mθm

a1

z2

fθf

µ2 Σ2

· · · mθm

aT−1

zT

fθf

µT ΣT

Figure 3.3: Imitative model neural network (NN) architecture for continuous actions.
Following the terminology from §2.3.2, there are three sub-NNs: (i) the representation
network hθh

; (i) the dynamics network mθm
; and (iii) the prediction network fθf

.

action space, which is the focus in our experiments in §3.3, the conditional densities are
assumed to be normally distributed with predicted mean and covariance, i.e.,

q(At = at|a<t, s; θ) = N (at;µ(a<t, s; θ), Σ(a<t, s; θ)) (3.4)

where µ(·; θ) and Σ(·; θ) are the NN-based predictions for the mean and covariance.

The architecture of the NN for the imitative model is depicted in Figure 3.3. It com-
prises of three sub-networks, similar to the ones in §2.3.2 and Figure 2.9 for the (partial)
latent world models: (i) a representation network hθh

that embeds the (possibly) high-
dimensional state s into an embedding z; (ii) an action-conditioned dynamics network
mθm

that models the transitions in the embedding space; and (iii) a prediction network
fθf

that outputs the estimates for the mean and the covariance for the continuous action.
Unless stated otherwise, we use (i) a convolutional NN (MobileNetV2, Sandler et al.,
2018) as the representation network; (ii) a recurrent NN (gated recurrent unit (GRU),
Chung et al., 2014) as the dynamics network; and (iii) a multi-layer perceptron (MLP,
see §2.2.2) as the prediction network. For brevity, we refer to the NN parameters as
θ ≜ (θh, θm, θf) and write q(A = a|s; θ) =

∏
t q(At = at|a<t, s; θ), where q(At =

at|a<t, s; θ) = N(at;µt;Σt) and (µt, Σt) the prediction network outputs for unroll-step t.

Remark 3.1 (imitative model as multi-step action-value function): Functionally
and intuitively, the imitative score, q(A = a|s; θ), resembles the optimal action-value
of a multi-step lookahead policy, q∗(s,a), as defined in Eqn. (2.34), since both evalu-
ate the quality of a plan a executed from a given state s. In particular, q(A = a|s; θ)

potentially anti-causal, factorisation is also compatible with it. For instance, we could reverse the “arrow
of time”, i.e., q(a|s; θ) =

∏1
t=Tp(at|a>t, s; θ), and leave the rest of the method unchanged.

46 3. Plan and adapt from expert demonstrations

−40 0 40
meters

0

40

80

m
et
er
s

(a) Trajectories

−40 0 40
meters

0

40

80

m
et
er
s

(b) K = 32

−40 0 40
meters

0

40

80

m
et
er
s

(c) K = 64

−40 0 40
meters

0

40

80

m
et
er
s

(d) K = 128

−40 0 40
meters

0

40

80

m
et
er
s

(e) K = 1024

Figure 3.4: Trajectory library from CARLA’s autopilot demonstrations, constructed with
K-means clustering on 4 seconds-long expert plans from the training dataset.

estimates the likelihood of the plan under the expert policy and q∗(s,a) is the ex-
pected return of first executing the plan a and then following the expert policy.
Although the likelihood and the reward are two quantities with different units, there
are theoretical frameworks (Kappen et al., 2012; Levine, 2018) that connect the two.
In this chapter, we do not explore further any theoretical connections between these
two quantities but we exploit this observation by applying the q∗(s,a)-based plan-
ning algorithms and formulations from §2.3.3 to the imitative score, q(A = a|s; θ).

Planning. The learned imitative model can be used for action selection. In particular, we
pick the mode of the state-conditioned distribution over plans, induced by the model, i.e.,

â ≜ arg max
a

q(A = a|s; θ) = arg max
a

logq(A = a|s; θ), (3.5)

where, in practice, we maximise the log-likelihood to avoid any numerical instabilities.† As
discussed in §2.3.3, for continuous action spaces, the optimisation problem in Eqn. (3.5),
can be solved online with gradient-based optimisation since the gradient ∂q/∂a can be
computed with automatic differentiation techniques (§2.2.2; Rall, 1981). Only the first
action â1 of the plan â is executed as in model predictive control (MPC, see §2.3.3) and
a new plan is recomputed upon observing the next environment state.

Trajectory library. In real-world applications, e.g., autonomous driving or more gen-
erally robotics, the on-device computational resources may not suffice for running online
planning (Jund et al., 2021), either because it is too slow for real-time reaction, or the
gradient calculation for Eqn. (3.5) does not fit the memory device memory. A scalable
alternative that we consider in this chapter is to efficiently search for plans by restricting
the search space to a trajectory library (Liu and Atkeson, 2009), TA, i.e., a finite set of
fixed (pre-computed) plans. In other words, we discretise the continuous (and infinite)
space of plans to a finite number of plans, turning an optimisation problem of continuous

†We refer to both q(A = a|s; θ) and logq(A = a|s; θ) as the imitative score, depending on the context.

3.2. Methods 47

variables into a search problem over a discrete space which can be easily parallelised:

âTL ≜ arg max
a∈TA

logq(A = a|s; θ). (3.6)

The computational cost gains come at the cost of approximation error. In this work, to
construct the trajectory library TA, we perform K-means clustering of the expert’s plans
from the training distribution and keep 64 of the centroids, as illustrated in Figure 3.4.

3.2 Methods

The main challenge of planning with an imitative model is the potential to overoptimise a
learned objective, as discussed in §2.3.4, since the agent is explicitly maximising the like-
lihood of a plan under a learned state-conditioned imitative model, see Eqns. (3.5, 3.6).
When we only train the imitative model on an offline and static dataset of demonstra-
tions, overoptisation during planning is more likely (Ross et al., 2011; Levine et al., 2020)

3.2.1 Robust imitative planning (RIP)

In this section, we present an agent that learns offline from expert demonstrations,
as defined in §3.1, which can (i) effectively model stochastic expert demonstrations
(i.e., aleatoric uncertainty); (ii) quantify ignorance (i.e., epistemic uncertainty) to allow
detection of out-of-training distribution (OOD) situations; and (iii) avoid or recovers from
distributions shifts via ignorance-based optimisation of a knowledge equivalent (KE). We
call the proposed method robust imitative planning (RIP) and we illustrate it in Figure 3.5.

Formalisation. We treat the imitative model parameters θ as random variables (see
§2.2.1), i.e., we place a prior distribution p(Θ) over possible imitative model parameters
θ ∈ Θ, which induces a distribution over imitative scores q(A = a|s;Θ). Note the differ-
ence between the imitative score q(A = a|s; θ) ∈ R and q(A = a|s;Θ) ∈ ∆(R). The for-
mer is (deterministic) scalar quantity, i.e., the imitative score for a fixed (point estimate)
θ, and the latter is a random variable induced by the model parameters random variable
Θ. After observing the expert demonstrations D, the posterior distribution over model
parameters and imitative scores is p(Θ|D) and q(A = a|s;Θ,D), respectively, where:

q(A = a|s;Θ,D) = q(A = a|s;Θ)p(Θ|D). (3.7)

Remark 3.2 (posterior distribution over imitative scores captures only ignorance
and not risk): q(A = a|s; θ) is a deterministic function of the parameters θ, i.e., con-

48 3. Plan and adapt from expert demonstrations

(a) Expert demonstrations

D = D1 ∪ · · ·Dk · · · ∪DK

θk,MLE = arg maxθ E(s,a)∼Dk
[logq(a|s; θ)]

s ∼ D1 θ1 q(a|s; θ1)

a ∼ D1

s ∼ DK θK q(a|s; θK)

a ∼ DK

(b) Ensemble training

s

θ1

a

θK

a

KE, e.g.,, mink, 1
K

∑
k

U = KE [logq(a|s;Θ,D)] , ∂U
∂a

plan aRIP = arg maxaU

(c) Planning under ignorance

Figure 3.5: The robust imitative planning (RIP) agent. (a) Expert demonstrations.
We assume access to states s and expert plans a pairs, i.e., D ≜ {(s(i),a(i))}i, collected
either in simulation (Dosovitskiy et al., 2017) or in real-world (Caesar et al., 2019; Sun
et al., 2019; Houston et al., 2020). (b) Learning algorithm (see §3.2.1). We capture
agent’s ignorance by learning an ensemble of density estimators {q(a|s; θk)}

K
k=1, following

the implementation of Remark 2.7. (c) Planning paradigm (see §3.2.1). The plan aRIP

that maximises an ignorance-averse knowledge equivalent (KE, see §2.1.2), e.g., the en-
semble min, is selected. For continuous action spaces, the plans are efficiently calculated
online with gradient-based optimisation (see §2.3.3) through the learned likelihood models.

ditioned on a value for Θ = θ, there is no risk (i.e., aleatoric uncertainty) about the
imitative score—likelihood under imitative model with parameters θ. As a conse-
quence, the posterior over imitative scores q(A = a|s;Θ,D) captures only ignorance.

Since the imitative score is a continuous variable (regardless of the action space), the vari-
ance of the posterior distribution can be a signal for quantifying ignorance (Gal, 2016), i.e.,

VarRIP(a, s, p(Θ|D)) ≜ VarΘ[logq(A = a|s;Θ)p(Θ|D)]. (3.8)

Assuming well-calibrated estimates, in-distribution state→plan pairs have low posterior
variance and OOD ones high, as shown in §3.3 and depicted in Figure 3.9.

To incorporate the ignorance estimates into the planning objective, we select a knowledge
equivalent (KE, see §2.1.2), which is a reduction of the posterior distribution over imita-
tive scores down to an “optimisable” scalar value, i.e., the RIP selected plan is given by:

aRIP(s, p(Θ|D); KE) ≜ arg max
a

KE[logq(A = a|s;Θ)p(Θ|D)]. (3.9)

The choice of the KE boils down to the designer’s preferences (i.e., a hyperparameter)
and directly affects the induced behaviour of the agent. There are ignorance-neutral KEs
that do not take into account the shape of the posterior distribution and capture only the
central tendency, such as the “model average” (MA Savage, 1954), given by Eqn. (2.5).

3.2.1 Robust imitative planning (RIP) 49

There are also ignorance-sensitive KE for either seeking or avoiding ignorance. In this
chapter, we aim to build an agent that is robust to distribution shifts and hence we adhere
to the principle of “pessimism in the face of ignnorance” (Wald, 1939; Markowitz, 1952;
Savage, 1954) and hence use an ignorance-averse KE. In particular, we use the “worst-
case model” (WCM; Wald, 1939),† given by Eqn. (2.7a) and adapted for our setting, i.e.,

aRIP-WCM(s, p(Θ|D)) ≜ arg max
a

min
θ∈support(p(Θ|D))

[logq(A = a|s; θ)]. (3.10)

Intuition. An imitative model is trained such that it outputs high imitative scores for
state-conditioned plans that are likely to have been made by the expert demonstrator and
low scores otherwise. We expect (and provide empirical evidence §3.3) that optimising
against the learned imitative model, i.e., naively searching for the plan that maximise the
imitative score, is susceptible to the overoptimisation problem (see §2.3.4). In particular,
the model-generated imitative scores for OOD state→plan pairs can be arbitrarily wrongly
estimates and hence they should not be trusted. To guard an agent from this pitfall, the
agent should be equipped with mechanisms to: (i) detect OOD state→plan pairs; and
(ii) treat them differently during planning, compared to in-distribution ones.

Ignorance quantification addresses the former since the ignorance estimate from a well-
calibrated model is high (resp. low) in OOD (resp. in-distribution) model inputs, e.g., as
measured by the variance of the posterior distribution of imitative models (§2.2.1; MacKay,
1992; Gal, 2016). KE-based planning provides a framework for the latter since it “re-
assigns” new scores according to the posterior distribution over imitative scores and a
decision-theoretic rule (§2.1.2; Wald, 1939; Savage, 1954; Kochenderfer et al., 2022).

Any KE that assigns a low score to OOD plans fits our need for robustness to distribution
shifts. The chosen “worst-case model” (WCM) KE in Eqn. (3.10) is ignorance-averse
and hence satisfy the requirement. It assigns a pessimistic score to each action, equal to
the lowest imitative score across all the probable imitative models under the posterior
distribution. The in-distribution plans are reliably scored since only the imitative models
that fit them accurately are in the support‡ and all OOD plans get assigned low scores
since with high probability there is a model in the posterior that assigns them low scores.

Example 3.1 (didactic example for robust imitative planning (RIP) in out-of-
training distribution (OOD) driving scenario): Consider the OOD driving scenario
in Figure 3.6a. To simplify the presentation, the agent selects between the plans
aα,aβ,aγ, according to an ensemble of imitative models q1, q2, q3. We collect the
imitative scores in Figure 3.6b, where each column has the per-model scores. In this

†The WCM KE is incompatible with, by design, full-support posteriors over model parameters since it’s
over-pessimistic. Alternative, “softer” ignorance-averse KEs can be used instead, including the conditional
value at risk (CVaR, Embrechts et al., 2013; Rajeswaran et al., 2016) that employs quantiles.

‡Assuming that the probability under the posterior for a bad fit is exactly 0.

50 3. Plan and adapt from expert demonstrations

visualisation, planning (see Eqns. (3.5, 3.9)) is equivalent to calculating the per-row
arg max. Under models q1 and q2 the selected plans are the catastrophic trajecto-
ries aα and aβ, respectively. In the last row in yellow, we compute the “worst-case
model” (WCM) imitative scores, i.e., per-column minimum, given by Eqn. (3.10).
Planning against the WCM knowledge equivalent (KE) proposes the safe plan aγ.

ensemble members ensemble average ensemble min ensemble max

(a) OOD scenario

m
o
d

el
s,

q
k

plans, ai

aα aβ aγ

q1 0.6 0.1 0.3

q2 0.3 0.4 0.3

q3 0.2 0.2 0.6

mink 0.2 0.1 0.3 aγ

maxi

aγ

aβ

aα

(b) Robust imitative planning (RIP)

Figure 3.6: Didactic example of robust imitative planning (RIP) agent in an out-
of-training distribution (OOD) driving setting. (a) The bird-eye view of the scene
and the candidate plans, i.e., aα,aβ,aγ. (b) The imitative scores for ensemble
of imitative models q1, q2, q3 and the actions each model would select and the RIP
selected action under the “worst-case model” (WCM) knowledge equivalent (KE).

Practical implementation. In practice, it is intractable to perform exact Bayesian
inference (see §2.2.1) for the parameters of the imitative model (Neal, 1995). Instead,
we adopt approximate ignorance quantification strategies, such as deep ensembles (see
§2.2.3; Lakshminarayanan et al., 2017). We consider an ensemble of K imitative models
{q(·|s; θk)}Kk=1, as given in §3.3, trained according to the guidelines in Remark 2.7 to im-
prove the ignorance estimation, namely: (i) maximum a posteriori (MAP) inference, with
a normally distributed prior over the parameters (i.e., L2 regularisation term); (ii) ran-
domised parameter initialisation per ensemble member (Lakshminarayanan et al., 2017;
Izmailov et al., 2021); and (iii) data bootstrapping (Osband et al., 2016). However, any
(approximate) inference method to approximate or sample from the posterior p(Θ|D)
would suffice. To demonstrate that our method is agnostic to deep ensembles, we use
Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) for some experiments in §3.3.2.

Then, we re-write Eqns. (3.8, 3.10) using the parameters of the deep ensemble {θk}
K
k=1:

VarRIP(a, s, {θk}
K
k=1) ≜ Var[{logq(A = a|s; θk)}

K
k=1] (3.11a)

aRIP-WCM(s, {θk}
K
k=1) ≜ arg max

a
min
k

[logq(A = a|s; θk)], (3.11b)

where Eqn. (3.11a) refers to the empirical variance across the ensemble scores. As dis-
cussed in §3.1, to solve Eqn. (3.11b), we either use online gradient-ascent through the
learned ensemble of imitative models or search over a (pre-selected) trajectory library.

3.2.2 Adaptive robust imitative planning (AdaRIP) 51

3.2.2 Adaptive robust imitative planning (AdaRIP)

In this section, we present an adaptive variant of RIP, called adaptive robust imitative
planning (AdaRIP), which learns online from expert demonstrations that it selects to
gather. It leverages its ignorance estimates to decide when to query the expert for feed-
back, avoiding this way potentially unsafe decisions and learning from this feedback.
AdaRIP’s pseudocode and the main differences with RIP are given in Algorithm 1.

Formalisation. AdaRIP has two learning phases: (i) offline learning (i.e., pre-training)
from static expert demonstrations D; and (ii) online learning (i.e., fine-tuning) from ac-
tively collected demonstrations B. The former is identical to RIP’s learning algorithm in
§3.2.1 and the latter is specific to AdaRIP, during its interaction with the environment.

In particular, it is assumed that the agent has black-box access to an expert policy (i.e., or-
acle), π∗,† which it can choose to query at any state s ∈ S and receive an expert plan,
i.e., a∗ ∼ π∗(·|s). Similar to DAgger (Ross et al., 2011) and its variants (Zhang and Cho,
2016; Cronrath et al., 2018), the access to the oracle is limited and hence a mechanism to
ensure sample-efficient use of it is required. To that end, AdaRIP queries the oracle on (be-
lieved) OOD states, i.e., states with high estimated posterior variance of imitative scores.

Specifically, for each state s: (i) we compute the RIP plan âRIP according to Eqn. (3.10);
(ii) we estimate the posterior variance of the imitative score σ̂2

RIP for the (s, âRIP) pair;
and (iii) if σ̂2

RIP > τ, where τ ∈ R+ is a pre-specified, designer-selected (i.e., hyperparam-
eter) threshold, then (iv) we query the oracle at s, receive a∗ and append it to the online
demonstrations dataset B. Finally, after observing B, we update (in an online fashion)
the posterior over imitative model parameters, obtaining p(Θ|{D,B}), and then repeat.

Intuition. As Figure 3.1 and the empirical evidence in §3.3.2 suggest, planning with
an ignorance-averse KE against a static learned model is not always sufficient to recover
from distribution shifts, especially domain shifts as the one in Figure 3.1a. Even with
perfect ignorance estimates, the RIP agent knows that it does not know what to do but
this is not enough to extract a good course of actions, i.e., ignorance quantification does
not “magically” solve the problem of generalisation. If an online feedback mechanism is
in place, the information that the agent should not trust its plans due to ignorance, is ac-
tionable. For instance, in a human-in-the-loop setup (Ross et al., 2011; Christiano et al.,
2017), the agent can defer from making a decision under (extreme) ignorance and, instead,
ask the human to act on its behalf. Therefore, the agent both avoids taking a potentially
unsafe action that could not be tolerated in safety-critical settings, e.g., autonomous driv-
ing, and can learn from the demonstrated behaviour online (Duan et al., 2017), reducing
its ignorance and allowing it cope with similar situations encountered later. Of course,
there is no extra value added in querying the human in situations with low ignorance

†AdaRIP is also compatible with other feedback mechanisms, such as expert preferences (Christiano
et al., 2017) or explicit reward functions (de Haan et al., 2019).

52 3. Plan and adapt from expert demonstrations

since that should† mean that the imitative model is already trained on similar situations.

Before taking an action, the AdaRIP agent: (i) plans according to the RIP strategy in
Eqn. (3.10); and (ii) decides if its confidence in the plan is above some threshold and if
so, it commits to it. Otherwise it invokes the online feedback mechanism. The acquired
feedback drives the online model adaptation/fine-tuning.

Practical implementation. We build on the RIP’s practical implementation. The
learning and acing loops of the AdaRIP agent are described in pseudocode in Algo-
rithm 1. We tune the threshold, τ, by performing an analysis similar to the one in Fig-
ure 3.9, see §3.3.1 for more details. For online fine-tuning with the B demonstrations,
for each stochastic gradient descent (SGD) update, we have a mini-batch of mixed ex-
pert demonstrations—50% from the online demonstrations B and 50% from the offline
demonstrations D. Note that similar most methods for learning online/continually, our
fine-tuning approach suffers from, e.g., catastrophic forgetting (French, 1999) and sample-
inefficiency (Finn et al., 2017). In this chapter, our goal is only to demonstrate AdaRIP’s
efficacy to adapt under distribution shifts and hence we do not address either of these lim-
itations. Future work lies in providing a practical, sample-efficient continual learning algo-
rithm to be used in conjunction with the AdaRIP agent. Methods for efficient (e.g., few-
shot or zero-shot) and safe adaptation (Finn et al., 2017; Zhou et al., 2019) are orthogonal
to AdaRIP and hence any improvement in these fields could be directly used for AdaRIP.

3.3 Experiments

We consider a series of prediction and control experiments—with and without online
expert feedback—to determine how effective is ignorance quantification and ignorance-
aware planning when learning from expert demonstrations and acting under distribution
shifts. We focus on autonomous driving since (i) there are open source real-world expert
demonstrations (Caesar et al., 2019; Sun et al., 2020); (ii) realistic simulators (e.g., CARLA,
Dosovitskiy et al., 2017); and (iii) current state-of-the-art imitation learning (IL) methods
are benchmarked in such domains (Chen et al., 2019; Rhinehart et al., 2020).

Autonomous driving specific assumptions. For a fair comparison to the baselines,
we make a few (benign) autonomous driving specific assumptions. In particular, the
agent plans over sequences of relative (egocentric) (x, y) coordinates rather than low
level actions, e.g., steering angle, throttle pressure, which allows it to be invariant to the
physical properties of the controlled vehicle and allows us to use Additionally, for the
online experiments it is assumed that high level goals are provided, e.g., “turn left at the
traffic light”, “at the roundabout take the second exit”, “at the end of the road make
a U turn” and the agent can factor them into its planning procedure. Formally:

†This does not necessarily hold true when we use in practice imperfect ignorance estimates.

3.3. Experiments 53

Algorithm 1: Adaptive robust imitative planning (AdaRIP)

Input :
D Expert demonstrations
K Number of ensemble members
B Online demonstrations buffer

qθ Imitative model architecture
p(Θ) Model parameters prior
τ Variance threshold

Output :
{θk}

K
k=1 Parameters of ensemble members

// Learning offline from expert demonstrations

1 for k = 1 . . . K do

2 Bootstrap sample dataset Dk
boot
∼ D

3 Sample model parameters from prior, θk ∼ p(Θ)
4 Learn model with maximum a posteriori (MAP) with regulariser Ω

θk ← arg max
θ

E(s,a)∼Dk
[logq(A = a|s; θ)] +Ω(θ) ▷ see Eqn. (2.16)

// Agent-environment online interaction

5 s← env.reset()

6 while not done do
7 Plan with learned ignorance-aware model from state s

âRIP ← arg max
a

min
k

[logq(A = a|s; θk)] ▷ see Eqn. (3.10)

// Online adaptation

8 Calculate the predictive variance of the plan

σ̂2
RIP ← Var[{logq(A = âRIP|s; θk)}

K
k=1] ▷ see Eqn. (3.8)

if σ̂2
RIP > τ then

9 a∗ ← Query expert at s

10 B← B ∪ (s,a∗)
11 Perform parameter update using online and offline demonstrations B, D

12 s, done← env.step(a∗)

54 3. Plan and adapt from expert demonstrations

Assumption 3.1 (inverse dynamics): We assume that the physical properties of
the controlled vehicle ϕ, e.g., mass, dimensions and minimum/maximum accelera-
tion, are known and hence a low-level controller c that makes use of this information,
e.g., proportional–integral–derivative controller (PID, Zhou et al., 1996) can be used
for (deterministically) mapping “high-level” plans a in relative (x, y) coordinates
to low-level controls u, e.g., steering, accelerating and breaking:

u = c(a;ϕ). (3.12)

Assumption 3.2 (global planner): We assume access to a global navigation system
that we can use to specify goals g ∈ G is the form of (x, y) coordinates or navigation
command, such as “turn left/right” “at the roundabout take the second exit” etc.

These are benign assumptions for autonomous driving (Rhinehart et al., 2020). If required,
these quantities can also be learned from data, and are typically easier to learn than π∗.

(a) nuScenes (b) CARNOVEL

Figure 3.7: RIP’s robustness to OOD sce-
narios, compared to CIL (Codevilla et al.,
2018) and DIM (Rhinehart et al., 2020). Both
baselines get out of the road and hit the bar-
riers while RIP follows a safe trajectory.

Environments. For the offline predic-
tion experiments, we use the nuScenes

open source dataset (Caesar et al., 2019)
for autonomous driving, collected by hu-
man expert drivers. To assess agents
in this setting, we use the metrics from
the ICRA 2020 nuScenes prediction chal-
lenge. For the online control† experi-
ments, we use the CARLA autonomous
driving simulator (Dosovitskiy et al.,
2017). In particular, to make sure that
agents experience challenging OOD driv-
ing scenarios in this environment and are
evaluated on their robustness to distri-
bution shifts, we introduce a benchmark,
called CARNOVEL. Offline expert demon-
strations‡ from Town01 are provided for training. Then, the agents are evaluated on a
suite of OOD navigation tasks, including but not limited to roundabouts, challenging non-
right-angled turns and hills, none of which are experienced during training since these are
from other CARLA towns, i.e., Town03, Town04 and Town05. The complete CARNOVEL suite
of tasks are given in §A.1 and a handful of example are depicted in Figure 3.8

†We use the terms “prediction” and “control” as in (Sutton and Barto, 2018).
‡We use the CARLA rule-based autopilot (Dosovitskiy et al., 2017) as the expert demonstrator.

3.3. Experiments 55

(a) AbnormalTurns4-v0 (b) BusyTown2-v0 (c) Roundabouts1-v0

Figure 3.8: The spawn location and the route for completing example CARNOVEL task.

Table 3.1: Robust imitative planning (RIP) variants used for the ablation study.

Variants Description

DIM Ignorance-unaware, i.e., point estimate of imitative model (Rhinehart et al., 2020).

RIP-BCM Ignorance-seeking KE, i.e., maxk, optimism in the face of ignorance
RIP-MA Ignorance-neutral KE, i.e., Ek, ensemble average

RIP-WCM-TL Trajectory library-based (Liu and Atkeson, 2009) variant of RIP-WCM, see Eqn. (4.2)

Metrics. Since we are studying navigation tasks, agents should be able to reach safely
pre-specified destinations. As also done in previous work (Codevilla et al., 2018; Rhinehart
et al., 2020; Chen et al., 2019), the infractions per kilometre metric (i.e., violations of
rules of the road and accidents per kilometre traveled) measures how safe the agent
navigates. The success rate measures the percentage of successful navigations to the
destination, without any infraction. However, these standard metrics do not directly
reflect the methods’ performance under distribution shifts. As a result, we introduce
three new metrics to quantify performance in out-of-training distribution (OOD) tasks:

1. Detection score: The correlation of infractions and model’s uncertainty termed
detection score is used to measure a method’s ability to predict the OOD scenes
that lead to catastrophic events. As discussed by Michelmore et al. (2018), we look
at time windows of 4 seconds (Taoka, 1989; Coley et al., 2009). A method that can
detect potential infractions should have high detection score.

2. Recovery score: The percentage of successful manoeuvres in novel scene—where
the ignorance-unaware methods fail—is used to quantify a method’s ability to
recover from distribution shifts. A method that is oblivious to novelty should have
0 recovery score, but positive otherwise.

3. Adaptation score: The improvement in success rate as a function of number of on-
line expert demonstrations is used to measure a method’s ability to adapt efficiently
online. A method that can adapt online should have a positive adaptation score.

Baselines. For both prediction and control experiments, we consider two types of
baseline methods: (i) state-of-the-art methods in each setting; and (ii) variants of our RIP

56 3. Plan and adapt from expert demonstrations

0 20 40 60 80 100
Uncertainty Percentile

0.0

0.2

0.4

0.6

0.8

1.0
Ca

ta
st

ro
ph

e
RIP
DIM

Figure 3.9: Uncertainty estimators as indicators of catastrophes on CARNOVEL. We col-
lect 50 scenes for each model that led to a crash, record the uncertainty 4 seconds (Taoka,
1989) before the accident and assert if the uncertainties can be used for detection. RIP’s
(ours) predictive variance (in blue, see Eqn. (3.8)) serves as a useful detector, while
DIM’s (Rhinehart et al., 2020) negative log-likelihood (in orange) cannot be used for detect-
ing catastrophes. We assume that the main reason for catastrophes is distribution shifts.

agent to ablate the importance of our design decisions, summarised in Table 3.1.†

For the prediction experiments, we compare against the state-of-the-art methods in
the nuScenes dataset, the: (i) Multiple-Trajectory Prediction (MTP, Cui et al., 2019);
(ii) MultiPath (Chai et al., 2019); and (iii) CoverNet (Phan-Minh et al., 2019), all of
which score a (fixed) set of trajectories, i.e., a trajectory library (Liu and Atkeson, 2009).

For the control experiments, we compare against the state-of-the-art methods in the
CARLA autonomous driving simulator, the: (i) conditional imitation learning (CIL, Codev-
illa et al., 2018), which is a discriminative behavioural cloning method that conditions its
predictions on contextual information (e.g., LIDAR) and high-level commands (e.g., “turn
left”, “go straight”); (ii) learning by cheating (LbC, Chen et al., 2019), which is a method
that builds on CIL and uses (cross-modal) distillation of privileged information (e.g., game
state, rich, annotated bird-eye-view observations) to a sensorimotor agent; and (iii) LbC
agent that uses privileged information directly (i.e., teacher), which we term LbC-GT and
is only for reference since it is not a fair comparison against the LIDAR-based methods.

3.3.1 Detecting distribution shifts

We have argued for the role of ignorance in detecting distribution shifts in §2.1.2, which
motivated the design of our RIP agent in this chapter. Therefore, we expect the follow-
ing hypotheses to hold, which we test empirically. H1: Risk (i.e., aleatoric uncertainty)
quantification cannot be used for detecting distribution shifts since it aims to capture the
inherent stochasticity of the expert demonstrators’ behaviour rather than novelty. H2: Ig-
norance (i.e., epistemic uncertainty) is an effective signal for detecting distribution shifts.

†We treat deep imitative model (DIM, Rhinehart et al., 2020) as a variant of RIP as discussed in §3.2.1.

3.3.2 Recovering from distribution shifts 57

Control. We benchmark in CARNOVEL one ignorance-unaware baseline method, DIM
(Rhinehart et al., 2020) and our ignorance-aware RIP. We collect 100 scenes, recording
estimates for their risk and ignorance, respectively. In 50 of them, after 4 seconds the
agent crashed (Taoka, 1989) and in the other 50, the agents successfully completed the
tasks. We assert if the recorded uncertainty estimates can be used for detecting that
a catastrophe is about to occur—a proxy for whether the agent is experiencing a dis-
tribution shift. The results are illustrated in Figure 3.9. RIP’s (ours) predictive vari-
ance Eqn. (3.8)—implemented as the ensemble variance—serves as a useful distribution
shift detector, i.e., with high probability above the 80% percantile a crash occurs, while
DIM’s negative log-likelihood is not predictive of whether a crash is about to take place.
These results support hypotheses H2 and H1, respectively.

Having verified that ignorance is a useful signal for detecting distribution shifts, next, we
study ways to integrate ignorance estimates into planning and assess their robustness to
(i.e., ability to recover from) distribution shifts in both prediction and control settings.

3.3.2 Recovering from distribution shifts

The main motivation behind the ignorance-averse knowledge equivalent (KE) used in RIP
is to enable robustness and recovery from distribution shift, implementing the principle of
“pessimism in the face of ignorance”. To this end, we investigate the following hypotheses.
H3: Ignorance-aware agents perform qualitatively and quantitatively different in OOD
scenarios from ignorance-unaware ones. H4: RIP’s explicit mechanism for recovery from
distribution shifts leads to improved performance in OOD scenes. H5: The role and
choice of the knowledge equivalent (KE) is non-trivial—RIP is not “just an ensemble”.

Prediction. Table 3.2 gives the performance of the RIP agent, its variants and state-of-
the-art methods in the nuScenes challenge dataset. In more detail, we use the provided
train–val–test splits from (Phan-Minh et al., 2019), for towns Boston and Singapore. For
all methods we use N = 50 trajectories, and in case of both DIM and RIP, we only optimise
the “imitation prior” Eqn. (3.9)), since goals are not provided, running N planning proce-
dures with different random initialisations. We observe that the ignorance-aware agents,
i.e., RIP variants that take ignorance into account by optimising a KE, perform consis-
tently better than the ignorance-unaware baselines, backing up H3. Also, the ignorance-
averse agents, i.e., RIP-WCM with continuous and RIP-WCM-TL with discretised ac-
tions, outperform the ignorance- oblivious and seeking methods, confirming H4 and H5.

Control. Table 3.3 summarises the results in the CARNOVEL autonomous driving con-
trol benchmark. All methods are trained with offline expert demonstrations from
CARLA Town01. We perform 10 trials per CARNOVEL task with randomised initial simu-
lator state (same for all agents). The ignorance-aware agents, i.e., RIP-WCM and RIP-
MA, outperform the ignorance-unaware and ignorance-seeking methods, corroborating

58 3. Plan and adapt from expert demonstrations

Table 3.2: We evaluate different autonomous driving prediction methods in terms of
their robustness to and recovery from distribution shifts from the nuScenes ICRA 2020
challenge (Phan-Minh et al., 2019). We use the provided train–val–test splits and report
performance on the test (i.e., out-of-sample) scenarios. A “♣” indicates methods that use
LIDAR observation, as in (Rhinehart et al., 2019), and a “♢” methods that use bird-view
privileged information, as in (Phan-Minh et al., 2019). A “⋆” indicates that we used
the results from the original paper, otherwise we used our implementation. Standard
errors are in grey (via bootstrap sampling). The outperforming method is in bold.

Boston Singapore

minADE1 ↓ minADE5 ↓ minFDE1 ↓ minADE1 ↓ minADE5 ↓ minFDE1 ↓
Methods (2073 scenes, 50 samples, open-loop plans) (1189 scenes, 50 samples, open-loop plans)

MTP♢⋆ (Cui et al., 2019) 4.13 3.24 9.23 4.13 3.24 9.23

MultiPath♢⋆ (Chai et al., 2019) 3.89 3.34 9.19 3.89 3.34 9.19

CoverNet♢⋆ (Phan-Minh et al., 2019) 3.87 2.41 9.26 3.87 2.41 9.26

DIM♣ (Rhinehart et al., 2020) 3.64±0.05 2.48±0.02 8.22±0.13 3.82±0.04 2.95±0.01 8.91±0.08
RIP-BCM♣ (ablation, Table 3.1) 3.53±0.04 2.37±0.01 7.92±0.09 3.57±0.02 2.70±0.01 8.39±0.03
RIP-MA♣ (ablation, Table 3.1) 3.39±0.03 2.33±0.01 7.62±0.07 3.48±0.01 2.69±0.02 8.19±0.02

RIP-WCM-TL♣ (ablation, Table 3.1) 3.31±0.03 2.32±0.00 7.49±0.05 3.44±0.01 2.69±0.01 8.10±0.04
RIP-WCM♣ (ours, §3.2.1) 3.29±0.03 2.28±0.00 7.45±0.05 3.43±0.01 2.66±0.01 8.09±0.04

H3 and H5, respectively. On top of the results in Table 3.3, the illustrated examples
in Figure 3.7 support H4.

Despite RIP’s improvement over current state-of-the-art methods with 97.5% success rate
and 0.26 infractions per driven kilometre, the safety-critical nature of the task mandates
higher performance. Towards this goal, next, we assess AdaRIP’s, the online adaptive
variant of RIP in a few-shot imitation learning setting, where the agent decides when
to query the expert.

3.3.3 Adapting to distribution shifts

In the previous sections, we have shown that ignorance is a useful signal for detecting
distribution shifts (H2) and predictive of catastrophic outcomes (see Figure 3.9). When
online expert demonstrations are available, AdaRIP uses its quantified ignorance to
efficiently query the expert to avoid potential catastrophes. As a result, we expect the
following hypothesis to be true, which we investigate experimentally. H6: With more
online expert demonstrations, AdaRIP’s performance improves.

Control. We evaluate AdaRIP on CARNOVEL tasks, where the CARLA autopilot (Doso-
vitskiy et al., 2017) is queried for demonstrations online when the predictive vari-
ance (see Eqn. (3.8)) exceeds a threshold, chosen according to RIP’s detection score,
(see Figure 3.9) in a hold-out dataset. AdaRIP’s performance on the most challenging
CARNOVEL tasks is summarised in Figure 3.10, where, the success rate improves as the

3.4. Related work 59

Table 3.3: We evaluate different autonomous driving methods in terms of their robustness
to and recovery from distribution shifts, in our new benchmark, CARNOVEL. All methods
are trained on CARLA Town01 using imitation learning with expert demonstrations from
the CARLA autopilot (Dosovitskiy et al., 2017). A “∗” indicates methods that use first-
person camera view, as in (Chen et al., 2019), a “♣” methods that use LIDAR observation,
as in (Rhinehart et al., 2020) and a “♢” methods that use the ground truth game
engine state, as in (Chen et al., 2019). A “⋆” indicates that we used the reference
implementation from the original paper, otherwise we used our implementation. For all
the scenes we chose pairs of start-destination locations and ran 10 trials with randomised
initial simulator state for each pair (same for all methods). Standard errors are in grey
(via bootstrap sampling). The outperforming method is in bold.

AbnormalTurns BusyTown

Success ↑ Infra/km ↓ Distance ↑ Success ↑ Infra/km ↓ Distance ↑
Methods (7× 10 scenes, %) (×1e−3) (m) (11× 10 scenes, %) (×1e−3) (m)

CIL♣⋆ (Codevilla et al., 2018) 65.71±07.37 07.04±05.07 128±020 05.45±06.35 11.49±03.66 217±033
LbC∗⋆ (Chen et al., 2019) 00.00±00.00 05.81±00.58 208±004 20.00±13.48 03.96±00.15 374±016
LbC-GT♢⋆ (Chen et al., 2019) 02.86±06.39 03.68±00.34 217±033 65.45±07.60 02.59±00.02 400±006

DIM♣ (Rhinehart et al., 2020) 74.28±11.26 05.56±04.06 108±017 47.13±14.54 08.47±05.22 175±026
RIP-BCM♣ (ablation, Table 3.1) 68.57±09.03 07.93±03.73 096±017 50.90±20.64 03.74±05.52 175±031
RIP-MA♣ (ablation, Table 3.1) 84.28±14.20 07.86±05.70 102±015 64.54±23.25 05.86±03.99 170±033

RIP-WCM♣ (ours, §3.2.1) 87.14±14.20 04.91±03.60 102±021 62.72±05.16 03.17±02.04 167±021

Hills Roundabouts

Success ↑ Infra/km ↓ Distance ↑ Success ↑ Infra/km ↓ Distance ↑
Methods (4× 10 scenes, %) (×1e−3) (m) (5× 10 scenes, %) (×1e−3) (m)

CIL♣⋆ (Codevilla et al., 2018) 60.00±29.34 04.74±03.02 219±034 20.00±00.00 03.60±03.23 269±021
LbC∗⋆ (Chen et al., 2019) 50.00±00.00 01.61±00.15 541±101 08.00±10.95 03.70±00.72 323±043
LbC-GT♢⋆ (Chen et al., 2019) 05.00±11.18 03.36±00.26 312±020 00.00±00.00 06.47±00.99 123±018

DIM♣ (Rhinehart et al., 2020) 70.00±10.54 06.87±04.09 195±012 20.00±09.42 06.19±04.73 240±044
RIP-BCM♣ (ablation, Table 3.1) 75.00±00.00 05.49±04.03 191±013 06.00±09.66 06.78±07.05 251±027
RIP-MA♣ (ablation, Table 3.1) 97.50±07.90 00.26±00.54 196±013 38.00±06.32 05.48±05.56 271±047

RIP-WCM♣ (ours, §3.2.1) 87.50±13.17 01.83±01.73 191±006 42.00±06.32 04.32±01.91 217±030

number of online demonstrations increases, validating H6. We also illustrate in §A.2 pre-
and post- adaptation plans executed by AdaRIP.

3.4 Related work

The literature review for imitation learning (IL), knowledge equivalents (KEs), ignorance
quantification in deep learning (DL) and deep ensembles can be found in §2. In this
section, we review autonomous driving-specific related work to better contextualise our
contributions in this domain, since our experiments are solely in it.

Learning from expert autonomous driving demonstrations. A plethora of ex-
pert driving demonstrations has been used for IL (Caesar et al., 2019; Sun et al., 2019;

60 3. Plan and adapt from expert demonstrations

0 1 2 3
Number of Demos

0

50

100

Su
cc

es
s,

%

(a) AbnormalTurns4-v0

0 1 2 3
Number of Demos

0

50

100

Su
cc

es
s,

%

(b) BusyTown2-v0

0 1 2 3
Number of Demos

0

50

100

Su
cc

es
s,

%

(c) Hills1-v0

0 1 2 3
Number of Demos

0

50

100

Su
cc

es
s,

%

(d) Roundabouts1-v0

Figure 3.10: Adaptation scores of AdaRIP (see §3.2.2) on CARNOVEL tasks that RIP-
WCM and RIP-MA (see §3.2.1) do worst. We observe that as the number of online expert
demonstrations increases, the success rate improves thanks to online model adaptation.

Kesten et al., 2019) since a model mimicking expert demonstrations can simply learn
to stay in “safe”, expert-like parts of the state space and no explicit reward function
need be specified. On the one hand, behaviour cloning (BC) approaches (Liang et al.,
2018; Sauer et al., 2018; Li et al., 2018; Codevilla et al., 2018, 2019; Chen et al., 2019) fit
command-conditioned discriminative sequential models to expert demonstrations, which
are used in deployment to produce expert-like trajectories. On the other hand, Rhine-
hart et al. (2020) proposed command-unconditioned expert trajectory density models
which are used for planning trajectories that both satisfy the goal constraints and are
likely under the expert model. However, both of these approaches fit point-estimates to
their parameters, thus do not quantify their ignorance (see Remark 2.6), as explained
next. This is especially problematic when estimating what an expert would or would
not do in unfamiliar, OOD scenes. In contrast, our methods, RIP and AdaRIP, does
quantify ignorance in order to both improve planning performance (see §3.3.2) and triage
situations in which an expert should intervene (see §3.3.3).

Current autonomous driving benchmarks. We are interested in the control problem,
where autonomous driving agents get deployed in reactive environments and make
sequential decisions. The CARLA Challenge (Ros et al., 2019; Dosovitskiy et al., 2017;
Codevilla et al., 2019) is an open-source benchmark for control in autonomous driving. It
is based on 10 traffic scenarios from the NHTSA pre-crash typology (National Highway
Traffic Safety Administration, 2007) to inject challenging driving situations into traffic
patterns encountered by autonomous driving agents. The methods are only assessed in
terms of their generalization to weather conditions, the initial state of the simulation
(e.g., the start and goal locations, and the random seed of other agents.) and the traffic
density (i.e., empty town, regular traffic and dense traffic).

Despite these challenging scenarios selected in the CARLA Challenge, the agents are allowed
to train on the same scenarios in which they evaluated, and so the robustness to distri-
butional shift is not assessed. Consequently, both Chen et al. (2019) and Rhinehart et al.
(2020) manage to solve the CARLA Challenge with almost 100% success rate, when trained
in Town01 and tested in Town02. However, both methods score almost 0% when evaluated
in Roundabouts due to the presence of OOD road morphologies, as discussed in §3.3.

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf

3.5. Conclusion & discussion 61

3.5 Conclusion & discussion

Summary of contributions. In this chapter, we studied imitation learning (IL) agents
in out-of-training distribution (OOD) tasks (i.e., under distribution shifts). We intro-
duced an ignorance-aware agent, called robust imitative planning (RIP), which can de-
tect and recover from distribution shifts, as shown experimentally in a real-world predic-
tion task, nuScenes, and a driving simulator, CARLA. We presented an adaptive variant,
called adaptive robust imitative planning (AdaRIP), which uses RIP’s ignorance esti-
mates to efficiently query the expert for online feedback and adapt its model parameters
online. We also introduced and open-sourced an autonomous driving control benchmark,
termed CARNOVEL, to assess the robustness of driving agents to a suite of OOD tasks.

Insights & lessons learned. In our experiments in §3.3, we showed that ignorance
(i.e., epistemic uncertainty) is an effective signal for distribution shifts detection, while
risk (i.e., aleatoric uncertainty) is not, since it only captures the inherent stochasticity
of the expert data. Moreover, ignorance-aware agents exhibit distinctively different be-
haviour in familiar and novel situations, while ignorance-unaware agents act the same,
e.g., boldly and over-confidently, even when wrong. Also, optimising for a decision-
theoretic ignorance-sensitive knowledge equivalent (KE), and the careful selection of it,
enables ignorance-aware agents to avoid falling into their own pitfalls–overoptimisation.

Limitations & next steps. IL agents, although power, they miss out the opportunity
to learn from sub-optimal demonstrations. This would enable them to massively scale the
sources of data they can consume to improve (see §4). Moreover, the generic ignorance
quantification strategy that we used for (Ada)RIP, i.e., deep ensembles, do not leverage
the sequential nature of the problem setting. Future work lies in developing architectures
and ignorance quantification algorithms that target sequential-decision making (see §5).

Outlook. Expert (human) demonstrations are one of the dominant data sources for train-
ing modern machine learning (ML) models and agents (Deng et al., 2009; Krizhevsky et al.,
2012; Lin et al., 2014; Silver et al., 2016; Cordts et al., 2016; Vinyals et al., 2019; Radford
et al., 2019; Sun et al., 2020). In an ever-changing environment as the real-world, any agent
trained on this static data, despite its size, it is bound to experience novel, out-of-training
distribution (OOD) scenarios and forced to make decisions under ignorance. Inspired by
Figure 3.1, we argued that whether a learning agent experiences a distribution shift in de-
ployment is not a matter of if, but when. As a consequence, the agent’s designer should be
developing the agent with this perspective in mind, not necessarily trying to anticipate the
distribution shifts and accommodate these particular instances but instead acknowledge
that there will be settings that the agent cannot take any meaningful decision due to its
lack of knowledge (i.e., ignorance) and instead it should either act conservatively, i.e., avoid
taking a leap to the unknown (as RIP does), or be equipped with a mechanism to use effi-
ciently an “I don’t know” action, in which case, some expert takes over (as AdaRIP does).

62 3. Plan and adapt from expert demonstrations

“Adaptability is not imitation. It means power of resistance and
assimilation.”

— Mahatma Gandhi (1869–1948)

4
Plan and adapt

from sub-optimal demonstrations

Contents

4.1 Background & problem setting . 65
4.2 Methods . 71

4.2.1 Inverse temporal difference (ITD) learning 71
4.2.2 ΨΦ-learning with no-reward demonstrations 73

4.3 Experiments . 77
4.3.1 Accelerating RL with no-reward demonstrations 78
4.3.2 Inferring reward functions . 80
4.3.3 Predicting other agents’ behaviour . 81
4.3.4 Transfer and few-shot generalisation . 82

4.4 Related work . 83
4.5 Conclusion & discussion . 85

Generally capable data-driven agents should be able to learn from any kind of data, mak-
ing minimal assumptions about its generative process. The harder and more specialised
the tasks we expect agents to fulfil, the fewer the chances we can find high quality ex-
pert demonstrations for training imitation learning (IL, see §2.2.4 and §3) agents. Also,
reinforcement learning (RL, see §2.3) agents do not possess a mechanism for learning
without reward information, limiting their scope to tasks for which a reward function
can be specified (Russell, 2019), or off-policy rollouts (see §2.35) with reward samples.

Nonetheless, we often have access to no-reward demonstrations, i.e., data from the inter-
action of other agents with the environment of interest, without any reward information.

∗This chapter is based on the (Filos et al., 2021) publication.

64 4. Plan and adapt from sub-optimal demonstrations

Our main modelling assumption in this chapter is that agents are typically goal-directed—
sometimes by definition (Franklin and Graesser, 1996). While their goals can be different,
they often depend on shared salient features of the environment, and may be able to
interact with and affect the environment in similar ways. Humans and other animals
make ready use of these similarities to other agents while learning (Henrich, 2017; La-
land, 2018). We can observe the goal-directed behaviours of other humans, and combine
these observations with our own experiences, to quickly learn how to achieve our own
goals. If RL agents could similarly interpret the behaviour of others, they could learn
more efficiently, relying less on solitary trial and error.

To this end, we formalise and address a problem setting in which an agent (the ‘ego-
agent’) is given access to observations and actions drawn from the experiences of other
goal-directed agents interacting with the same environment, but pursuing distinct goals.
These observed trajectories are unlabelled in the sense that they lack the goals or rewards
of the other agents, i.e., behavioural data of mixed and unknown quality. This type of
data is readily available in many real-world settings, either from (i) observing other agents
acting simultaneously with the ego-agent in the same environment (i.e., social learning);
or (ii) multi-task demonstrations collected independently from the ego-agent’s experiences.
Consider autonomous driving as a motivating example: the robot car can observe the
decisions of many nearby human drivers with various preferences and destinations, or may
have access to a large offline dataset of such demonstrations. Because the other agents
are pursuing their own varied goals, it can be difficult to directly use this information
with conventional (single-task) IL (see §2.2.4), i.e., behaviour cloning (BC, Widrow, 1964)
methods or inverse reinforcement learning (IRL, Ng et al., 2000; Ziebart et al., 2008).

To effectively use the no-reward demonstrations, we turn to the framework of successor
features. This allows us to disentangle shared features and dynamics of the environment
from agent-specific rewards and policies. We propose a multi-task inverse reinforcement
learning (IRL) algorithm, called inverse temporal difference (ITD) learning, that learns
shared state features, alongside per-agent successor features and preference vectors, purely
from demonstrations without reward labels. We further show how to seamlessly integrate
ITD with learning from online environment interactions, arriving at a novel algorithm
for RL with demonstrations, called ΨΦ-learning (ΨΦL, pronounced ‘Sci-Fi’).

We provide empirical evidence in a set of gridworld environments, a traffic-flow simu-
lator (Leurent, 2018), and a task from the Procgen suite (Cobbe et al., 2020) that our
proposed methods, i.e., ITD and ΨΦL: (i) can scale to high-dimensional pixel observa-
tions; (ii) lead to faster from scratch and few-shot learning than vanilla RL (Mnih et al.,
2015; Schulman et al., 2017), IL (Reddy et al., 2019; Ho and Ermon, 2016), and auxiliary-
task baselines (Hernandez-Leal et al., 2017); and (iii) learn useful feature representations
that are predictive of other agents’ behaviour. The key contributions are:

4.1. Background & problem setting 65

List of contributions §4 (plan and adapt from sub-optimal demonstrations):

1. Offline multi-task IRL: We propose a multi-task inverse reinforcement learn-
ing (IRL) algorithm, called inverse temporal difference (ITD) learning. Using
only no-reward demonstrations, we learn shared state features, alongside per-
agent successor features and inferred preferences. The reward functions can
be straightforwardly computed from these learned quantities. We show empiri-
cally that ITD achieves superior or comparable performance to prior methods.

2. RL with no-reward demonstrations: By combining ITD with learning
from environment interactions, we arrive at a novel algorithm for RL with un-
labelled demonstrations, called ΨΦ-learning (ΨΦL, pronounced ‘Sci-Fi’). ΨΦ-
learning is compatible with sub-optimal demonstrations. It treats the demon-
strated trajectories as being soft-optimal under some task and employs ITD to
recover successor features for the demonstrators’ policies. ΨΦ-learning inher-
its the unbiased, asymptotic performance of RL methods while leveraging the
provided demonstrations with ITD. When the goals of any of the demonstra-
tors are even partially aligned with the ΨΦ-learner, this enables much faster
learning than solitary RL. Otherwise, when the demonstrations are not use-
ful or even misleading, it gracefully falls back to standard RL, unlike näıve
behaviour cloning or IRL.

3. Few-shot adaptation with task inference: Taking full-advantage of the
successor features framework, our ΨΦ-learner can even adapt zero-shot to new
goals it has never seen or experienced during training, but which are partially
aligned with the demonstrated goals. This is possible due to the disentangle-
ment of representations into task-specific features (i.e., preferences) and shared
state features. We can efficiently update the task-specific preferences and rely
on generalised policy improvement for safe policy updates. We derive worst-
case bounds for the performance of ΨΦL in zero-shot transfer to new tasks.

4.1 Background & problem setting

We consider a world that can be represented as a controlled Markov process (CMP),
i.e., C ≜ ⟨S,A, p, ρ0⟩, as formulated in §2.3.1. Then, as per Eqn. (2.27), a task is formu-
lated as a Markov decision process (MDP, Puterman, 2014), characterised by a reward
function, r : S× A→ ∆(R), i.e., M ≜ ⟨C, r⟩. As Remark 2.9 suggests, this formalisation
allows us to treat tasks with the same dynamics (state, action spaces, initial state distri-
bution and state-transition dynamics) but different reward functions in a unified notation.

We adapt the notation for the value functions (see Eqns. (2.29d, 2.31)), accordingly, i.e.,

vπ,r(s) ≜ E[
∑
t⩾0

γtRt+1|S0 = s,At ∼ π(·|St), (St+1, Rt+1) ∼ m∗(·, ·|St, At)] (4.1a)

66 4. Plan and adapt from sub-optimal demonstrations

= E[
∑
t⩾0

γtRt+1|S0 = s;π,C] (4.1b)

= E[
∑
t⩾0

γtRt+1|S0 = s;π,C] (4.1c)

= Eπ,C[
∑
t⩾0

γtRt+1|S0 = s] (4.1d)

qπ,r(s, a) ≜ Eπ,C[
∑
t⩾0

γtRt+1|S0 = s,A0 = a], (4.1e)

where Eπ,C [·] denotes expected value when following policy π in an environment C.

Reinforcement learning with no-reward demonstrations. We are interested in
settings in which, in addition to an environment C, the agent also has access to demon-
strations without rewards. The demonstrations are generated by other agents, whose
goals and levels of expertise are unknown, and who have no incentive to educate the con-
trolled agent. We will refer to the controlled agent, i.e., reinforcement learner, as the
‘ego-agent’ and to the agents that generated the demonstrations as ‘other-agents’. We
denote the demonstrations with D = {ξ(1), ξ(2), . . . , ξ(N)}, where the n-th trajectory is:

ξ(n) ≜ (s
(n)
0 , a

(n)
0 , . . . , s

(n)
T , a

(n)
T ;k) (4.2)

is generated by the k-th agent. Note that each trajectory does include an identifier of
the agent that generated it. The ego-agent also gathers its own experience by interacting
with the environment, collecting rollouts B = {(s, a, s ′, r ′)}. Due to the lack of reward
annotations in D, and the fact that the data may be irrelevant to the ego-agent’s task, it
is not trivial to combine demonstrations from D with the ego-agent’s experience B.

s

hθh

qθq

q

z

πθπ

π

Figure 4.1: Q-learning with a be-
haviour cloning (BC) auxiliary loss.

Behaviour cloning as an auxiliary loss. The no-
reward demonstrations D can be used as an auxil-
iary loss for representation learning (Hernandez-Leal
et al., 2019). For instance, consider a Q-learning
agent (§2.3.2; Watkins, 1989) with a representation
network hθh

and action-value network qθq
as in Fig-

ure 4.1 (Mnih et al., 2013, 2015). These two neural
networks (NNs) are trained with the Q-learning loss
(see Eqn. (2.44)) on the rollouts B. On top of these,
a policy network πθπ

is trained with the behaviour
cloning (BC) loss on the no-reard demonstrations D.
The gradients from the BC loss flow also through the
representation network hθh

and hence we say that
they shape the representation of the Q-learner, i.e.,

4.1. Background & problem setting 67

LBC-AUX(θh, θπ) ≜ E(s,a)∼D[− logπ(A = a|h(s; θh); θπ]. (4.3)

Next, we review the framework of successor features, cumulants and generalised policy
updates, which are the core building blocks for the methods we introduce in §4.2

Cumulants and preferences. The CMP-based formulation of tasks (see §4.1 and Re-
mark 2.9) allows us to capture the notation that a set of tasks may differ in their reward
function but they share the same environment. Consider L ∈ N tasks, with reward func-
tions {rl}Ll=1, then the L tasks (i.e., MDPs) can be written in vector form, i.e.,

M1

M2

...
ML

 (2.27)
=

⟨C, r1⟩
⟨C, r2⟩

...
⟨C, rL⟩

 = ⟨C,

r1

r2

...
rL

⟩ = ⟨C, ΦT

w1

w2

...
wL

⟩, (4.4)

where for the last equality we used the decomposition of the rewards in cumulants Φ

and preferences vectors {wl}Ll=1 as done by Dayan (1993); Barreto et al. (2017), i.e.,

rw(s, a) ≜ Φ(s, a)⊤w, (4.5)

where Φ(s, a),w ∈ Rd. As Eqn. (4.4) suggests, the cumulants Φ are task-agnostic
(i.e., shared among all L tasks) and the preferences are task-specific (i.e., one per task).

Remark 4.1 (cumulants and preference in layman’s terms): We can think of cu-
mulants as linear basis functions for the rewards, capturing shared salient features
between the different tasks. The preference vectors are then the coefficients for mix-
ing the different components of the (cumulants) basis to compose rewards functions.

Example 4.1 (didactic example for cumulants and preferences): For instance, con-
sider a set of different tasks in the gridworld environment in Figure 4.2.

Figure 4.2: CoinGrid

Let three 3 tasks, with rewards:

• r1: 1 when entering a green cell, −1 when entering
a red cell and 0 otherwise.

• r2: 2 when entering a red cell, −1 when entering a
yellow cell and 0 otherwise.

• r3: 1 when entering a yellow cell, −3 when entering
a green cell and 0 otherwise.

The reward functions can be decomposed into cumulants:

68 4. Plan and adapt from sub-optimal demonstrations

Φ = [rgreen, rred, ryellow], (4.6)

and then the corresponding preference vectors are:

w1 = [1,−1, 0], w2 = [0, 2,−1], w3 = [−3, 0, 1]. (4.7)

The choice of decomposing the rewards into a dot product between a task-agnostic term
(cumulants) and a task-specific (preferences vector) term, rather than any other non-linear
decomposition, lies in the fact that we want exploit the linearity property of the value
function (w.r.t. the reward function)† (Puterman, 2014) to speed up policy evaluation.

Successor features. Given Eqn. (4.5), the action-value of a policy π is given by:

qπ,w(s, a) ≜ Eπ,C[
∑
t⩾0

γtrw(St, At)|S0 = s,A0 = a] (4.8a)

(4.5)
= Eπ,C[

∑
t⩾

γtΦ(St, At)
⊤w|S0 = s,A0 = a] (4.8b)

= Eπ,C[
∑
t⩾0

γtΦ(St, At)|S0 = s,A0 = a]⊤w. (4.8c)

We refer to the red term in Eqn. (4.8c) as successor features (SFs, Barreto et al., 2017), i.e.,

Ψπ(s, a) ≜ Eπ,C[
∑
t⩾0

γtΦ(St, At)|S0 = s,A0 = a] (4.9a)

qπ,w(s, a)
(4.8c)
= Ψπ(s, a)⊤w. (4.9b)

Remark 4.2 (successor features (SFs) in layman’s terms): SFs are to cumulants
what value functions are to rewards. In other words, successor features (of the policy
π) are the expected discounted sum of cumulants collected by unrolling policy π in
an environment C. In particular, the i-th component of Ψπ(s, a) gives the expected
discounted sum of Φ(s, a)’s i-th component, when starting from state s, taking ac-
tion a and then following policy π. Intuitively, cumulants Φ can be seen as a vector-
valued reward function (see Eqn. (4.4)) and SFs Ψπ the corresponding vector-valued
state-action value function for policy π.

Similar to Eqn. (2.40) for the value functions, the SFs can be recursively defined:

†The value in Eqn. (2.29d) is the expectation (linear map) of a weighted sum of rewards (linear maps).

4.1. Background & problem setting 69

Ψπ(s, a)
(4.9a)

≜ Eπ,C[
∑
t⩾0

γtΦ(St, At)|S0 = s] (4.10a)

= Eπ,C[Φ1 + γ
∑
t⩾1

γtΦ(St, At)

Ψπ(S1,A1)

|S0 = s,A0 = a] (4.10b)

= Eπ,C[Φ1 + γΨπ(S1, A1)|S0 = s,A0 = a]. (4.10c)

As a result, temporal difference (TD, see 2.3.2) learning methods can be used for learn-
ing SFs. For instance, a function approximator with parameters θΨπ can be trained from
one-step transitions (s, a, s ′, a ′) ∼ B by minimising the (one-step) TD loss:

LTD-Ψ(θΨπ) ≜ E(s,a,s ′,a ′)∼B∥Ψ(s, a; θΨπ) −Φ(s, a) − γ SG[Ψ(s ′, a ′; θΨπ)]∥, (4.11)

where SG[·] is a stop-gradient operation for semi-gradient TD updates (see §2.3.2).

Generalised policy evaluation. Eqn. (4.9) suggests that SFs are task-agnostic. In par-
ticular, given Ψπ, the value of π for a new preference w ′ can be easily computed with gen-
eralised policy evaluation (GPE, Barreto et al., 2017), i.e., Ψπ(s, a)⊤w ′ = qπ,w ′

(s, a).

Example 4.2 (didactic example for generalised policy evaluation (GPE)): Consider
the tasks from Example 4.1 and a policy πGY, which navigates the gridworld to the
nearest green or yellow cell without stepping on the red cells.

To evaluate the policy on all 3 tasks (rewards) from Example 4.1, there are options:
(i) use policy evaluation methods from §2.3.2, i.e., compute from scratch the value of
the policy πGY for each reward function; and (ii) calculate only once the SFs of the
policy, ΨπGY , and then perform GPE with the corresponding preference vectors, i.e.,

qπGY,w1

(s, a) = ΨπGY(s, a)⊤w1 (4.12a)

qπGY,w2

(s, a) = ΨπGY(s, a)⊤w2 (4.12b)

qπGY,w3

(s, a) = ΨπGY(s, a)⊤w3. (4.12c)

Note that GPE scales a lot more gracefully than policy evaluation from scratch as
the number of tasks grows. However, GPE relies on the assumption that it is pos-
sible to efficiently and effectively compute or estimate the SFs of the policy.

Planning with successor features. Fast policy evaluation thanks to GPE, and by
extension SFs, can accelerate value-based planning. First, we note a theoretical result:

70 4. Plan and adapt from sub-optimal demonstrations

Theorem 4.1 (generalised policy improvement (GPI, Barreto et al., 2017)): Let a

set of policies Π = {π1, . . . , πK} and let {qπ1,r, . . . , qπK,r} the corresponding action-
value functions for reward function r. Next, we can show that the GPI policy, i.e.,

πGPI(s) ≜ arg max
a∈A

max
k

qπk,r(s, a), (4.13)

is a strict (unless already optimal) improvement over the set Π, i.e.,

qπGPI,r(s, a) ⩾ max
k

qπk,r(s, a), (4.14)

for any s ∈ S and a ∈ A, where qπGPI,r is the action value of the GPI policy.

Proof. See (Barreto et al., 2017).

Intuitively, Theorem 4.1 states that, provided the action-value functions of a set of policies,
we can extract a policy that dominates all of them. Also, we saw that GPE is an efficient
mechanism for evaluating a policy in a number of tasks. Next, we combine these two.

Lemma 4.1 (generalised policy improvement (GPI) with successor features (SFs)):

Given the SFs of a set of policies, i.e., {Ψπ1
, . . . , ΨπK

}, we can apply GPI to derive a
new (improved) policy πGPI whose performance on a task with preference vector w
is no worse that the performance of any of π ∈ Π on the same task, given by:

πGPI(s) ≜ arg max
a∈A

max
k

Ψπk

(s, a)⊤w. (4.15)

Note that in Eqn. (4.15) the maxk can be thought as a policy selection/planning operation.
In other words, it selects the policy that for a given state-action (s, a) pair and task w has
the highest evaluation, and then performs an improvement step upon it (since the maxa).

Example 4.3 (didactic example for generalised policy improvement (GPI)): Con-
sider the 3 tasks from Example 4.1 and corresponding policies π1, π2 and π3, which
are optimal for tasks w1, w2 and w3, with SFs Ψπ1

, Ψπ2
and Ψπ3

, respectively.

Let a new task in which the agent receives −1 reward for stepping on any of the
coloured cells, i.e., wnew = [−1,−1,−1]. Following any of the policies π1, π2 and π3

leads to some negative reward since all three policies are seeking at least one colour.

Nonetheless, the GPI policy in Eqn. (4.15) for wnew is optimal since it avoids green
(resp. red, yellow) because for state-action pairs that lead to a green (resp. red,
yellow) cell the maxk is won by k = 3 (resp. k = 1, k = 2).

4.2. Methods 71

4.2 Methods

In the context of learning from sub-optimal (no-reward) demonstrations, which is the fo-
cus of this chapter, if we could estimate the SFs of the demonstrators (a.k.a. other agents),
we could utilise them for improving the ego-agent’s policy with GPI. However, to do so
with conventional methods, we would require access to their rewards, cumulants and/or
preferences. In our setting, we can only observe their sequence of states and actions.

4.2.1 Inverse temporal difference (ITD) learning

In this section, we present an offline multi-task inverse reinforcement learning (IRL, §2.2.4)
method for learning (i) cumulants; (ii) per-agent successor features; and (iii) correspond-
ing agent preferences from no-reward demonstration, as defined in §4.1. We call the pro-
posed method inverse temporal difference (ITD) learning and summarise it in Algorithm 2.

Formalisation. Let function approximators for learanble cumulants, preferences vectors
and SFs with parameters θΦ, {wk}Kk=1 and {θΨk ≡ θΨk}Kk=1, respectively. We model the
(other) agents that generated the no-reward demonstrations D as soft-optimal for an un-
known task, i.e., the k-th agent’s policy πk is soft-optimal for the task wk and is given by:

πk(A = a|s) =
exp(qπk

(s, a))∑
b∈A exp(exp(qπk

(s, b))
, (4.16a)

= softmax[qπk

(s, ·)][a] (4.16b)

(4.9b)
= softmax[Ψπk

(s, ·)⊤wk][a], (4.16c)

where softmax[f(·)][i] is the i-th element of the softmax-normalised f(·) 1D-array. We

choose to represent the policy πk as a function of the SFs Ψπk
and preferences vector wk, to

learn this quantities from the no-reward demonstrations via BC, i.e., minimising the loss:

LBC(θΨk ,wk) ≜ E(s,a)∼Dk [− log softmax[Ψ(s, ·; θΨk)⊤wk][a]], (4.17)

where Dk are the demonstrations, generated by the k-th (other) agent, i.e., D ⊃ Dk ∼ πk.

Our key insight is that the cumulants should be TD-consistent with all agents’ successor
features, as of Eqns. (4.10, 4.11) and hence we can train the θΦ accordingly. This proce-
dure inverts† the standard TD learning framework for SFs where they are trained to be con-
sistent with a fixed (unlearned) cumulant function Φ. Instead, we first train the SFs and
preferences vectors to ‘explain’ the other agents’ behaviour with the BC loss Eqn. (4.17),
and then train θΦ, θΨk to be (self-)consistent by minimising the ITD loss, given by:

†Hence the name inverse TD learning.

72 4. Plan and adapt from sub-optimal demonstrations

LITD(θΦ, θΨk) ≜ E(s,a,s ′,a ′)∼Dk∥Ψ(s, a; θΨk) −Φ(s, a; θΦ) − SG[γΨ(s, a; θΨk)]∥. (4.18)

After training, by the definitions of cumulants, preferences vectors and SFs from 4.1, we
recover: (i) action-value functions that can be used for imitating the demonstrator, i.e.,

qπk

(s, a; θ) = Ψ(s, a; θΨk)⊤wk (4.19)

and (ii) an explicit reward function for each agent, i.e.,

rk(s, a; θ) = Φ(s, a; θΦ)⊤wk, (4.20)

where θ ≜ (θΦ, {wk}Kk=1, {θΨk}Kk=1) are all the learnable parameters. Moreover, we can
formally show that the learned reward functions are ‘valid’ in the IRL sense.

Theorem 4.2 (validity of the inverse temporal difference (ITD) learning minimis-
ers): The minimisers of LBC and LITD are potentially-shaped cumulants that ex-
plain the reward-free demonstrations.

Proof. See §B.3.

Intuition. We treat the demonstrators as (soft-)expert agents for some unknown tasks,
whose reward functions can be decomposed into cumulants and preferences, as described
in §4.1. In other words, while these agents may pursuit distinct objectives there is some
‘behavioural basis’ that can be inferred from the no-reward demonstrations.

To discover this basis, we use the fact that: (i) we can parametrise the function approx-
imations to the demonstrators’ policies with action-value functions and hence preferences
vectors and SFs, which are trainable via BC; and (ii) the learned cumulants must be
TD-consistency with each and every demonstrators’ learned SFs.

Example 4.4 (single-task inverse reinforcement learning (IRL) with inverse temporal
difference (ITD)): To gain more intuition about the ITD algorithm, consider the
simpler case of performing IRL with demonstrations from a single demonstrator.

This obviates the need for a representation of preferences, so we can use w = 1. In
this case Ψ is the action-value function q and Φ is simply the reward function r.
Minimising Eqn. (4.17) reduces to finding a action-value function whose softmax

gives the observed policy, and minimising Eqn. (4.18) finds a scalar reward that
explains the action-value function. Our more general formulation, with cumulants
Φ in place of a scalar reward, allows us to perform ITD learning on demonstrations
from many policies, and to efficiently transfer to new tasks.

4.2.2 ΨΦ-learning with no-reward demonstrations 73

Algorithm 2: Inverse temporal difference (ITD) learning

Input :
D = {(s1, a1, . . . , aT ;k)Kk=1} No-reward demonstrations
λw L1 loss coefficient

Output :
θΦ Parameters of cumulants network
{θΨk}Kk=1 Parameters of successor features approximators
{wk}Kk=1 Preferences vectors for the K agents

// Initialisations

1 Initialise parameters θΦ, {θΨk ,wk}Kk=1

2 while budget do

3 Sample trajectories {ξ(n) = (s
(n)
1 , a

(n)
1 , . . . , s

(n)
T , a

(n)
T ;k(n))}Nn=1 ∼ D

// Behaviour cloning (BC) loss minimisation

4 Calculate LBC(θΨk ,wk) on samples {ξ(n)}Nn=1 ▷ see Eqn. (4.17)

5 θΨk
α← ∇θ

Ψk
LBC(θΨk ,wk) ▷ update Ψs

6 wk α← ∇wk

(
LBC(θΨk ,wk) + λw∥wk∥1

)
▷ update ws

// Inverse temporal difference (ITD) loss minimisation

7 Calculate LITD(θΦ, θΨk) on samples {ξ(n)}Nn=1 ▷ see Eqn. (4.18)

8 θΦ
α← ∇θΦ

LITD(θΨk , θΦ) ▷ update Φ

9 θΨk
α← ∇θ

Ψk
LITD(θΨk , θΦ) ▷ update Ψs

Practical implementation. In practice, we found that a sparsity prior, i.e., L1 regular-
isation loss, on preferences wk is also key to promote disentangled cumulant dimensions
(see Figure 4.7). In particular, we found the L1 loss made the algorithm more robust to
the choice of dimension of Φ (see Figure B.7), but did not substantially affect the overall
performance otherwise. Moreover, target networks (Mnih et al., 2013, 2015) are used
for the ITD loss to further stabilise learning.

4.2.2 ΨΦ-learning with no-reward demonstrations

In this section, we present a RL agent that can leverage sub-optimal demonstrations to
accelerate its learning, combining the ITD multi-task IRL algorithm (see §4.2.1) with
a novel ignorance-averse GPI (see §2.1.2 and Lemma 4.1) planning mechanism. We call
the proposed method ΨΦ-learning (ΨΦL) and summarise it in Algorithm 3.

Formalisation. ΨΦ-learning is an off-policy algorithm based on Q-learning (Watkins and
Dayan, 1992) and leverages the no-reward demonstrations using ITD. The action-value

74 4. Plan and adapt from sub-optimal demonstrations

s

hθh

ΦθΦΦθΦ

Φ

z

Ψθ
Ψ0

Ψθ
Ψ1

Ψθ
Ψ2 · · · Ψθ

ΨKΨθ
Ψ0

Ψθ
Ψ1

Ψθ
Ψ2

Ψθ
ΨK

Ψ0 Ψ1 Ψ2 ΨK

w0 w1 w2 wK

q0 q1 q2 qK

Figure 4.3: The ΨΦ-learning (ΨΦL) agent’s neural network (NN) architecture. It
comprises of (i) a representation network hθh

that receives learning signal from all the
losses, shaping a shared representation. (ii) a cumulants network ΦθΦ

; (iii) successor
features (SFs) approximators for each of the demonstrators {Ψθ

Ψk
}Kk=1 and the ‘ego’

reinforcement learning (RL) agent Ψθ
Ψ0

; and corresponding (iv) preferences vectors

{wk}Kk=0. Ensembles of two SFs approximators (per-agent) are used for combatting the
overoptimisation of learned reward functions phenomenon (see §2.10).

function is represented with successor features, Ψ0, and preferences, w0, as in Eqn. (4.9b).†

The ego-agent interacts with the environment, storing its rollouts in a replay buffer, B.
On top of the ITD losses from §4.2.1, the ΨΦ-learner optimises: (i) a reward prediction
loss; and (ii) TD-learning losses for its action value and SFs, given by:

Lr(θΦ,w0) ≜ E(s,a,r′)∼B∥Φ(s, a; θΦ)⊤w0 − r ′∥ (4.21a)

Lq(θΨ0) ≜ E(s,a,s′,r′)∼B∥Ψ(s, a; θΨ0)⊤w0 − r ′ − SG[γmax
a′

Ψ(s ′, a ′; θ̃Ψ0)⊤w0]∥ (4.21b)

LTD-Ψ(θΨ0) ≜ E(s,a,s′,a′)∼B∥Ψ(s, a; θΨ0) −Φ(s, a; θΦ) − γ SG[Ψ(s ′, a ′; θΨ0)]∥. (4.21c)

Overall, the ΨΦ-learner minimises the LΨΦL loss on rollouts B and demonstrations D:

LΨΦL(θ) ≜
∑K

k=1(LBC(θΨk ,wk) + LITD(θΦ, θΨk)) + Lr(θΦ,w0) + Lq(θΨ0) + LTD-Ψ(θΨ0). (4.22)

†We reserve the index k = 0 for the ego-agent.

4.2.2 ΨΦ-learning with no-reward demonstrations 75

Provided the SFs estimates {θΨk}Kk=0 and the inferred ego preferences w0, we can use
the GPI (see Lemma 4.1)) to obtain a policy πGPI, which strictly dominates all policies,
including the ego-agent’s and the other agents’, for the ego-agents task.

We observe in §4.3 (see H3) that naively applying GPI on all these learned SFs leads
to instabilities and overoptimisation of learned objectives (i.e., SFs-induced action value
functions). We address this problem by employing the lessons from the previous chapter,
§3. In particular, we quantify the ignorance (i.e., epistemic uncertainty) about SFs and
augment the GPI planning step with an ignorance-averse knowledge equivalent (KE). An
ensemble of M successor features approximators (per-agent) {{θΨk

m
}Mm=1}

K
k=1 are learned

(see Figure 4.3) and the ΨΦ-learner selects actions according to:

πego(s) ≜ arg max
a∈A

max
k∈[K]

min
m∈[M]

Ψ(s, a; θΨk
m
)⊤w0. (4.23)

Intuition. The ΨΦ-learner projects all the data, rollouts and no-reward demonstrations,
and its predictions in a unified space, the one of cumulants and preferences. This enables
flow of information from the different data sources. In other words, we share the same
cumulants between the ITD learning from other agents and the ego-learning, so that they
span the joint space of reward functions. This can be also seen as a representation learn-
ing method, where by enforcing all agents, including the ego-agent, to share the same Φ,
we transfer information about salient features of the environment from learning about one
agent to benefit learning about all agents. This is, by extension, true all for the preferences.

Then, the ΨΦ-learner exploits the generalised policy updates from §4.1, i.e., GPE and
GPI, to accelerate its online learning. Although Lemma 4.1 suggests that the GPI is a
strict improvement, it does not account for approximation errors. To avoid any potential
overoptimisation problems, we adopt the principle of “pessimism in the face of ignorance”.

Practical implementation. We use a NN function approximator and share represen-
tation between all the predictors. Its architecture is illustrated in Figure 4.3. To cap-
ture the ignorance in SFs to avoid overoptimisation of the learned action-values (see
Eqn. (4.23)), we use ensembles of two components, trained according to Remark 2.8.
Similar to §4.2.1, for any TD-like loss, we use target networks to stabilise learning.

76 4. Plan and adapt from sub-optimal demonstrations

Algorithm 3: ΨΦ-learning (ΨΦL)

Input :
D = {(s1, a1, . . . , aT ;k)Kk=1} No-reward demonstrations
λw L1 loss coefficient
M Number of ensemble members

Output :
θΦ Parameters of cumulants network
{wk}Kk=0 Preferences vectors
{{θΨk

m
}Mm=1}

K
k=0 Parameters of successor features approximators

// Initialisations

1 Initialise parameters θΦ, {{θΨk
m
}Mm=1,w

k}Kk=0 and buffer B = {}

2 while budget do

// Agent-environment online interaction

3 s← env.reset(), t← 0

4 while not done do
5 Infer ego-agent’s task with online linear regression

w0 ← arg min
w

E(s,a,r′)∼B∥Φ(s, a; θΦ)⊤w− r ′∥ ▷ see Eqn. (4.21a)

Plan with ignorance-averse generalised policy improvement (GPI)

a∗ ← arg max
a∈A

max
k∈[K]

min
m∈[M]

Ψ(s, a; θΨk
m
)⊤w0 ▷ see Eqn. (4.23)

s ′, r ′, done← env.step(a∗)
// Book-keeping

6 B← B ∪ (s, a∗, r ′, s ′), s ′ ← s, t← t+ 1

7 Append online demonstrations in D ▷ optional

// Learning from sub-optimal (no-reward) demonstrations

8 θΦ, {θΨk
m
,wk}Kk=1 ← ITD

(
D, λw, θΦ, {θΨk ,wk}Kk=1

)
▷ see Algorithm 2

// Learning from ego-experience (RL)

9 Sample SARS transitions {bn = (s(n), a(n), r ′(n), s ′(n))}Nn=1 ∼ B

// Reward loss minimisation

10 Calculate Lr(θΦ,w0) on samples {bn}
N
n=1 ▷ see Eqn. (4.21a)

11 θΦ
α← ∇θΦ

Lr(θΦ,w0) ▷ update Φ

// Temporal difference (TD) losses minimisation

12 Calculate Lq(θΨ0) on samples {bn}
N
n=1 ▷ see Eqn. (4.21b)

13 Calculate LTD-Ψ(θΨ0) on samples {bn}
N
n=1 ▷ see Eqn. (4.21c)

14 θΨ0
α← ∇θ

Ψ0
(Lq(θΨ0) + 1

|Ψ|
LTD-Ψ(θΨ0)) ▷ update Ψ0

4.3. Experiments 77

(a) Highway (b) Roundabout (c) CoinGrid (d) FruitBot

Figure 4.4: Environments studied in this chapter. Environments (a-b) are multi-agent
environments in which the ego-agent must learn online from other agents, and learn to nav-
igate around other agents in the environment (see §4.3.1). Environments (c-d) are single-
agent. In environment (c) we test whether the ego-agent can learn offline from a set of
demonstrations previously collected by other agents (see §4.3.4). Environment (d) is used
to test whether our method can scale to more complex, high-dimensional tasks (see §4.3.1).

4.3 Experiments

We conduct a series of experiments to determine how well ΨΦ-learning (ΨΦL) functions
as an RL, IRL, imitation learning, and transfer learning algorithm.

Baselines. We benchmark against the following methods: (i) DQN (Mnih et al., 2013),
(ii) Behaviour cloning (BC) is a simple imitation learning method in which we learn
p(a|s) via supervised learning on the demonstration data, (iii) DQN+BC-AUX is the
DQN agent with an additional behaviour cloning (BC) auxiliary loss (Hernandez-Leal
et al., 2019), (iv) GAIL is the Generative Adversarial Imitation Learning (Ho and Er-
mon, 2016), which uses a GAN-like approach to approximate the expert policy, and (v)
SQILv2 is Soft Q Imitation Learning (Reddy et al., 2019), a recently proposed imitation
technique that combines imitation learning and RL, and works in the absence of rewards.
For high-dimensional environments, we replace DQN with PPO, Proximal Policy Op-
timization (Schulman et al., 2017). Both DQN and PPO are trained to optimise envi-
ronment reward through experience, and do not have access to other agents’ experiences.

Environments. Experiments are conducted using four environments, shown in Fig-
ure 4.4. We cover a broad range of problem setting, including both multi-agent and
single-agent environments, as well as learning online during RL training, or offline from
previously collected demonstrations.

Highway (Leurent, 2018) is a multi-agent autonomous driving environment in which
the ego-agent must safely navigate around other cars and reach its goal. The other
agents follow near-optimal scripted policies for various goals, depending on the sce-
nario. In the single-task scenario (SingleHighway), other agents have the same objec-
tive as the ego-agent, so their experience is directly relevant. In the adversarial task

78 4. Plan and adapt from sub-optimal demonstrations

(AdversarialHighway), the other agents do not move, and the ego-agent has to acceler-
ate and go to a particular lane while avoiding other vehicles. Finally, in the multi-task
scenario (MultiHighway), the other agents and ego-agent have different preferences over
target speed, preferred lane, and following distance. We consider the multi-task sce-
nario to be the most realistic and representative of real highway driving with human
drivers. In addition to highway driving, we also study the more complex Roundabout task.
Roundabout is inherently multi-task, in that other agents randomly exit either the first
or second exit, while the ego-agent must learn to take the third exit.

CoinGrid is a single-agent grid-world, environment containing goals of different colours.
We collect offline trajectories of pre-trained agents with preferences for different goals.
red. During training, the ego-agent is only rewarded for collecting a subset of the possible
goals. We can then test how well the ego-agent is able to transfer to a goal that was
never experienced during training (§4.3.4). This environment also enables learning easily
interpretable preference vectors, allowing us to visualize how well our method works as
an IRL method for inferring rewards (§4.3.2).

FruitBot is a high-dimensional, procedurally generated, single-agent environment from
the OpenAI ProcGen (Cobbe et al., 2020) suite. We use FruitBot to test whether ΨΦ-
learning can scale up to more complex RL environments, requiring larger deep neural
network architectures that learn directly from pixels. The agent must navigate around
randomly generated obstacles while collecting fruit, and avoiding other objects and walls.
To create a multi-task version of FruitBot, we define additional tasks which vary agents’
preferences over collecting objects in the environment, and train PPO baselines on these
task variants. The ego-agent observes the states and actions of these trained agents
playing the game in parallel with its own interactions.

4.3.1 Accelerating RL with no-reward demonstrations

This section addresses three hypotheses: H1: When the unlabelled demonstrations are rel-
evant, ΨΦ-learning can accelerate or improve performance of the ego-agent when learning
with online RL; and H2: If the demonstrations are irrelevant, biased, or are generated by
sub-optimal demonstrators, ΨΦ-learning can perform at least as well as standard RL. H3:
Ignorance-averse planning is essential when learning from static no-reward demonstrations.

Figure 4.5 shows the results of ΨΦ-learning and the baselines in the Highway and
FruitBot environments. In SingleHighway (Figure 4.5a), when other agents’ experi-
ence is entirely relevant to the ego-agent’s task, imitation learning methods like BC and
SQILv2 learn fastest. DQN learns slowly because it does not use the other agents’ experi-
ence. However, ΨΦ-learning achieves competitive results, out-performing DQN+BC-Aux
(Hernandez-Leal et al., 2019; Ndousse et al., 2020).

In AdversarialHighway (Figure 4.5b), the other agents’ behaviors are irrelevant for

4.3.1 Accelerating RL with no-reward demonstrations 79

ΨΦL (ours) RL BC RL + BC-Aux SQILv2

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(a) SingleHighway

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(b) AdversarialHighway

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(c) MultiHighway

107 108
Timesteps

0

2

4

Re
tu
rn
s

(d) FruitBot

Figure 4.5: Learning curves for ΨΦ-learning (ΨΦL) and baselines in three tasks in
the multi-agent Highway environment (a-c), and in single-agent FruitBot (d). Tasks
(a) and (b) represent extreme cases where either reinforcement learning (RL) or im-
itation learning (IL) is irrelevant. In SingleHighway (a), other agents have the same
task as the ego-agent, so IL excels. In AdversarialHighway (b), other agents exhibit
degenerative behaviour, so IL performs extremely poorly and traditional RL (DQN)
excels. In both of these extreme cases, ΨΦ-learning achieves good performance, showing
it can flexibly reap the benefits of either IL or RL as appropriate. MultiHighway (c)
is most realistic; here, other agents have varied preferences and goals that may or may
not relate to the ego-agent’s task. ΨΦ-learning clearly outperforms baseline techniques.
Similar results are shown in FruitBot (d), showing that ΨΦ-learning scales well to
high-dimensional environments, consistently outperforming baselines like PPO and SQIL.
We plot mean performance over 3 runs and individual runs are transparent.

the ego-agent’s task, so imitation learning (BC and SQILv2) performs poorly, while
traditional RL techniques (DQN and DQN+BC-Aux) perform best. The performance of
ΨΦ-learning does not suffer like other imitation learning methods; instead, it retains the
performance of standard RL (H2). ΨΦ-learning can flexibly reap the benefits of either
imitation learning or RL, depending on what is most beneficial for the task.

The MultiHighway (Figure 4.5c) is the most realistic autonomous driving task, in which
other agents navigate the highway with varying driving styles. Here, ΨΦ-learning clearly
out-performs all other methods, suggesting it can leverage information about other agents’
preferences in order to learn the underlying task structure of the environment, acclerating
performance on the ego-agent’s RL task (H1). FruitBot (Figure 4.5d) gives consistent
results, showing that ΨΦ-learning scales well to high-dimensional, single-agent tasks
while still outperforming BC, SQIL, PPO, and PPO+BC-Aux.

Figure 4.6 shows the results of ΨΦ-learning and ignorance-unaware variants, aiming to
assess the impact of ignorance quantification and pessimism (ignorance-averse KE in
Eqn. (4.23)). We observe that not using an ignorance-averse (pessimistic) KE (a.k.a. “-
pessimistic KE”) is as bad as not using an ensemble at all (a.k.a. “- ensemble”). In
particular, in SingleHighway (Figure 4.6a), they learn learn slower than ΨΦL, and in
AdversarialHighway (Figure 4.6b) and MultiHighway (Figure 4.6c), they fail to learn
completely. Therefore, we can conclude that ignorance quantification and an ignorance-

80 4. Plan and adapt from sub-optimal demonstrations

ΨΦL (ours) − pessimistic KE − ensemble

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(a) SingleHighway

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(b) AdversarialHighway

102 103 104
Timesteps

0.0

0.5

1.0

Re
tu
rn
s

(c) MultiHighway

Figure 4.6: Learning curves for ΨΦ-learning (ΨΦL) and ignorance-unaware variants
in three tasks in the multi-agent Highway environment (a-c). The “- pessimistic KE”
variant learns ensembles of cumulants and successor features (SFs) but uses only on
for action selection, i.e., m = 1 in Eqn. (4.23). The “- ensemble” variant does not learn
ensembles at all. The performance of the ignorance-unaware variants is relatively poor.

averse KE are vital for ΨΦL’s performance (H3).

4.3.2 Inferring reward functions

We now test hypothesis H4: ITD is an effective IRL method, and can accurately infer
other agents’ rewards. We present a quantitative and qualitative study of the rewards for
other agents that are inferred by ITD, as well as the learned cumulants and preferences.
Here, we focus solely on offline IRL and use only ITD to learn from offline reward-free
demonstrations, without any ego-agent experience.

To quantitatively evaluate how well ITD can infer rewards, we train an RL agent on the
inferred reward function, and compare the performance to other imitation learning and
IRL methods. Table 4.1 gives the performance in terms of normalised returns on all three
environments. Using ITD to infer rewards results in significantly higher performance than
BC and SQIL, in two environments, and competitive performance in FruitBot. We note
that unlike ΨΦ-learning, BC and SQIL directly learn a policy from demonstrations, and
do not actually infer an explicit reward function. In contrast, GAIL does infer an explicit
reward function, and ITD gives consistently higher performance than GAIL in all three
environments. These results demonstrate that ITD is an effective IRL technique (H4).

Qualitatively, we can evaluate how well the cumulants inferred by ITD in the CoinGrid en-
vironment span the space of possible goals. We compute the learned cumulants Φ̂(s) for
each square s in the grid. Figure 4.7a shows the original CoinGrid game, and Figures 4.7b-
4.7d shows the first three dimensions of the learned cumulant vector, Φ̂1-Φ̂3 (the rest are
given in Figure B.6). We find that Φ̂1 is most active for red coins, Φ̂2 for green, and Φ̂3

for yellow. Clearly, ITD has learned cumulant features that span the space of goals for this
game. See §B.4 for more details and visualisations of the learned rewards and preferences.

4.3.3 Predicting other agents’ behaviour 81

Table 4.1: We evaluate how well inverse temporal difference (ITD) learning is able to
infer the correct reward function by training an RL agent on the inferred rewards, and
comparing this to alternative imitation learning methods in three environments. All
methods are trained on expert demonstrations. A “♢” indicates methods that infer
an explicit reward function and then use one of DQN or PPO to train an RL agent,
depending on the environment. A “♣” indicates methods that directly learn a policy
from demonstrations. A “†” indicates methods that use privileged task id information for
handling multi-task demonstrations. We report mean and standard error of normalised
returns over 3 runs, where higher-is-better and the performance is upper bounded by 1.0,
reached by the same RL agent, trained with the ground truth reward function.

Methods RoundaboutDQN CoinGridDQN FruitBotPPO

BC†♣ (Pomerleau, 1989) 0.81±0.02 0.69±0.06 0.37±0.02
SQIL†♣ (Reddy et al., 2019) 0.85±0.02 0.64±0.05 0.35±0.03

GAIL†♢ (Ho and Ermon, 2016) 0.77±0.07 0.73±0.02 0.31±0.02
ITD♢ (ours, §4.2.1) 0.92±0.01 0.77±0.03 0.35±0.04

(a) CoinGrid (b) Φ̂1 (c) Φ̂2 (d) Φ̂3

Figure 4.7: Qualitative evaluation of the learned cumulants in the CoinGrid task.
Cumulants Φ̂1, Φ̂2, and Φ̂3 seem to capture the red, green, and yellow blocks, respectively.
Therefore, linear combinations of the learned cumulants can represent arbitrary rewards
in the environment, which involve stepping on the coloured blocks.

4.3.3 Predicting other agents’ behaviour

Here, we investigate hypothesis H5: ΨΦ-learning works as an effective imitation learning
method, allowing for accurate prediction of other agents’ actions. To test this hypothesis,
we train other agents in the Roundabout environment, then split no-reward demonstra-
tions from these agents into a train dataset (80%) and a held-out test dataset. We use
the train dataset to run ITD, which means that we use the data to learn both Φ and the
Ψ and w for other agents. Because it is specifically designed to accurately predict other
agents’ actions, we use BC as the baseline. We compare this to using only ITD, and us-
ing the full ΨΦ-learning algorithm including ITD and learning from RL and experience
to update the shared cumulants Φ.

82 4. Plan and adapt from sub-optimal demonstrations

0 10000 20000
Timesteps

60

80

100

Ac
cu

ra
cy

 % ΨΦL (ours)
ITD
BC
(new task)
train
test

Figure 4.8: Test accuracy in predicting
other agents’ actions. The shared cumulants
Φ for modelling others- and ego- reward
functions allow our ΨΦ-learning (ΨΦL) to
improve its ability to predict others’ actions
by experiencing new ego-tasks. Pure be-
haviour cloning (BC) and our ITD learning
IRL methods achieve high train accuracy but
they do not have a mechanism for utilising
RL experience to improve their generalisa-
tion to the test set as new tasks are provided.

Accuracy in predicting other agents’ ac-
tions on the held-out test set is used to mea-
sure imitation learning performance. Fig-
ure 4.8 shows accuracy over the course of
training. At each phase change marked in
the figure, the ego-agent is given a new task,
to test how the representation learning ben-
efits from diverse ego-experience. We see
that although BC obtains accurate train
performance, it generalises poorly to the
test set, reaching little over 80% accuracy.
Without RL, ΨΦ-learning achieves similar
performance. However, when using RL to
improve imitation, ΨΦ-learning performs
well on both the train and test set, achiev-
ing markedly higher accuracy (≈ 95%) in
predicting other agents’ behaviour. This
suggests that when ΨΦ-learning uses RL
and interaction with the world to improve the estimation of the shared cumulants Φ,
this in turn improves its ability to model the Q function of other agents and predict
their behaviour. Further, ΨΦ-learning adapts well when the agent’s goal changes, since it
uses SFs to disentangle the representation of an agent’s goal from environment dynamics.
Taken together, these results demonstrate that ΨΦ-learning also works as a competitive
imitation learning method (H5).

4.3.4 Transfer and few-shot generalisation

Since SFs have been shown to improve generalization and transfer in RL, here we test
hypothesis H6: ΨΦ-learning will be able to generalize effectively to new tasks in a few-shot
transfer setting. Using the CoinGrid environment, it is possible to precisely test whether
the ego-agent can generalise to a task it has never experienced during training. Specifically,
we would like to determine whether: (i) the ego-agent can generalise to tasks it was never
rewarded for during training (but which it may have seen other agents demonstrate), and
(ii) the ego-agent can generalise to tasks not experienced by any agents during training.

Table 4.2 shows the results of transfer experiments in which agents are given 0, 1, or 100
additional training episodes to adapt to a new task. Unlike SQIL, ΨΦ-learning is able to
adapt 0-shot to obtain some reward on the new tasks, and fully adapt after a single episode
to achieve the maximum reward on all transfer tasks. This is because ΨΦ-learning uses SFs
to disentangle preferences (goals) in the task representation, and learn about the space of
possible preferences from observing other agents. To adapt to a new task, it need only infer
the correct preference vector. Task inference is trivially implemented as a least squares

4.4. Related work 83

Table 4.2: We evaluate how well ΨΦ-learning (ΨΦL) is able to transfer to new tasks in
a few-shot fashion. We construct a multi-task variant of the CoinGrid environment: The
ego-agent is provided demonstrations for either capturing only red coins R or only green
coins G. Then it is evaluated on 4 different tasks: collecting (i) both red and green coins
R+G, (ii) collecting red and avoiding green coins R-G, (iii) avoiding red and collecting green
coins -R+G and (iv) avoiding both red and green coins -R-G. A “♢” indicates methods
that use a single model for all tasks, while “♣” indicates methods that require one model
per task, i.e., they comprise of 4 models. Because it disentangles preferences from task
representation, ΨΦ-learning is able to adapt to reach optimal performance on the new
tasks after a single episode or improve intra-episode from the first episode after experienc-
ing the first rewards. In contrast, SQIL (Reddy et al., 2019) takes 100 episodes to adapt.

Methods R+G R-G -R+G -R-G

0-shot

SQILv2♣ (Reddy et al., 2019) 1.0±0.0 0.0±0.0 0.0±0.0 −1.0±0.0
ΨΦ-learning♢ (ours, §4.2.2) 1.0±0.0 0.2±0.1 0.2±0.1 −0.4±0.2

1-shot

SQILv2♣ (Reddy et al., 2019) 1.0±0.0 0.0±0.0 0.0±0.0 −1.0±0.0
ΨΦ-learning♢ (ours, §4.2.2) 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

100-shot

SQILv2♣ (Reddy et al., 2019) 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0
ΨΦ-learning♢ (ours, §4.2.2) 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

regression problem, see Eqn. (4.21a): Having experienced Bnew in the new task, the ΨΦ-
learner identifies the preference vector for the new task by solving minw

∑
Bnew Lr(θΦ,w).

In contrast, SQIL requires 100 episodes to reach the same performance (H6).

4.4 Related work

The literature review for imitation learning (IL) from expert demonstrations and the
reinforcement learning (RL) problem setting and the Q-learning algorithm can be found
in §2. In this section, we review methods for learning from sub-optimal demonstrations,
using SFs and social learning, to better contexualise the contributions of this chapter.

Learning from sub-optimal demonstrations. Coates et al. (2008); Grollman and
Billard (2011); Zheng et al. (2014); Choi et al. (2019); Shiarlis et al. (2016); Brown et al.
(2019) have studied methods that enable, under certain assumptions, imitation learners to

84 4. Plan and adapt from sub-optimal demonstrations

surpass their demonstrators’ performance. In contrast, our method integrates demonstra-
tions into an online RL pipeline and can use the demonstrations to improve learning on
a new task. Our inverse temporal difference (ITD) learning offline multi-task inverse RL
algorithm is similar to the Cascaded Supervised IRL (CSI) approach (Klein et al., 2013).
However, CSI assumes a single-task, deterministic expert while our ITD learning does not.

Reinforcement learning (RL) with demonstrations. Demonstration trajectories
have been used to accelerate the learning of RL agents (Taylor et al., 2011; Vecerik et al.,
2017; Rajeswaran et al., 2017; Hester et al., 2018; Gao et al., 2018; Nair et al., 2018;
Paine et al., 2018, 2019), as well as demonstrations where actions and/or rewards are
unknown (Borsa et al., 2017; Torabi et al., 2018; Sermanet et al., 2018; Liu et al., 2018;
Aytar et al., 2018; Brown et al., 2019). In contrast to the standard IL setup, these meth-
ods allow improving over the expert performance as the policy can be further fine-tuned
via RL. Offline RL with online fine-tuning (Kalashnikov et al., 2018; Levine et al., 2020)
can be framed under this settings too. Our method builds on the same principles, how-
ever, unlike these works, we do not assume that the demonstration data either come with
reward annotations, or that they relate to the same task the RL agent is learning.

Successor features. Successor features (SFs) are a generalisation of the successor rep-
resentation (Dayan, 1993) for continuous state and action spaces (Barreto et al., 2017).
Prior work has used SFs for (i) zero-shot transfer (Barreto et al., 2017; Borsa et al., 2018;
Barreto et al., 2020); (ii) exploration (Janz et al., 2019; Machado et al., 2020); (iii) skills
discovery (Machado et al., 2017; Hansen et al., 2019); (iv) hierarchical RL (Barreto et al.,
2019) and theory of mind (Rabinowitz et al., 2018). Nonetheless, in all the aforemen-
tioned settings, direct access to the rewards or cumulants was provided. Our method,
instead, uses demonstrations without reward labels for inferring the cumulants and learn-
ing the corresponding SFs. More closely to this work, Lee et al. (2019b) propose learning
cumulants and successor features for a single-task IRL setting. Their approach differs
from ours in two key respects: first, they use a learned dynamics model to learn the cu-
mulants. Second, the learned SFs are used for representing the action-value function,
not to inform the behaviour policy with GPI.

Model of others in multi-agent learning. Our method draws inspiration and builds
on the multi-agent learning setting, where multiple agents participate in the same environ-
ment and the states, actions of others are observed (Davidson, 1999; Lockett et al., 2007;
He et al., 2016a; Jaques et al., 2019). However, we do not explore strategic settings, where
recursive reasoning (Stahl, 1993; Yoshida et al., 2008) is necessary for optimal behaviour.

4.5. Conclusion & discussion 85

4.5 Conclusion & discussion

Summary of contributions. In this chapter, we studied reinforcement learning (RL)
with sub-optimal (no-reward) demonstrations. Firstly, we introduced a novel and flexible
offline multi-task inverse reinforcement learning (IRL) algorithm, called inverse temporal
difference (ITD) learning, which discovers salient task-agnostic environment features in
the form of cumulants, as well as learning successor features and preference vectors for
each agent which provides demonstrations. Secondly, we presented ΨΦ-learning (ΨΦL),
which combines ITD learning with ignorance-aware RL from online experience.

Insights & lessons learned. In our experiments §4.3, we showed that ΨΦ-learning is
robust to the quality and relevance of the demonstrations. Moreover, we concluded that
the role of ignorance quantification and ignorance-averse knowledge equivalents (KEs)
is essential for planning from static data of questionable relevance and quality. Lastly,
the decomposition of rewards and value functions into cumulants and SFs respectively,
enable RL agents that learn online to exhibit fast adapt and modelling of other agents.

Limitations & next steps. ΨΦ-learning is developed with sequential decision-making
in a multi-agent strategic environment in mind but it is not fully compatible with it. It
relies on the assumption that other agents’ goals are static and that their policies are
stationary, both of which are not in general true (Foerster, 2018). Moreover, while ΨΦ-
learning can learn from sub-optimal demonstrations and accelerate RL without requiring
access to high quality expert demonstrations, it still requires access to: (i) the demonstra-
tors actions; and (ii) identical action and state space between the learner and the demon-
strators. Relaxing these two assumptions will enable learning agents to expand the scope
of data sources they can learn from and simplify the data gathering and cleanup phases.

Outlook. One of the fundamental strengths of RL agents is that the do not only learn
from their successes but they also learn from their mistakes—capable of bootstrapping
from those and self-improving (Sutton and Barto, 2018). But we can do better than
solitary trial-and-error, at least in many interesting settings. Most of the real-world en-
vironments are multi-agent, and full of other learners. There are not only opportunities
to compete and collaborate in multi-agent environments but also to learn; from others’
successes, failures and curricula (i.e., learning trajectories and experiences). As more and
more learners (i.e., ‘ego-agents’ in the terminology of this chapter) are getting deployed,
e.g., in the internet or the roads, we expect the to exhibit rapidly adaptive behaviour
to the surrounding agents (i.e., ‘other-agents), who will adapt to changes in the environ-
ment, their beliefs and interact accordingly with the ego-agents. We believe that, solitary
RL or sanitised imitation learning (IL) will not be enough to reach this expectations.

86 4. Plan and adapt from sub-optimal demonstrations

“Consistency is the last refuge of the unimaginative.”

— Oscar Wilde (1854–1900)

5
Plan with model-value inconsistency

Contents

5.1 Background & problem setting . 89
5.2 Method . 90

5.2.1 Implicit value ensemble (IVE) . 91
5.2.2 Model-value inconsistency . 93

5.3 Experiments . 96
5.3.1 Detecting out-of-distribution regimes with self-inconsistency 97
5.3.2 Optimism and pessimism in the face of self-inconsistency 98
5.3.3 Planning with averaged model-predicted values 100

5.4 Related work . 100
5.5 Conclusion & discussion . 102

Using a (learned) model of the environment and a value function, a reinforcement learning
(RL) agent can construct many estimates of a state’s value, by unrolling the model for dif-
ferent lengths and bootstrapping with its value function, as shown in Figure 5.1 by varying
k ∈ N. The model-based policy evaluations methods (§2.3.3; Sutton, 1995; Feinberg et al.,
2018; Hafner et al., 2019b; Byravan et al., 2020), exploit this observation for constructing
value target estimators with reduced variance, e.g., TD(λ) on model-generated rollouts.

Our key insight is that one can treat this set of value estimates as a kind of ensemble (see
§2.2.3), which we refer to as implicit value ensemble (IVE) and hence use it in the same
ways that deep ensembles (§2.2.3; Lakshminarayanan et al., 2017) are used in RL. In the
context of ignorance-aware RL (see §2.3.5) and sequential-decision making more broadly,
which are the focus of this chapter and thesis, we could use the “disagreement” between
the IVE estimates as a proxy for the agent’s ignorance (i.e., epistemic uncertainty). We
term this signal model-value inconsistency or self-inconsistency for short.

∗This chapter is based on the (Filos et al., 2022) publication.

88 5. Plan with model-value inconsistency

s hθh

v̂Nθ (s)

mθm
mθm · · · mθmz0 z1 z2 zN

r1 γr2 γk−1rN

a0 a1 aN−1πθπ
πθπ

πθπ

vθv

γkvN+ · · · + · · · +

Figure 5.1: The computational graph of the one-sample Monte Carlo (MC) estimator
of the k-step model-predicted value (k-MPV), i.e., v̂kθ(s) =

∑k−1
i=0 (γ

iri+1) + γkvk.

Unlike prior work which quantifies ignorance by training a regular (i.e., explicit) ensemble
of many models and/or value functions, IVE requires only a single model and value func-
tion, which are already being learned in most model-based RL algorithms. As a result,
IVE is more computationally and memory efficient than explicit ensembles. Nonetheless,
the sharing of parameters between the ensemble members for IVE inevitably introduces
correlation and hence violates any independence assumption between them, which is es-
sential for the theoretical interpretation of the ensemble members as samples from the
Bayesian posterior distribution over model parameters (§2.2.3; Wilson and Izmailov, 2020).

Despite the lack of theoretical guarantees, in this chapter, we empirically study the ef-
fectiveness of self-inconsistency as a signal for ignorance. In particular, we carry out ex-
periments in both tabular and function approximation settings from pixels (Cobbe et al.,
2020; Tunyasuvunakool et al., 2020) and conclude from evidence that self-inconsistency is
useful (i) as a signal for exploration, (ii) for acting safely under distribution shifts, and (iii)
for robustifying value-based planning with a learned model. The key contributions are:

List of contributions §5 (planning with model-value inconsistency):

1. Ignorance quantification for any model-base RL agent: We present a
novel signal for quantifying an agent’s ignorance about it value function, com-
putable by any model-based RL agent with a single (point) estimate of a world
model and a value function. The learned model-induced Bellman operator is ap-
plied on the learned value function, generating multiple value estimates, which
we term implicit value ensemble (IVE). The agent’s ignorance is quantified by
the disagreement of the IVE components and we call self-inconsistency for short.

2. Match or outperform state-of-the-art ignorance-aware RL agents: We
provide empirical evidence that self-inconsistency provides a proxy of ignorance

5.1. Background & problem setting 89

s

v̂k

· · ·

{v̂i(s)}
k
i=1

v̂1

(a) EVE

s

T π
m̂k

· · · v̂

{T π
m̂i

v̂(s)}ki=1

T π
m̂1

(b) EMVE

s

T π
m̂

v̂

T π
m̂

v̂

T π
m̂

v̂

{(T π
m̂)iv̂(s)}ni=1

(c) Implicit value ensemble (IVE)

Figure 5.2: Scalable ignorance quantification for reinforcement learning (RL) agents’
value function. (a) Explicit ensemble of value functions (EVE, Osband et al., 2016) and
(b) world models (EMVE, Chua et al., 2018), approximate samples from p(vπ|B) and
p(m∗|B), respectively. The number of parameters grows linearly with the ensemble size.
(c) Implicit value ensemble (IVE) make ensemble value predictions using a single learned
value function and world model by exploiting the model-induced Bellman operator T π

m̂ .

(§5.3.1), and that this information can be used to guide exploration or act safely
(§5.3.2), and to robustify value-based planning with a learned model (§5.3.3).

5.1 Background & problem setting

We model the agent’s interaction with the environment as a Markov decision pro-
cess (MDP, Puterman, 2014), i.e., M ≜ ⟨S,A, p, ρ0, r⟩, as in §2.3.1 and Eqn. (2.27). We
denote the policy parameters with θπ. We use parametric function approximators, in par-
ticular deep neural networks (NNs), to approximate the model and value function: θm
are the model and θv are the value function parameters, i.e., mθm

(·, ·|s, a) ≈ m∗(·, ·|s, a)
and vθv

(s) ≈ vπθπ (s). The value function and world model are trained on rollouts B (see
Eqn. (2.35)) using standard methods (see §2.3.2), e.g., temporal difference (TD) learning,
as in Eqn. (2.43), and latent-state reconstruction world modelling, as in Eqn. (2.51).

Model-predicted value. The agent performs model-based policy evaluation using the
(model-induced) Bellman operators (§2.3.3; Bellman, 1957b; Bertsekas, 2012; Puterman,
2014). We denote with (T

πθπ
mθm

)k the k-step (mθm
, πθπ

)-induced Bellman evaluation† op-
erator, see Eqns. (2.63, 2.65), i.e., and its application to value estimator vθv

is given by:

vkθ(s) ≡ (T
πθπ
mθm

)kvθv
(s) ≜ Eπθπ ,mθm

[

k−1∑
i=0

(γiRi+1) + γkvθv
(Sk)|S0 = s], (5.1)

†In this section, we define everything in terms of the Bellman evaluation operator and an approximate
on-policy value function. The Bellman optimality operator and an approximate optimal value function
could be used instead. For completeness, see §C.3.

90 5. Plan with model-value inconsistency

where Eπθπ ,mθm
[·|S0 = s] denotes the expectation over the trajectories induced by un-

rolling policy πθπ
in the world model mθm

, from state s, as defined in Eqn. (2.29d). For
brevity, we write vkθ for the value estimator in Eqn. (5.1), where θ ≜ (θπ, θv, θm), and
we refer to this quantity as the k-step model-predicted value (MPV), or just k-MPV.†

In practice, sample-based methods are used to approximate the expectation in Eqn. (2.65),
e.g., the one-sample Monte Carlo (MC) k-MPV is illustrated in Figure 5.1 and given by:

v̂kθ(s) =

k−1∑
i=0

(γiri+1) + γkvθv
(sk), (5.2)

where s0 = s, (si+1, ri+1) ∼ mθm
(·, ·|si, ai) and ai ∼ πθπ

(·|si), as in Eqn. (2.66).

Remark 5.1 (interpolating between model-free and model-based value estimators):
The k-MPV is a value estimator that interpolates between (i) a model-free value
estimator, i.e., k = 0 and (ii) a purely model-based value estimator, i.e., k→∞.

Explicit ensemble RL methods. In this chapter, we refer to deep ensembles (§2.2.3;
Lakshminarayanan et al., 2017) as explicit ensembles to distinguish them from the pro-
posed implicit ensemble in §5.2. In particular, the explicit value ensemble (EVE, Lowrey
et al., 2018; Osband et al., 2016; Anschel et al., 2017), depicted in Figure 5.2a, comprises
of N value functions with parameters {θv,n}

N
n=1 and its ensemble members are given by:

v1:NEVE(s) ≜ {vθv,n
(s)}Nn=1. (5.3)

The explicit model value ensemble (EMVE, Chua et al., 2018), illustrated in Figure 5.2b,
comprises of N world models with parameters {θm,n}

N
n=1 and a single learned value func-

tion with parameters θv. Then, one forms ensemble value predictions given by:

v1:NEMVE(s) ≜ {v1θn
(s)}Nn=1, (5.4)

where v̂1θn
(s) is the 1-step MPV (see Eqns. (5.1, 5.2)) for parameters θn ≜ (θm,n, θv).

Both the EVE and the EMVE can be regularly trained, e.g., by following Remark 2.7.

5.2 Method

RL agents that quantify their ignorance can (i) explore more effectively; (ii) improve their
robustness to distribution shifts; and (iii) stabilise their learning and planning (see §2.3.5).
Explicit ensemble methods in §5.1 make use of generic ignorance quantification techniques.

†Similar quantities have been used in prior work, e.g., k-preturn (Silver et al., 2017) and MVE (Feinberg
et al., 2018). We discuss them and their differences in more detail in §5.4.

5.2.1 Implicit value ensemble (IVE) 91

5.2.1 Implicit value ensemble (IVE)

In this section, we present a proxy ignorance quantification mechanism for model-based
RL agents, which we call implicit value ensemble (IVE). IVE exploits the structure of
the sequential-decision making problem, as defined in §5.1 and §2.3.1, and, in particular,
the Bellman consistency equations (§2.3.3; Bellman, 1957b) to quantify ignorance from
point estimates of a world model and a value function, offering computational gains and
simpler design than its explicit ensemble counterparts, e.g., EVE and EMVE from §5.1.

Formalisation. We define the IVE as the set of n-MPV estimators (see Eqn. (5.1))
for different values of n, i.e., the number of application of the model-induced Bellman
operator (see §5.1) on a learned value function. For brevity, we denote the IVE with:

v0:NIVE ≜ {vnθ (s)}
N
n=0. (5.5)

When the exact computation of the expectation in Eqn. (2.58) is viable, e.g., in small and
finite MDPs, we can carry out the computation of the IVE members iteratively: First, we
compute the 1-MPV using the one-step model-induced Bellman evaluation operator ap-
plied on vθv

, then we compute the 2-MPV by applying the one-step model-induced Bell-
man evaluation operator on the output of the previous step, etc., until we obtain N-MPV.

Intuition. The model-induced Bellman operators (see Eqn. (5.1)) offer us a way to use
two seemingly different kinds of learned components—a world model and an approximate
value function—to make predictions about the same quantity. In particular, the world
model’s outputs are distribution’s over states and rewards and the output of the ap-
proximate value function is an estimate of (state-)value, i.e., the models operate on very
different output spaces. Nonetheless, thanks to the Bellman operators (§2.3.3; Bellman,
1957b), all these predictions can be combined to form an ensemble on the (state-)value
space. As a result, we say that the members of the IVE form a heterogeneous ensemble
(Wichard et al., 2003) since they differ in (i) functional form, and (ii) learning algorithm.

Remark 5.2 (your model-based agent is secretely an ensemble of value functions
and you should treat it like one): Any agent with a model and value function is, in
effect, also equipped with an ensemble of value functions.

Practical implementation. In practice, as discussed in §5.1 and §2.3.3, the computation
of the k-MPV is intractable and, as a result, we use sample-based approximations to obtain
the IVE members. Specifically, we use the one-sample MC estimator, i.e., the n-th mem-
ber of the IVE is given by Eqn. (5.2): We unroll once the policy πθπ

in the world model
mθm

for n steps, starting from state s and bootstrapping with value vθv
. To compute all

the IVE members, we can use the one-rollout MC estimator: We unroll the policy πθπ
in

the world model mθm
for N steps, producing the model-generated rollout (sn, an, rn)Nn=0.

92 5. Plan with model-value inconsistency

s hθh

v̂0θ(s)

v̂1θ(s)

v̂2θ(s)

...

v̂Nθ (s)

mθm
mθm · · · mθmz0 z1 z2 zN

r1

r1

...

r1

γr2

...

γr2 γk−1rN

...

a0 a1 aN−1πθπ
πθπ

πθπ

vθv
vθv

vθv
vθv

v0

γv1

γ2v2

γkvN

+

+ +

+ · · · + · · · +

v̂
0
:N

IV
E
(s
)

Figure 5.3: The computational graph of the one-rollout Monte Carlo (MC) estimator
of the implicit value ensemble (IVE), using point estimates of a world model and value.

Then, the n-th IVE member, i.e., v̂nθ (s), is calculated using Eqn. (5.2), i.e., we can get
a MC estimate of all the IVE members from a single rollout, as shown in Figure 5.3, i.e.,

v̂0:NIVE ≜ {v̂nθ (s)}
N
n=0. (5.6)

In theory, the IVE members should be highly correlated since: (i) they share the same NN
parameters; and (ii) the one-rollout MC estimator further correlates the ensemble mem-
bers. Although the former source of correlation is inherent to the IVE formulation, the
latter could be addressed, e.g., by independently† sampling N rollouts from state s: An
1-step long, a 2-step long, . . . , a N-step long for estimating v̂1θ, v̂

2
θ, . . . , v̂

M
θ , respectively.

In §5.3 and §C.4.1 we ablate this decision, arriving to the conclusion that the one-rollout
MC estimate’s computational efficiency outweighs the small losses due to this correlation.

†Use a different pseudo-random number generator seed for each rollout.

5.2.2 Model-value inconsistency 93

5.2.2 Model-value inconsistency

In this section, we present a signal for quantifying ignorance from the IVE. In partic-
ular, we term the “disagreement” of the IVE members as model-value inconsistency or
just self-inconsistency, for short, since it quantifies the Bellman-inconsistency (Puterman,
2014; Farquhar et al., 2021) of the learned model and approximate value function. Then,
we derive self-inconsistency- (ignorance-) (i) seeking; (ii) averse; and (iii) neutral agents
by using appropriate knowledge equivalents (KEs, see §2.1.2).

Formalisation. Various statistics/aggregators can be used to quantify the “disagreement”
between the IVE components. Since the n-MPVs are scalars, we can use any measure
of disagreement of its components, e.g., the empirical standard deviation across the IVE
members (similar to Eqn. (3.11a)), denoted by σ-IVE[N] for N members and given by:

σ-IVE[N](s) ≜
√

Var[v0:NIVE(s)]
(5.5)
=
√

Var[{vnθ (s)}
N
n=0]. (5.7)

Moreover, drawing inspiration from the ignorance-sensitive KEs from §2.1.2 and §3.2.1,
we define µ-IVE(N) as the value prediction, given by the ensemble mean, and µ+ β · σ-
IVE(N) as the weighted sum of the IVE mean and standard deviation, where β ∈ R.
Therefore, we can use KE (see 2.1.2) and induce a self-inconsistency- (i) seeking; (ii)
averse or (iii) neutral agent. When β > 0, β < 0 and β = 0, respectively, i.e.,

µ-IVE[N](s) ≜
1

N+ 1

N∑
n=0

vnθ (s)}
N
n=0 (5.8a)

(µ+ β · σ)-IVE[N](s) ≜ µ-IVE[N](s) + βσ-IVE[N](s). (5.8b)

Example 5.1 (didactic example for implicit value ensemble (IVE) for a Markov
reward process (MRP)): We focus on the prediction problem (Sutton and Barto,
2018), modelled as a MRP with an one-dimensional state space, i.e., s ∈ S = [−3,+3]
and a discount factor γ = 0.9. We are provided with state-value target pairs,
i.e., {(si, v̄i)}

N
i=1 with N = 10 and learn (i) a representation function h(s; θh),

(ii) a value function v(z; θv) and (iii) a model m(·, ·|z; θm) ≜ (r(z; θm), p(z; θm)),
represented as neural networks with parameters, θh, θv and θm, respectively, similar
to Figure 5.1. In particular:

hθh
(s) = h(s; θh) = tanh(MLPθh

(s)) ≜ z ∈ [−1,+1]32 (5.9a)

vθv
(z) = v(z; θv) = MLPθv

(z) ≜ v ∈ R (5.9b)

pθm
(z) = p(z; θm) = LSTMθm

(z, 0) ≜ z1 ∈ [−1,+1]32 (5.9c)

rθm
(z) = r(z; θm) = MLPθm

(z) ≜ r1 ∈ R, (5.9d)

94 5. Plan with model-value inconsistency

where all the multi-layer percepetrons (MLPs) have one hidden layer of 32 units
with an ELU (Clevert et al., 2015) non-linearity and zk is the (latent) state after
taking k steps with the model m, starting from state z0 ≜ z (Silver et al., 2017).

We make value prediction by repeatedly applying the m model-induced Bellman
operator Tm on the value function vθv

, i.e., constructing different k-step model
predicted values (k-MPVs, Eqn. (5.1)). In particular, the predictions are given by:

v̂0θ(s) = (Tmθm
)0vθv

(hθh
(s)) = vθv

(hθh
(s)) = vθv

◦ hθh
(s) (5.10a)

v̂1θ(s) = (Tmθm
)1vθv

(hθh
(s)) = (rθm

+ γvθv
) ◦ pθm

◦ hθh
(s) (5.10b)

v̂2θ(s) = (Tmθm
)2vθv

(hθh
(s)) =

(rθm
+ γ(rθm

+ γvθv
) ◦ pθm

) ◦ pθm
◦ hθh

(s) (5.10c)

...

v̂kθ(s) = (Tmθm
)kvθv

(hθh
(s))

=

k−1∑
j=0

(γjrθm
◦ (pθm

◦ · · · ◦ pθm
)

(j+1)-times

)+

γkvθv
◦ (pθm

◦ · · · ◦ pθm
)

k-times

)
◦ hθh

(s) (5.10d)

where ◦ denotes function composition. Obviously, the k-MPVs with different k

have different functional forms, as the predictions at initialisation suggest at Fig-
ures 5.4a & 5.4a, too. Note that there is no Monte Carlo (MC) sampling—the
learned model is deterministic and the policy is implicit.

We learn the neural network parameters θ ≜ (θh, θv, θm) using the ADAM (Kingma
and Ba, 2014) optimiser with decoupled weight decay (Loshchilov and Hutter, 2017)
to minimise the empirical squared value prediction error for all k ∈ {0, . . . , 10}, i.e.,

min
θ

N∑
i=1

K∑
k=0

∥v̂kθ(si) − vi∥22. (5.11)

The only source of variability between the k-MPVs (implicit value ensemble (IVE)
members) is their functional form, induced by different compositions of the learned
parametric networks vθv

, pθm
and rθm

as Eqn. (5.10) shows.

5.2.2 Model-value inconsistency 95

μ±3σ-IVE(10) { ̂vkθ}10k=0 targets

s

v(s)

(a) At initialisation

s

v(s)

(b) Value targets

s

v(s)

s

v(s)

(c) After training

Figure 5.4: A value prediction problem of an implicit policy, modelled as a Markov
reward process (MRP, Sutton and Barto, 2018) with an one-dimensional state space,
i.e., s ∈ S = [−3, 3]. We learn a model m̂ and a value function v̂ and construct a k-
step model predicted value (k-MPV, Eqn. (5.1)) by applying the model induced Bell-
man operator Tm̂ repeatedly k times on the learned value function vθv

, i.e., v̂kθ(s) ≜
(Tm̂)kvθv

(s). We visualise the k-MPVs, a.k.a components of the implicit value en-
semble (IVE, Eqn. (5.5)) for k ∈ {0, . . . , 10} (in blue) along with the ensemble mean
and standard deviation (in orange), constructed from a single (point) estimate of the
value function and model. (a) The predictions at initialisation, i.e., before training.
(b) The data, i.e., state and value target pairs. (c) The predictions after training every
IVE member towards the value targets in (b), i.e., minm,v

∑
i

∑
k ∥v̂

k
θ(si)−vi∥22. We

observe in (c) that the ensemble components fit the value targets and their standard
deviation is zero at and around the observed (in-distribution) data but it is non-zero
otherwise (out-of-distribution points). Therefore the IVE members’ disagreement
can be used as a signal for epistemic uncertainty. In this example, the variability be-
tween the IVE members’ predictions is only due to their different functional forms.

Intuition. As our learned model and value function better approximate their “true”
counterparts, the self-inconsistency reduces since the “true” model and value function
are Bellman consistent. Therefore, we could treat self-inconsistency as a proxy signal
for modelling error but with a caveat. When the learned model and approximate value
function are self-consistent, they are not necessarily correct, too, since trivial approxima-
tions, such as the zero-everywhere value and reward functions, are always self-consistent.
Nonetheless, a self-inconsistent pair is by definition inaccurate. Therefore we arrive to
the following rule of thumb for interpreting self-inconsistency.

Remark 5.3 (self-inconsistency on in- and out-of-training distribution (OOD)
states): In regions of state space where the learned model and value function are
accurate, they are also self-consistent. With high self-inconsistency the learned
model or/and value should be inaccurate.

96 5. Plan with model-value inconsistency

5.3 Experiments

We conduct a series of tabular and deep RL experiments† to determine how effective
model-value inconsistency is as a signal for ignorance. Our goal is not to show that the
IVE is better than explicit ensembles. Instead, since IVE is present in any model-based
RL agent, we want to empirically study its properties and validate its usefulness.

Baselines. In the tabular experiments, we learn value functions with expected SARSA
(Van Seijen et al., 2009) and use maximum likelihood estimation (MLE) for model learn-
ing (see §2.3.2). The explicit ensemble components are trained according to Remark 2.7.

In the deep RL experiments, we built on the following model-based agents: (i) Muesli (Hes-
sel et al., 2021) is a policy optimisation method with a learned multi-step expectation
model (see Eqn. (2.54)). Muesli also learns a state-value function, using Retrace (Munos
et al., 2016) to correct for the off-policiness of the replayed experience. The learned model
is used for representation learning and for constructing action-value estimates, by one-
step model unroll, used for policy improvement. The model parameters are trained to
predict reward and value k-step into the future (corresponding to the individual terms in
the k-MPV); (ii) Dreamer (Hafner et al., 2019a) is a policy optimisation method with an
MLE (i.e., reconstruction-based) world model (see Eqn. (2.51)). The model is an action-
conditioned hidden Markov model, trained to maximise (a lower bound on) the likelihood
of the reward and observation sequences. Dreamer learns a value function using only roll-
outs from the learned model and its parameters are learned such that the learned value
function becomes (self-)consistent with the model; (iii) VPN (Oh et al., 2017) is a value-
based planning method with a multi-step expectation model. The action-value function
and model are trained simultaneously with n-step Q-learning (Watkins and Dayan, 1992).
In this case, the k-MPV is the value estimate after applying k times the model-induced Bell-
man optimality operator on the learned value function (see §C.3 for a formal exposition).

Environments. In the tabular experiments, we use an empty 5× 5 GridWorld, and col-
lect data by rolling out a uniformly random policy, initialised at the bottom right cell. We
exclude from the dataset any transitions to the top left cell, as illustrated in Figure 5.5a,
controlling for visited (in-distribution) and unvisited (out-of-training distribution) states.

In the deep RL experiments, we use a selection of 5 tasks from the Procgen suite (Fig-
ure 5.5c; Cobbe et al., 2020) to (i) control the number of distinct levels used for training
the agent (i.e., #levels) and (ii) hold out a set of test levels that are not seen during
training. We also use a modification of the walker walk task from the DeepMind Control
suite (Figure 5.5b; Tunyasuvunakool et al., 2020). The original walker task has a per-
step reward rt bounded in [0, 1] which is computed based on the agent’s torso height and

†Further experiments, details on the experimental protocol and implementations can be found
in §C.4, §C.1 and §C.2, respectively.

5.3.1 Detecting out-of-distribution regimes with self-inconsistency 97

visited unvisited

(a) GridWorld (b) walker (c) Procgen (d) MinAtar

Figure 5.5: Environments studied in this chapter. (a) Small and finite MDP for tab-
ular experiments. (b) Continuous control from pixels. (c) Procedurally generated suite
of pixel-based tasks. (d) Small-scale ALE-inspired (Bellemare et al., 2013) tasks.

forward velocity. To parameterise exploration difficulty, we modify the reward function to
set any reward less than η to zero: r̃t = H(rt − η)rt, where H is the Heaviside step func-
tion. For large η ∈ R+, agents that rely on naive exploration methods will struggle to find
rewards and solve the task. Lastly, we use the original MinAtar (Figure 5.5d; Young and
Tian, 2019) suite for fast experimentation with value-based agents (Mnih et al., 2013).

5.3.1 Detecting out-of-distribution regimes with self-inconsistency

Based on the proposed role of self-inconsistency as a signal for ignorance, and how igno-
rance changes between in- and out-of-training distribution (OOD) regimes, we expect the
following hypotheses to hold. H1: Self-inconsistency is low in in-distribution regions of the
state-action space. H2: Self-inconsistency is high in OOD regions. H3: Self-inconsistency
in an OOD test distribution is reduced by bringing the training distribution closer to it.

Tabular. Figures 5.6a-5.6e show the self-inconsistency, measured as σ-IVE[N] for differ-
ent values of N, in the tabular GridWorld. As N grows from 1 to 20, the standard devia-
tion across the IVE is qualitatively similar to the EVE’s in Figure 5.6j. We observe that
the self-inconsistency is lower for visited states (H1) than unvisited (OOD) ones (H2).

Deep RL. Figure 5.7a shows the Muesli agent’s performance and Figure 5.7b its self-
inconsistency—calculated after training as the σ-IVE[5]—for the different Procgen tasks
and for varying training #levels, after 100M environment steps. The self-inconsistency
for the training (in-distribution) levels is always low, regardless of the #levels used for
training the agent (H1). We also observe that the self-inconsistency in the test (OOD)
levels is higher than the train ones (H2). Importantly, as the number of training levels
increases the self-inconsistency on the test levels decreases, which confirms H3. Also as
expected, this reduced self-inconsistency correlates with improved test performance.

98 5. Plan with model-value inconsistency

0.0 0.5 1.0

(a) σ-IVE[1] (b) σ-IVE[2] (c) σ-IVE[3] (d) σ-IVE[10] (e) σ-IVE[20]

(f) σ-EVE[2] (g) σ-EVE[3] (h) σ-EVE[4] (i) σ-EVE[10] (j) σ-EVE[20]

(k) σ-EMVE[2] (l) σ-EMVE[3] (m) σ-EMVE[4] (n) σ-EMVE[10] (o) σ-EMVE[20]

Figure 5.6: Standard deviation across value ensembles for different numbers of ensem-
ble components N, trained on offline data from GridWorld environment in Figure 5.5a,
excluding the top left state from the training data. (a-e) Implicit value ensemble (IVE)
(ours, see Figure 5.2c), where we vary the length of the rollout used to estimate the
members, as defined in Eqn. (5.6). (f-j) Explicit value ensemble (EVE) (ours, see Fig-
ure 5.2a), where we vary the number of value networks. (k-o) Explicit model value
ensemble (EMVE) (ours, see Figure 5.2b), where we vary the number of world model
networks. The standard deviation σ is normalised in range [0, 1] per figure.

5.3.2 Optimism and pessimism in the face of self-inconsistency

In §2.1.2 and §2.3.5, we showed that decision-makers under uncertainty: (i) seek ignorance
to drive exploration (Sekar et al., 2020) and (ii) avoid it for acting safely (§3; Filos et al.,
2020). This section addresses two hypotheses. H4: Self-inconsistency is an effective signal
for exploration. H5: Avoiding self-inconsistency leads to robustness to distribution shifts.

5.3.2 Optimism and pessimism in the face of self-inconsistency 99

chaser climber coinrun fruitbot jumper

0

0.3

0.6

0.9

M
ea

n
no

rm
al

ise
d

re
tu

rn

(a) Episodic returns

chaser climber coinrun fruitbot jumper

0

0.1

0.2

0.3

0.4

-IV
E

#levels
10
100 Train
500
10
100 Test
500

(b) Self-inconsistency

Figure 5.7: Self-inconsistency as a signal for distribution shifts. (a) Normalised training
and test performance for a Muesli agent evaluated on both training and unseen test levels
of 5 Procgen games after 100M environment frames, for different numbers of unique
levels seen during training. Values are normalised by the min and max scores for each
game. (b) σ-IVE(5) computed using the model of the Muesli agent while evaluating on
both training and unseen test levels, for different numbers of unique levels seen during
training. Bars, error-bars show mean and standard error across 3 seeds, respectively.

σ-IVE(5) (ours)
σ-EVE(5)

σ-EMVE(5)
Greedy Q

Uniform Random

0 50 100 150
Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 re
ac

hi
ng

an
 O

OD
 st

at
e

(a) Optimism

0 50 100 150
Number of steps

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
of

 re
ac

hi
ng

an
 O

OD
 st

at
e

(b) Pessimism

Figure 5.8: Probability of reaching the out-of-
distribution state in a tabular GridWorld, starting
from the bottom right cell (Figure 5.5a) by (a)
seeking or (b) avoiding self-inconsistency (σ-IVE,
see §5.2.2) or explicit value or model ensemble
(EVE, EMVE) standard deviation. Error bars show
standard error over 100 seeds.

Tabular. Figure 5.8a shows the
probability of reaching the novel
state in GridWorld when a self-
inconsistency-seeking policy is fol-
lowed (+σ-IVE). Seeking self-
inconsistency improves upon a uni-
formly random or greedy policy and
is on par with an explicit ensem-
ble of values (EVE) method (H4).
For the experiment in Figure 5.8b,
a distribution shift is performed by
raising the environment stochastic-
ity from δ = 0.1 to δ = 0.5, and the
probability of a self-inconsistency-
avoiding policy (-σ-IVE) is illus-
trated. We observe that the self-
inconsistency-avoiding policy is ro-
bust to the drift of the environment
dynamics (H5).

Deep RL. Table 5.1 gives the performance of the Dreamer agent and variants that use
the model for online planning (Ma et al., 2020) as we increase reward sparsity for the
walker task, e.g., η = 0 is the original task and η = 0.5 sets rewards below 0.5 to zero.
We used the mean of IVE components in place of the learned policy for acting (µ-IVE[5]),
and combined the mean with the self-inconsistency signal for acting optimistically in
the face of uncertainty (µ+ σ-IVE[5]). The self-inconsistency-seeking Dreamer-variant,

100 5. Plan with model-value inconsistency

Table 5.1: Pixel-based continuous control experiments. Results for the Dreamer (Hafner
et al., 2019a) agent and IVE variants on a modified version of the Walker Walk task with
varying degrees of reward sparsity controlled by η, where higher η corresponds to harder
exploration. A “♢” indicates methods that use online-planning for acting. We report
mean and standard error of episodic returns (rounded to the nearest tenth) over 3 runs
after 1M steps. Higher-is-better and the performance is upper bounded by 1000. The
best performing method, per-task, is in bold.

Methods η = 0.0 η = 0.2 η = 0.3 η = 0.5

Dreamer 1000±00 720±10 570±60 80±50
µ-IVE[5]♢ 1000±00 860±40 690±70 210±60

µ+ σ-EVE[5]♢ 1000±00 1000±00 980±10 280±50
µ+ σ-EMVE[5]♢ 1000±00 910±20 730±40 210±60
µ+ σ-IVE[5]♢ 1000±00 1000±00 1000±00 330±70

i.e., µ+ σ-IVE[5], is performing well for η = 0.3 and η = 0.5 while the base agent fails,
corroborating H4. Similar to the tabular experiment results, the IVE is on par with the
the explicit value ensemble (EVE, Figure 5.2a) and outperforms the explicit model value
ensemble (EMVE, Figure 5.2b).

5.3.3 Planning with averaged model-predicted values

Bayesian model averaging (BMA), i.e., integrating over ignorance for making predictions—
linear knowledge equivalent (KE), has been used to boost performance (Wilson and
Izmailov, 2020). The interpretation of the IVE as an ensemble allows to justify prior
methods in the literature that have argued for averaging MPVs (Oh et al., 2017; Byravan
et al., 2020) in order to robustify value-based planning, casting them as approximate BMA
methods. This section addresses one hypothesis: H6: Ensemble averaging of the IVE
members is in general more robust for value prediction than any component individually.

Deep RL. Table 5.2 shows the final performance of a VPN(5) agent that uses µ-IVE[5]
value targets and its v̂1θ and v̂5θ variants’ on the MinAtar tasks. The ensembled µ-IVE[5]
value predictor is consistently better than the single value predictors, supporting H6.

5.4 Related work

The literature review for model-free and model-based reinforcement learning (RL), knowl-
edge equivalents (KEs), ignorance quantification in deep learning (DL) and deep en-

5.4. Related work 101

Table 5.2: Value-based planning experiments on MinAtar tasks, testing the impact
of planning with the IVE ensembled mean. The original VPN(5) (Oh et al., 2017) is the
same with our µ-IVE(5). Non-ensembled value targets (v̂1θ, v̂5θ) lead to significant deterio-
ration in final performance. We report mean and standard error of episodic returns over 3
runs after 2M steps, higher-is-better. The best performing method, per-task, is in bold.

Methods Asterix Breakout Freeway Seaquest Space Invaders

DQN 14.7±0.4 12.1±1.2 49.6±0.3 2.3±0.6 47.2±1.3

VPN+v̂1θ 15.1±0.6 13.8±0.8 49.1±0.7 4.7±0.9 53.9±1.8
VPN+v̂5θ 7.1±2.3 4.2±2.3 24.3±4.2 1.2±1.4 28.6±8.3

µ-IVE(5) 18.3±0.2 22.0±0.7 49.4±0.5 8.6±0.3 97.3±9.6

sembles can be found in §2. In the section, we review the use of model-predicted value
(MPV) estimators, self-consistency signals and implicit ensembles in the context of deep
learning (DL), to better contextualise the contribution of this chapter.

Model-predicted value. The single-sample Monte Carlo (MC) estimator of k-MPV in
Eqn. (5.2) and Figure 5.1, a.k.a. model value expansion (Feinberg et al., 2018) has been
used for constructing value targets (see §2.3.2). In particular, Feinberg et al. (2018); Buck-
man et al. (2018); Byravan et al. (2020) follow a two-step process: (i) they learn a (latent-
state) world model by reconstruction (see Eqn. (2.51)) and then (ii) learn the value func-
tion by regressing it to MPV predictions/targets. Oh et al. (2017); Silver et al. (2017);
Farquhar et al. (2017); Gregor et al. (2019); Schrittwieser et al. (2020); Nikishin et al.
(2021) train the model and value function jointly, with a direct regression loss on the MPV.
Both the IVE and self-inconsistency signal are compatible with these learning approaches.

Adapting k. With varying k, MPV interpolates between the learned model and value
function. In particular, for (i) k = 0 the value predictions are based only on the learned
value function and for (ii) k → ∞ only the learned model contributes to the value
predictions. The λ-predictron (Silver et al., 2017) uses a learned and adaptive mechanism
for mixing the predictions for different ks. STEVE (Buckman et al., 2018) is an ignorance-
informed mechanism for weighting the different MPVs. It learns an explicit ensemble of
models and value functions and weights the MPV using an inverse variance weighting of
the means, calculated across the explicit ensemble. This should not be confused with our
σ-IVE(n) signal, which is the variance across the MPVs and cannot be used for selecting
the “best” k-th element but quantifies the model-value disagreement.

Novelty signals. Non-explicit ensemble methods have been proposed for estimating the
model prediction error and use this as a proxy signal for novelty. Most of these methods
make novelty predictions for a state st, after observing a transition st

at−→ st+1 (Stadie
et al., 2015; Pathak et al., 2017; Raileanu and Rocktäschel, 2020) and therefore are termed

102 5. Plan with model-value inconsistency

retrospective novelty predictors in the literature (Sekar et al., 2020). Lopes et al. (2012)
assume that the agent’s learning progress is a predictable process and fit a model to it.
While (st, at, st+1) triplets are necessary for training the novelty predictor, after training,
the signal can be calculated before observing st+1 and hence can be used for planning
purposes, which we term a plannable novelty predictor. The σ-IVE signal can be inter-
preted as a prediction error estimate that quantifies how the learned value function and
model disagree in their predictions and hence we can use it as a plannable novelty signal.

Self-consistency regularisation. Silver et al. (2017) and Farquhar et al. (2021) regu-
larised their learned value and model pairs to be self-consistent for prediction and control
tasks, respectively. Self-consistency regularisation has been used for learned world mod-
els by matching the predictions of a forward dynamics model with a backward dynamics
model (Yu et al., 2021). Similar regularisation ideas have been used in other areas of
machine learning, including offline multi-task inverse RL (§4; Filos et al., 2021), natu-
ral language processing (Bojar and Tamchyna, 2011; Edunov et al., 2018) and genera-
tive modelling (Zhu et al., 2017). All prior work directly “forces” (i.e., trains for) self-
consistency on modelled quantities as a form of regularisation, e.g., applied on imagined
data (Farquhar et al., 2021). Instead, we treat self-inconsistency as a proxy for ignorance
(i.e., epistemic uncertainty) and, e.g., indirectly promote self-consistency by actively guid-
ing data collection/exploration with a self-inconsistency-seeking policy (see §5.3.2). Con-
sequently, this avoids degenerate but self-consistent solutions since the learned model
and value functions are trained on real data (i.e., external consistency).

Implicit ensembles. Ensembles from a single neural network (NN) have been proposed
and successfully used in supervised learning but they require modifications to the learning
algorithm (Huang et al., 2017; Maddox et al., 2019; Antorán et al., 2020) or architecture
(Huang et al., 2016; Dusenberry et al., 2020). In contrast, IVE relies on the structure of
the RL problem and leverages the Bellman consistency (Puterman, 2014) that the “true”
model and value function satisfy and hence their learned counterparts should also do.

5.5 Conclusion & discussion

Summary of contributions. In this chapter, we studied ignorance quantification in re-
inforcement learning (RL). We introduced a proxy signal for capturing ignorance, called
model-value inconsistency or just self-inconsistency, which we found emperically useful
for: (i) guiding exploration; (ii) increasing an agent’s ability to handle distribution shifts;
and (iii) robustify value-based planning methods. Our key insight is that a single (point)
estimate of a world model and value function can be used to generate multiple estimates
of the state value, termed model-predicted values (MPVs), which can be combined to
form an implicit value ensemble (IVE). The “disagreement” amongst the IVE members,
e.g., quantified by the ensemble standard deviation, is the self-inconsistency signal.

5.5. Conclusion & discussion 103

Insights & lessons learned. In our experiments §5.3, we showed that self-inconsistency
is low in in-distribution and high in out-of-training distribution (OOD) regions of the
state-action space, making it a valid proxy signal for ignorance. Moreover, we can steer the
agent’s behaviour by optimising for ignorance-sensitive, i.e., self-inconsistency-seeking or -
averse, knowledge equivalents (KEs), i.e., making it exploratory or conservative to novelty.
Also, in agreement with prior work (Anschel et al., 2017), treating the IVE as an ensem-
ble and planning with the ensemble mean leads to more stable and performant RL agents.

Limitations & next steps. The computationally efficient one-rollout Monte Carlo
(MC) estimator for the IVE members is susceptible to risk (e.g., aleatoric uncertainty).
Therefore, for highly stochastic environments, it is not possible to disentangle risk from
ignorance from the estimated self-inconsistency signal. Hence alternative approximations
need to be developed, preserving the computational benefits of IVE over explicit ensemble
methods but without compromising performance. Moreover, new self-inconsistency-guided
planning algorithms can be developed. For example, Monte Carlo tree search (MCTS,
Coulom, 2006; Silver et al., 2016) at its “expansion” step it calculates a MPV and at its
“backpropagation” step it aggregates the expanded values to the parent leaves of the tree.
The latter step is an incremental way of computing the IVE ensemble mean. Similarly, an
incremental calculating of the IVE ensemble standard deviation could be possible, giving
rise to an ignorance-aware MCTS variant, efficiently implemented with self-inconsistency.
Lastly, generalising self-inconsistency to non-RL settings could be promising.

Outlook. In §4 and §4.5, we highlighted the importance of learning from unstructured
data sources, leveraging as much knowledge as possible from the environment and the
agents in it. We can think of it as a form of external consistency, i.e., how the learn-
ing agents beliefs change to match the experiences and observations from the external
world/environment, which (possibly) includes the other agents too. Although this is pow-
erful and provides grounding to external sources of information, we expect that generally
capable agents should be internally consistent, too. In this chapter, we demonstrated that
internal/self-consistency can be connected to an agent’s ignorance and leveraged accord-
ingly, leading to empirically more performant agents. We believe that internal consistency
can be a guiding mechanism for self-improvement, which learning agents can leverage to
learn without any external percepts. We will not go as far as Plato (Scott, 2006) and state
that “all learning is recollection” but we are comfortable to claim that some learning is
recollection. Also, the AI research community starts to explore the deeper connections be-
tween (self-)consistency and rationality that philosophers have studied (Schick, 1963).

104 5. Plan with model-value inconsistency

“We can only see a short distance ahead, but we can see plenty
there that needs to be done.”

— Alan Turing (1912–1954)

6
Afterword

In this thesis, we motivated, proposed and investigated a number of ignorance-aware
planning agents that focus on different aspects of sequential decision-making and learning.
These include: (i) learning from expert demonstrations and acting robustly in novel
out-of-training distribution situations (imitation learning, §3); (ii) learning from sub-
optimal demonstrations to accelerate solitary trial-and-error reinforcement learning (social
learning, §4); and (iii) learning efficiently and steadily from trial-and-error (§5). We
verified our intuitions in small scale settings, e.g., tabular environments, and showed that
our methods scale gracefully to larger scale settings, e.g., simulated urban autonomous
driving from high-dimensional LIDAR observations and continuous control from pixels.

In particular, in §3, we demonstrate ignorance-unaware imitation learning methods’ brit-
tleness in out-of-training distribution autonomous driving settings and provide the first
instance of a robust ignorance-aware imitation learner. In §4, we introduce the first
offline inverse reinforcement learning-based social learner, which seamlessly integrates
trial-and-error learning and sub-optimal demonstrations (without reward information)
to rapidly adapt to challenging autonomous driving and pixel-based video games. In §5,
we presented the first performant (explicit) ensemble-free ignorance-aware reinforcement
learner, capable of solving challenging sparse-reward continuous control tasks from pixels.

While we provide supporting evidence for the importance of ignorance-awareness in plan-
ning agents and some instances of such agents that either challenge or outperform the
state-of-the-art, some open challenges remain, and we outline and discuss them next.

Ignorance as a first-class citizen. We have adopted a mechanistic view of ignorance
in this thesis. We associate it with the posterior distribution over models upon observing
some data. While this is an actionable view, which allow us to make progress, it is not

106 6. Afterword

fully integrated in the problem definition of the sequential-decision making problem. The
learning agent is not trained with the notion of being able to take an action “I do not
know”, instead there is a post-hoc/meta-mechanism that operates at the posterior dis-
tribution and makes such decisions, often based on heuristics. We argue that designing
agents (and environments) in which ignorance is treated as a “first-class citizen” can have
profound impact on the way we think about and deal with unknowns (Li et al., 2008).

Temporally abstract planning and reasoning about ignorance. As we have seen
repeatedly in this thesis, planning with a learned model offers us the opportunity to
lookahead for making a decision now, informed by potential realisations of future events.
Nonetheless, both the methods we presented here and the state-of-the-art planning agents
(Schrittwieser et al., 2020; Hafner et al., 2020) plan at the “atomic” (i.e., low-level) ac-
tion space (e.g., ‘turn left’, ‘turn right’, ‘lift this joint by 1cm’), limiting the scope of
possibilities. By extensions, these agents can neither quantify nor make use of longer-
term ignorance. We believe that generally capable agents should be able to reason about
their ignorance in different time scales and incorporate these into their decision-making.

Continual learning & target shifts. Generally capable agents should be able to be
robust and adaptable to novel settings. We distinguish novelty with respect to (i) “input”
variables, e.g., states and plans, and (ii) “output” variables, e.g., evaluations (Lipton
et al., 2018). In this thesis, we have focused on how planning agents can combat the
former, i.e., distribution shifts. However, the latter, i.e., target shifts, are very challenging
and especially relevant for planning agents, as well. For example, the arguably simplest
planning method, value iteration (Bellman, 1957b), even under no distribution shifts,
undergoes target shifts since the value estimates (targets) for the same states and action
pairs change throughout learning, i.e., they are non-stationary (Ring et al., 1994). The
problem is exacerbated when neural network function approximators are used due to their
susceptibility to continually changing (non-stationary) targets (McCloskey and Cohen,
1989; Sahoo et al., 2017). We believe that one of the great challenges for building the
next generation of agents would be to quantify and incorporate ignorance into planning
under target shifts. Although some of the insights and methods proposed in this thesis
may be useful to address target shifts, further innovations in deep learning methods and
reinforcement learning algorithms may be necessary to advance this research direction.

We believe that making progress on the above challenges, as well as the ones mentioned
in the discussion sections of §3.5, 4.5 and 5.5, has the potential to transform the next
generation of artificial agents and contribute to further our pursuit for full autonomy.

A
Plan and adapt

from expert demonstrations

A.1 CARNOVEL: Suite of tasks under distribution shift

(a) AbnormalTurns0-v0 (b) AbnormalTurns1-v0 (c) AbnormalTurns2-v0

(d) AbnormalTurns3-v0 (e) AbnormalTurns4-v0 (f) AbnormalTurns5-v0

(g) AbnormalTurns6-v0 (h) BusyTown0-v0 (i) BusyTown1-v0

108 A. Plan and adapt from expert demonstrations

(j) BusyTown2-v0 (k) BusyTown3-v0 (l) BusyTown4-v0

(m) BusyTown5-v0 (n) BusyTown6-v0 (o) BusyTown7-v0

(p) BusyTown8-v0 (q) BusyTown9-v0 (r) BusyTown10-v0

(s) Hills0-v0 (t) Hills1-v0 (u) Hills2-v0

(v) Hills3-v0 (w) Roundabouts0-v0 (x) Roundabouts1-v0

(y) Roundabouts2-v0 (z) Roundabouts3-v0 (aa) Roundabouts4-v0

Figure A.1: The spawn location and the route for completing each CARNOVEL task.

A.2. AdaRIP examples 109

A.2 AdaRIP examples

(Normalized) Uncertainty

(a) RIP (b) AdaRIP

Figure A.2: Examples where the non-adaptive method (a) fails to recover from a
distribution shift, despite it being able to detect it. The adaptive method (b) queries
the human driver when uncertain (dark red), then uses the online demonstrations for
updating its model, resulting into confident (light red, white) and safe trajectories.

110 A. Plan and adapt from expert demonstrations

B
Plan and adapt

from sub-optimal demonstrations

B.1 Experimental details

In this section we describe the environments used in our experiments (see §4.3) and the
experiment design.

B.1.1 Highway

Figure B.1: Highway

We build on the highway-v0 task from the highway-env traffic
simulator (Leurent, 2018). The task is specified by:

1. State space, S: The kinematic information of the ego
vehicle and the five closest vehicles (ordered from closest
to the furthest) is used as the Markov state, i.e., st =
{[xt, yt, ẋt, ẏt]}ego, other1, ..., other5 ∈ R6×4. The ego-car
is illustrated in green and the other cars in blue.

2. Action space, A: We use a discrete action space, con-
structed by K-means clustering of the continuous ac-
tions of the intelligent driving model (Kesting et al.,
2010). We found out that keeping 9 actions was suffi-
cient, i.e., at ∈ {0, . . . , 8}.

3. Demonstrations, D: At each time-step, the ego-car ob-
serves online the state-action pairs for the 5 closest cars.

112 B. Plan and adapt from sub-optimal demonstrations

B.1.2 Roundabout

Figure B.2:
Roundabout

We build on the roundabot-v0 task from the highway-env

traffic simulator (Leurent, 2018). The task is specified by:

1. State space, S: The kinematic information of the ego
vehicle and the five closest vehicles (ordered from closest
to the furthest) is used as the Markov state, i.e., st =
{[xt, yt, ẋt, ẏt]}ego, other1, ..., other3 ∈ R4×4. The ego-car
is illustrated in green and the other cars in blue.

2. Action space, A: We use a discrete action space, con-
structed by K-means clustering of the continuous ac-
tions of the intelligent driving model (Kesting et al.,
2010). We found out that keeping 6 actions was suffi-
cient, i.e., at ∈ {0, . . . , 5}.

3. Demonstrations, D: At each time-step, the ego-car
observes online the state-action pairs for the 3 closest cars.

B.1.3 CoinGrid

Figure B.3: CoinGrid

We build a simple multi-task gridworld. The task is specified
by:

1. State space, S: We use a symbolic, multi-channel
representation of the 7× 7 gridworld (Chevalier-Boisvert
et al., 2019): the first three channels specify the presence
or absence of the three different coloured boxes, the
forth channel was the walls mask and the fifth and last
channel was the position and orientation of the agent.
We represent the orientation of the agent by ‘painting’
the cell in front of the agent. Therefore st ∈ {0, 1}7×7×5.

2. Action space, A: We use the {LEFT, RIGHT,

FORWARD} actions from Minigrid (Chevalier-Boisvert
et al., 2018) to navigate the maze, i.e., at ∈ {0, 1, 2}.

3. Demonstrations, D: At the beginning of training, the
agent is given state-action pairs of other agents collecting
either red or green coins.

B.1.4 Fruitbot 113

B.1.4 Fruitbot

Figure B.4: FruitBot

We build on the Fruitbot environment from OpenAI’s Proc-
Gen benchmark (Cobbe et al., 2020). The task is specified by:

1. State space, S: We use the original high-dimensional
64× 64 RGB observations, i.e., st ∈ [0, 1]64×64×3.

2. Action space, A: We use the original 15 discrete actions,
i.e., at ∈ {0, . . . , 14}.

3. Demonstrations, D: At each time-step, the agent
observes online the states and actions of 3 trained agents
playing the game in parallel: One agent collects both
fruits and other objects, one collects other objects and
avoids fruits and the last one randomly selects actions.

B.2 Implementation details

For our experiments we used Python (Van Rossum and Drake Jr, 1995). We used
JAX (Bradbury et al., 2018; Babuschkin et al., 2020) as the core computational library,
Haiku (Babuschkin et al., 2020) and Acme (Hoffman et al., 2020) for implementing ΨΦ-
learning (ΨΦL) and the baselines, see §4.3. We also used Matplotlib (Hunter, 2007) for
the visualisations and Weights & Biases (Biewald, 2020) for managing the experiments.

Compute resources. All the experiments were run on Microsoft Azure Standard NC6s v3

machines, i.e., with a 6-core vCPU, 112GB RAM and a single NVIDIA Tesla V100 GPU.
The iteration cycle for (i) Highway experiments was 3 hours; (ii) CoinGrid experiments
was 5.5 hours and (iii) FruitBot experiments was 19 hours.

114 B. Plan and adapt from sub-optimal demonstrations

ΦΨk
LITD

wk

Qk

D

LBCk = 1 . . .K

Ψego

LTD-Ψ

wego

Qego

GPI

πego

B
Lq

rego
L
r

Figure B.5: Computational graph of the ΨΦ-learning algorithm. Demonstrations
D contain data from other agents for unknown tasks. We employ inverse temporal
difference learning (ITD, see §4.2.1) to recover other agents’ successor features (SFs) and
preferences. The ego-agent combines the estimated SFs of others along with its own
preferences and successor features with generalised policy improvement (GPI, see §4.1),
generating experience. Both the demonstrations and the ego-experience are used to learn
the shared cumulants. Losses L∗ are represented with double arrows and gradients flow
according to the pointed direction(s).

Table B.1: ΨΦ-learner’s hyperparameters per environment. The tuning was performed
on a DQN (Mnih et al., 2013) baseline with population based training (Jaderberg
et al., 2017) using Weights & Biases (Biewald, 2020) integration with Ray Tune (Liaw
et al., 2018). We selected the best hyperparameters configuration out of 32 trials per
environment and used this for our ΨΦ-learner.

Highway CoinGrid FruitBot

Torso network, E MLP([512, 256]) IMPALA, shallow (no LSTM) IMPALA, deep (no LSTM)
Cumulants approximator, Φ MLP([128, 128]) MLP([256, 128]) MLP([256, 128])
Successor features approximator, Ψ MLP([256, 128]) MLP([512, 256]) MLP([512, 256])
Ensemble size, Ψ 2 2 2
L1 coefficient 0.05 0.05 0.05

Number of dimensions in Φ 8 4 64

Minibatch size 512 64 32
n-step 4 8 128
Discount factor, γ 1.0 0.9 0.999
Target network update period 100 1000 2500
Optimiser ADAM, lr=1e-3 ADAM, lr=1e-4 ADAM, lr=5e-5

B.3. Proofs 115

B.3 Proofs

First, we formalise the statement of Theorem 4.2.

Theorem 2.1 (Validity of the ITD learning minimiser): The minimisers of LBC

and LITD are potentially-shaped cumulants that explain the observed reward-free
demonstrations.

Proof. First, we prove the validity of the minimiser of the inverse temporal difference
learning for the single-task setting. Next, we show that the result holds true in the vector
(i.e., cumulants) case.

Single task. We assume that our demonstrations are generated by an expert, who
samples actions from a Boltzmann policy, according to the optimal (for its task) action-
value function qπexpert and temperature ν > 0, i.e., D = {(s, a)} ∼ πexpert s.t.

πexpert(a|s) ≜ p(A = a|s) =
exp(1νq

πexpert(s, a))∑
a exp(1νq

πexpert(s, a))
, ∀s ∈ S, a ∈ A . (B.1)

The minimiser of the behavioural cloning loss LBC(θq), i.e., Eqn. (4.17), for a single
expert is such that

θ∗q ∈ arg min
θq

−E(s,a)∼D log
exp(q(s, a; θq))∑
a exp(q(s, a; θq))

(B.2a)

⇒ q(s, a; θ∗q) =
1

ν
qπexpert(s, a) + F(s), ∀s ∈ S, a ∈ A , (B.2b)

where F : S → R is a state-dependent (bounded potential) function. We arrive at
Eqn. (B.2b) by (i) testing 1

νq
πexpert(s, a) as a solution and noting that the “softmax“

function is convex in the exponent (Boyd et al., 2004) and (ii) using the translation
invariance property of the assumed Boltzmann policy parametrisation, i.e., for any
f : S× A→ R and g : S→ R

exp(f(s, a) + g(s))∑
a exp(f(s, a) + g(s))

=
exp(g(s)) exp(f(s, a))

exp(g(s))
∑

a exp(f(s, a))
=

exp(f(s, a))∑
a exp(f(s, a))

. (B.3)

The minimiser of the inverse temporal difference learning loss LITD(θq, θr), Eqn. (4.18),
for a single expert is such that

θ∗q, θ
∗
r ∈ arg min

θq,θr

E(s,a,s ′,a ′)∼D∥q(s, a; θq) − r(s, a; θr) − γq(s ′, a ′; θq)∥ (B.4)

where θ∗q is minimising LBC(θq) simultaneously, as in Eqn. (B.2b). Therefore, it holds

116 B. Plan and adapt from sub-optimal demonstrations

that LITD(θ
∗
q, θ

∗
r) = 0

r(s, a; θ∗r) = q(s, a; θ∗q) − γq(s ′, a ′; θ∗q) (B.5a)

(B.2b)
=

1

ν
qπexpert(s, a) + F(s) − γ

1

ν
qπexpert(s ′, a ′) − γF(s ′) (B.5b)

=
1

ν

qπexpert(s, a) − γqπexpert(s ′, a ′)
rexpert(s,a)

+ F(s) − γF(s ′) (B.5c)

=
1

ν
rexpert(s, a) + F(s) − γF(s ′)

potential-based reward
shaping function

, (B.5d)

where rexpert is the (unobserved) expert’s reward function. We have shown that the
minimiser of LBC and LITD leads to a reward function r(s, a; θ∗r) which is a potential-
based shaped and scaled reward function of the expert reward function and hence the
optimal policy for r(s, a; θ∗r) is also optimal for rexpert(s, a) for all s, a (Ng et al., 1999).

Multiple tasks. The minimiser of the behavioural cloning loss LBC(θΨk ,wk), i.e.,
Eqn. (4.17), for the k-th expert is s.t.

θ∗Ψk ,w
k∗ ∈ arg min

θ
Ψk ,wk

−E(s,a)∼Dk log
exp(Ψ(s, a; θΨk)⊤wk)∑
a exp(Ψ(s, a; θΨk)⊤wk)

(B.6a)

⇒ Ψ(s, a; θΨk)⊤wk =
1

ν
qπk-expert(s, a) + Fk(s), ∀s ∈ S, a ∈ A , (B.6b)

where qπk-expert is the k-agent’s action-value function and Hk : S→ R a state-dependent
(bounded potential) function. Next, the minimiser of the inverse temporal difference
learning loss LITD(θΨk , θΦ), Eqn. (4.18), for the k-th expert is s.t.

θ∗Ψk , θ
∗
Φ ∈ arg min

θ
Ψk ,θΦ

E(s,a,s ′,a ′)∼Dk∥Ψ(s, a; θΨk) −Φ(s, a; θΦ) − γΨ(s ′, a ′; θΨk)∥ (B.7)

where θ∗
Ψk is minimising LBC(θΨk ,wk) simultaneously, as in Eqn. (B.6b). Therefore, it

holds that for LITD(θ
∗
Ψk , θ

∗
Φ) = 0

Φ(s, a; θ∗Φ) = Ψ(s, a; θ∗Ψk) − γΨ(s ′, a ′; θ∗Ψk) (B.8a)

Φ(s, a; θ∗Φ)⊤wk∗ = Ψ(s, a; θ∗Ψk)
⊤wk∗ − γΨ(s ′, a ′; θ∗Ψk)

⊤wk∗ (B.8b)

(B.6b)
=

1

ν
qπk-expert(s, a) + Fk(s) − γ

1

ν
qπk-expert(s ′, a ′) − γFk(s ′) (B.8c)

=
1

ν

qπk-expert(s, a) − γqπk-expert(s ′, a ′)
rk-expert(s,a)

+ Fk(s) − γFk(s ′) (B.8d)

B.3. Proofs 117

=
1

ν
rk-expert(s, a) + Fk(s) − γFk(s ′)

potential-based reward
shaping function

, (B.8e)

We have shown that the minimiser of LBC and LITD leads to agent-agnostic cumulants
Φ(s, a; θ∗Φ) and agent-specific preference vector wk∗, which when dot-producted, form a
potential-based shaped and scaled reward function of the k-th expert reward function
and hence the optimal policy for Φ(s, a; θ∗Φ)⊤wk∗ is also optimal for rk-expert(s, a) for
all s, a (Ng et al., 1999). The result holds for all k ∈ {1 . . . K} since no assumptions were
made for the proof about k.

Next, we prove the generalisation bound of the ΨΦ-learning (ΨΦL). When not specified
the norm ∥ · ∥ refers to the 2-norm. Given a function F : X→ Rd for some finite set X, we
will write F(x) to denote the value of the function on input x and F to denote the matrix
representation of this function in R|X|×d.

Theorem 2.2 (Generalisation bound of ΨΦ-learning (ΨΦL)): Let C = (S,A, P, γ)
be a CMP with a finite state space. Let Φ : S→ Rd, and let Φ = Φ(S) ∈ R|S|×d. Let

(ri)
k
i=1 denote a set of reward functions on C, Ψ̃

i
be a collection of successor features

approximations for policies (πi)ki=1 (πi optimal for ri) with true successor feature
values Ψi, and wi the best least-squares linear approximator of ri given Φ, with errors

∥Φwi − ri∥∞ < δr and ∥Ψ̃i
− Ψi∥ < δΨ ∀i.

Let w ′ be a new preference vector for a reward function r ′, with maximal error δr

as well. Let q̃i = Ψ̃
i
w ′. Let π∗ be the optimal policy for the ego task w ′ and let π

be the GPI policy obtained from {q̃πi}, with δr, δΨ the reward and successor feature
approximation errors. Then for all s, a

q∗(s, a) − qπ(s, a) ⩽
2

1− γ

[
(Φmax∥wj −w ′∥+ 2δr) + ∥w ′∥δΨ +

1

(1− γ)
δr

]
(B.9)

Barreto et al. (2017) construct their bound on the sub-optimality of the GPI policy as
a function of the error of the value approximations q̃i. Because we bound the reward
approximation error, rather than the value approximation error, we require an additional
step to obtain a bound on the errors of the value funciton approximations. To prove
Theorem 1, we must therefore first use the following lemma to bound the effect of
the reward approximation error on the value approximation error. While this result is
straightforward, we include a short proof for completeness.

Lemma 2.1: Fix some policy π. Let r be reward vector and let w be the least-
squares solution to min ∥Φw− r∥. Let Ψπ be the true successor features for Φ under

118 B. Plan and adapt from sub-optimal demonstrations

policy π, and let qπ be the value. Let δr = r(S)−Φw, δmax = ∥δr∥∞. Then letting
q̃ = Ψw, we have

∥qπ − q̃∥∞ ⩽
1

1− γ
δr (B.10)

Proof.

∥qπ − q̃∥∞ ⩽
∑

γt∥Pπt(Φw− r)∥∞ (B.11a)

⩽
∑

γt∥Pπtδr∥∞ =
∑
t

γt max
s ′

|
∑
s∈S

(Pπ)t(s ′, s)δr(s)| (B.11b)

Since Pπ is a stochastic matrix, so are all of its powers, and so the rows of (Pπ)t sum to 1.

⩽
∑
t

γt max
s ′

|
∑

Pπt(s, s ′)δmax| =
∑
t

γtδmax =
1

1− γ
δmax (B.11c)

Proof. We follow the proof of Barreto et al. (2017, Theorem 2), with additional error
terms to account for the reward and successor feature approximation errors.

q∗(s, a) − qπ(s, a)

⩽ q∗(s, a) − qπj(s, a) +
2

1− γ
ϵ (Barreto et al., 2017, Theorem 1)

⩽
2

1− γ
∥rj − r ′∥∞ +

2

1− γ
ϵ (Barreto et al., 2017, Lemma 1)

⩽
2

1− γ
∥Φwj + δj −Φw ′ − δ ′∥∞ +

2

1− γ
ϵ

⩽
2

1− γ
(Φmax∥wj −w ′∥+ δr + δr) +

2

1− γ
ϵ

⩽
2

1− γ
(Φmax∥wj −w ′∥+ 2δr) +

2

1− γ
∥Ψ̃j

w ′ − Ψjw
′ + Ψjw

′ − qj∥

⩽
2

1− γ
(Φmax∥wj −w ′∥+ 2δr) +

2

1− γ
∥Ψ̃j

w ′ − Ψjw
′∥+ ∥Ψjw

′ − qj∥

⩽
2

1− γ
(Φmax∥wj −w ′∥+ 2δr) +

2

1− γ
∥w ′∥δΨ +

2

1− γ
∥Ψjw

′ − qj∥

⩽
2

1− γ
(Φmax∥wj −w ′∥+ 2δr) +

2

1− γ
∥w ′∥δΨ +

2

1− γ
(

1

1− γ
δr) (Lemma 2.1)

=
2

1− γ

[
(Φmax∥wj −w ′∥+ 2δr) + ∥w ′∥δΨ +

1

(1− γ)
δr

]

B.4. Visualisations 119

B.4 Visualisations

(a) CoinGrid (b) Φ̂1 (c) Φ̂2 (d) Φ̂3 (e) Φ̂4

Figure B.6: Qualitative evaluation of the learned cumulants in the CoinGrid task.
Cumulants Φ̂1, Φ̂2, and Φ̂3 seem to capture the red, green, and yellow blocks, respectively.
The yellow blocks are captured by both and Φ̂4. Therefore, linear combinations of the
learned cumulants can represent arbitrary rewards in the environment, which involve
stepping on the coloured blocks.

2 4 8 16 32 128
|Φ|

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Re

tu
rn

s

(a) ITD for Roundabout

2 4 8 16 32 128
|Φ|

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Re

tu
rn

s

(b) ITD for CoinGrid

102 103 104
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu
rn
s

|Φ|
2
4
8

16
32
128

(c) ΨΦL for MultiHighway

Figure B.7: Sensitivity of our ITD (see §4.2.1) and ΨΦ-learning (see §4.2.2) algorithms
to the dimensionality of the learned cumulants. We consistently observe across all three
experiments (a)-(c) that for a small number of Φ dimensions the cumulants are not
expressive enough to capture the axis of variation of the different agents’ reward functions
(including the ego-agent in (c)). We also note that the performance of both ITD and ΨΦ-
learning is relative robust for a medium and large number of Φ dimensions. We attribute
this to the used sparsity prior, i.e., L1 loss, to the preferences w. In our experiments we
selected the smallest number of Φ dimensions that demonstrated good performance to
keep the number of model parameters as small as possible (in bold in the figures and
reported in Table B.1).

120 B. Plan and adapt from sub-optimal demonstrations

C
Plan with model-value inconsistency

C.1 Experimental details

In this section, we describe the environments used in our experiments (see §5.3) and the
experiment design.

C.1.1 Environments

In this section, we provide details on the specification of each task used in our experiments.

Tabular environment

visited unvisited

Figure C.1: GridWorld

We use an empty 5× 5 gridworld (GridWorld) environment
for our tabular experiments. The task is specified by:

1. State space, S: A finite discrete state space, i.e., s ∈
{0, 1, . . . , 24}.

2. Action space, A: A finite discrete action space for
moving the agent in the four cardinal directions (N, W,
S, E), i.e., s ∈ {0, 1, 2, 3}.

3. Reward function, r(s, a): The zero function,
i.e., r(s, a) = 0, ∀(s, a) ∈ S× A.

4. Transition dynamics, p(s ′|s, a): We consider the

122 C. Plan with model-value inconsistency

episodic setting, i.e., episode length = 20, and the dynamics are (optionally)
stochastic. In particular, we use a single parameter that controls the stochasticity,
called wind prob ∈ [0, 1] and implement stochastic dynamics as actuator noise,
i.e., there is a wind prob probability that the agent action is ignores and an other
action is applied to the environment by sampling randomly from the action space.

Procgen (Cobbe et al., 2020)

We used 5 tasks from the Procgen (Procgen, Cobbe et al., 2020) suite, shown at Figure C.2.
We used the default settings for the environments and we only varied the number of
training levels used for learning, which we term #levels. The tasks are generally partially
observed Markov decision processes (POMDPs) specified by:

1. Observation space, O: The original 64× 64 RGB pixel-observations, i.e., ot ∈
[0, 1]64×64×3.

2. Action space, A: The original 15 discrete actions, i.e., at ∈ {0, . . . , 14}.

(a) chaser (b) climber (c) coinrun (d) fruitbot (e) jumper

Figure C.2: Procgen tasks.

MinAtar (Young and Tian, 2019)

We used all 5 tasks from the MinAtar (MinAtar, Young and Tian, 2019) suite, shown
in Figure C.3, with the default settings. The tasks are fully-observed and specified by:

1. State space, S: The original 10×10×n channels symbolic observations, i.e., st ∈
[0, 1]10×10×n channels, where n channels varies between tasks, from 4 to 10.

2. Action space, A: The original 6 discrete (non-minimal) actions, i.e., at ∈ {0, . . . , 5}.
3. Transition dynamics, p(s ′|s, a): The default 0.1 probability for sticky actions is

used.

DeepMind continuous control (Tunyasuvunakool et al., 2020)

We use the walker walk task from the DeepMind Continuous Control (Tunyasuvu-
nakool et al., 2020) suite and modified its reward function. Pixel-observations are

C.1.1 Environments 123

(a) asterix (b) breakout (c) freeway (d) seaquest (e) space invaders

Figure C.3: MinAtar tasks.

used, and the problem is generally partially-observed. The task is specified by:

Figure C.4: walker

1. Observation space, O: A 64 × 64 RGB pixel-
observation, where the robot body is in the centre of
the frame, i.e., ot ∈ [0, 1]64×64×3.

2. Action space, A: A six-dimensional continuous action,
i.e., at ∈ [−1,+1]6.

3. Reward function, r(s, a): Originally, the reward is
bounded in [0, 1], i.e., rt ∈ [0, 1], which is computed
based on the robot’s torso height and forward velocity.
We modify the original per-step reward, by setting
to zero any reward below a parameter η, i.e., r̃t =
H(rt − η)rt, where H is the Heaviside step function.
For η = 0, we recover the original reward, and for η > 0

we obtain an increasingly more difficult, in terms of
exploration, walker task.

124 C. Plan with model-value inconsistency

C.1.2 Experiments

In this section, we provide details on the experimental protocol of each experiment.

Figure 5.6

Data. We collect experience/data B by running a uniformly random policy πuniform for
500 steps (i.e., 25 episodes). We exclude transitions from and to the top left cell, which
we call the out-of-training distribution (OOD) or unvisited state.

Value learning. We learn a tabular action-value function q̂ ≈ qπuniform using expected
SARSA (Van Seijen et al., 2009) and then we induce a (state-)value function, i.e.,

v̂(s) ≜ Ea∼πuniform
[q̂(s, a)], ∀(s, a) ∈ S× A. (C.1)

Model learning. Reconstruction-based model learning (see §2.3.2), with data B is used
for learning the tabular model of the environment, such that m̂ ≈ m∗.

Visualisations. The mean and standard deviations are normalised in [0, 1], i.e., for
given quantity xs for state s and xmin (xmax the minimum (maximum) quantity across
all states, we plot x̄s = (xs − xmin)/(xmax − xmin). We report the results for a single
repetition of the experiment since it is a qualitative observation.

IVE[N]. We calculate the MPVs exactly, according to Eqn. (5.1). We vary the parameter
N, i.e., maximum number of applications of the model-induced Bellman operator Tm on
the learned value function v̂.

EVE[N] and EMVE[N]. The explicit value ensemble (EVE, Figure 5.2a) and explicit
model value ensemble (EMVE, Figure 5.2b) are also trained on the same data using the
same value and model learning algorithms, according to the Remark 2.7 strategy.

Table 5.1

We use the walker task and train Dreamer (Hafner et al., 2019a) for 1M steps. An action
repeat of 2 is used thus 0.5M agent-environment interaction steps are made per run. We
repeat each experiment 3 times, varying the random seed in each one. We report the
episodic returns (rounded to the nearest tenth) at the end of training by setting the
agents in “evaluation” mode and average their performance across 10 episodes.

C.1.2 Experiments 125

Figure 5.7

We train Muesli (without any modification to its acting strategy or learning algorithm)
for 100M environment frames. Figure 5.7a reports the final performance of the agent
evaluated on an additional 10M frames on the train and test levels. Mean episode returns
are normalised as: R̃ = (R − Rmin)/(Rmax − Rmin), using min and max scores for each
game (Cobbe et al., 2020).

The model-value self-inconsistency, reported in Figure 5.7b, is computed by unrolling
the model for 5 steps using actions sampled from the policy and taking the standard
deviation over the IVE:

k-MVP(s) = v̂kθ(s)
(5.2)
=

k−1∑
i=1

γi−1ri+1 + γkv̂(sk) (C.2a)

σ-IVE[5](s) =
√

Vark[{k-MVP(s)}5k=1], (C.2b)

using the notation from §5.1.

Figure 5.8

For training the values and model and calculating IVE and EVE, we follow the same
protocol as in Figure 5.6. In this experiment, we use the learned action-value functions
instead of the state-values, see Section C.3.2 for a formal discussion. We denote with
σ-IVE[5] and σ-EVE[5] the standard deviation across the 5 ensemble members of the
implicit and explicit ensembles of the action-values, respectively. Also, σ-IVE[5] ∈ RS×A

and σ-IVE[5](s, a) is the standard deviation of the implicit value ensemble at the state
s for action a. We use the standard deviation across the ensemble of action-values for
inducing policies that are novelty- seeking or avoiding:

• In Figure 5.8a, the action that maximises the standard deviation across the value
ensemble is selected, per-state, i.e., πseeking(s) = arg maxa∈A σ-XVE[5](s, a), where
XVE ∈ {IVE, EVE}. These are the novelty-seeking policies that their probability
of reaching the novel state is higher than a uniformly random policy.

• In Figure 5.8b, the action that minimises the standard deviation across the value
ensemble is selected, per-state, i.e., πavoiding(s) = arg mina∈A σ-XVE[5](s, a), where
XVE ∈ {IVE, EVE}. These are the novelty-avoiding policies that their probability
of reaching the novel state is lower than a uniformly random policy.

We calculate the probabilities by constructing a Markov chain, induced by the coupling
of the policy under consideration π and the “true” environment model, m∗. The Markov

126 C. Plan with model-value inconsistency

chain’s transition kernel is given by pπ
m∗(s ′|s) ≜

∑
a∈A pm∗(s ′|s, a)π(a|s). We can write

the transition kernel as a matrix Pπ
m∗ ∈ RS×S, such that Pπ

m∗ [i, j] = pπ
m∗(j|i). The (i, j)

entry of the transition matrix, i.e., Pπ
m∗ [i, j] is the probability of reaching the state j after

one-step when starting from state i and following policy π in the environment with model
m∗. The (i, j) entry of the l-th power of the transition matrix, i.e., (Pπ

m∗)l[i, j] is the
probability of reaching the state j after l-step when starting from state i and following
policy π in the environment with model m∗.

In Figure 5.8, we start from the bottom right cell, i.e., i = bottom right and plot the
probability of reaching the top left cell, i.e., j = top right after l-step, and we vary l

from 1 to 150. We repeat each experiment 100 times, varying the random seed in each one.

Table 5.2

We use the MinAtar tasks and train VPN (Oh et al., 2017) and some variants of it for
2M steps. The only modification to the original VPN(5) is the way value estimates are
constructed:

• v̂1θ is VPN variant that uses the 1-MPV for value estimation.
• v̂5θ is VPN variant that uses the 5-MPV for value estimation.
• µ-IVE[5] is the original VPN(5) agent that uses the mean over the implicit value

ensemble with N = 5 for value estimation.

The estimated values are used for value-based planning, as discussed in (§C.1, Oh et al.,
2017).

C.2. Implementation details 127

C.2 Implementation details

For our experiments we used Python (Van Rossum and Drake Jr, 1995). We used
JAX (Bradbury et al., 2018; Babuschkin et al., 2020) as the core computational library
for implementing Muesli (Hessel et al., 2021) and VPN (Oh et al., 2017). We used the
official TensorFlow (Abadi et al., 2015) implementation of Dreamer (Hafner et al., 2019a).
We also used Matplotlib (Hunter, 2007) for the visualisations.

C.2.1 Tabular methods

We initialise the rewards, transition logits and action-values by sampling from a normal
distribution with mean 0 and standard deviation 1. The ADAM (Kingma and Ba, 2014)
optimiser with learning rate 5e-5 is used, and all losses converge after 10, 000 epochs of
stochastic gradient descent with batch size 128.

C.2.2 Dreamer (Hafner et al., 2019a)

We use the Dreamer agent’s default hyperparameters, as introduced by (Hafner et al.,
2019a). For the self-inconsistency-seeking variant, i.e., µ + σ-IVE[5], we used a scalar
weighting factor β∗

IVE = 0.1 to balance the mean and standard deviation across the
ensemble members, tuned with grid search in {0.05, 0.1, 0.2, 1.0, 10.0}. The same tuning
procedure is used for the baselines. The reported scores are for β∗

EVE = 0.2 and
β∗
EMVE = 0.1.

C.2.3 Muesli (Hessel et al., 2021)

We use the Muesli agent’s hyperparameters. In particular we use the ones from the large-
scale Atari experiments by Hessel et al. (2021). Nonetheless, we set the fraction of replay
data in each batch to 0.8 (instead of the original 0.95) to shorten training time. To en-
courage diversity in value and reward predictions for unvisited states we have augmented
the value and reward prediction heads of the model with untrainable randomized prior
networks (Osband et al., 2018), using a prior scale of 5.0. Note that unlike in Osband
et al. (2018), we did not introduce additional heads per prediction or modify the training
procedure.

128 C. Plan with model-value inconsistency

C.2.4 VPN (Oh et al., 2017)

We use the MinAtar DQN-torso (Young and Tian, 2019) and an LSTM (Hochreiter and
Schmidhuber, 1997) with 128 hidden units and otherwise follow the original VPN(5)
hyperparameters, as introduced by Oh et al. (2017).

C.3 Extensions

C.3.1 IVE with the Bellman optimality operator

In §5.2, we defined the k-step model-predicted value (k-MPV) in terms of the model-
induced Bellman evaluation operator and an approximate value function vθv

≈ v∗, to
construct the implicit value ensemble (IVE) accordingly. Similarly, we can define the
k-MPV and hence IVE in terms of the model-induced Bellman optimality operator, as
defined in Eqn. (2.64), and an approximation to the optimal value function vθv

≈ v∗, i.e.,

vkθ(s) ≡ (T ∗
mθm

)kvθv
(s) ≜ arg max

a0:k−1

Emθm
[

k−1∑
i=0

(γiRi+1) + γkvθv
(Sk)|S0 = s]. (C.3)

The IVE with the Bellman optimality operator can be used for values learned with,
e.g., Q-learning (§2.3.2; Watkins and Dayan, 1992), or with other value-based agents,
such as the VPN (Oh et al., 2017). We use this formulation in §C.4.

C.3.2 MPV with action-value functions

In order to be able to modulate action selection using the self-inconsistency signal, we
have computed the k-MPV conditioned on both the starting state and action, i.e.,

qk
θ(s, a) ≜ Eπθπ ,mθm

[

k−1∑
i=0

(γiRi+1) + γkvθv
(Sk)|S0 = s,A0 = a] (C.4a)

q̂k
θ(s, a) ≜

k−1∑
i=0

(γiri+1) + γkvθv
(sk) (C.4b)

where now reward and value predictions are computed after unrolling the model using ac-
tion a for one step, and actions sampled from the policy for the remaining k− 1 steps.

C.4. Additional experiments 129

C.4 Additional experiments

C.4.1 Measuring self-inconsistency in OOD states

To complement our results in Figure 5.7, we have also evaluated self-inconsistency by
computing the IVE as an average over 100 action sequences sampled from the policy,
see Figure C.5. We observed only minor quantitative differences compared to the results
presented in Figure 5.7 (where we were using a single action sequence to estimate the IVE).

chaser climber coinrun fruitbot jumper

0

0.1

0.2

0.3

0.4

-IV
E

#levels
10
100 Train
500
10
100 Test
500

Figure C.5: σ-IVE[5] computed using the model of the Muesli agent while evaluating
on both training and unseen test levels, for different numbers of unique levels seen during
training. To estimate the IVE, we used 100 action sequences from the policy. Bars, error-
bars show mean and standard error across 3 seeds, respectively.

C.4.2 Measuring explicit value ensemble variance in OOD states

To complement our results in Figure 5.7 for IVE, we provide the EVE results in Figure C.6.
We observe that EVE behaves similar to IVE in terms of ensemble variance as a function
of #levels for both training and testing levels.

chaser climber coinrun fruitbot jumper

0

0.4

0.8

M
ea

n
no

rm
al

ise
d

re
tu

rn

(a) Episodic returns

chaser climber coinrun fruitbot jumper

0

0.1

0.2

0.3

0.4

0.5

-E
VE

#levels
10
100 Train
500
10
100 Test
500

(b) Self-inconsistency

Figure C.6: σ-EVE[5] computed using the Muesli agent augmented with an ensemble
of 5 value heads (different random initialisation) while evaluating on both training
and unseen test levels, for different numbers of unique levels seen during training. (a)
Performance for training (green) and test (pink) for varying number of levels. (b) Explicit
value ensemble inconsistency measured by standard deviation of the 5 different heads.

130 C. Plan with model-value inconsistency

C.4.3 How to use the IVE[5] signal?

In the following experiments we consider the self-inconsistency signal as an optimistic
bonus to encourage better exploration during training, hence generalising better during
evaluation. We test variants of the +σ-IVE[5] signal by mixing the policy with the self-
inconsistency in probability space +σ-IVE[5]≜ (1− β)π+ β · σ-IVE[5], and by mixing
the signal with the policy logits: z+ σ-IVE[5]≜ softmax(zπ + β · σ-IVE[5]). We vary the
number of MPV in the ensemble for n = 5, 10. Use further test using a different metric
for measuring the disagreement across the nMPVs that considers different weighting
averages over k:

dJS = JSDw(IVE(n)) = H

(∑
k

wkv̂
k
m̂

)
−
∑
k

wkH
(
v̂kθ
)

(C.5)

with three weighting schemes: a decreasing weight decJS : wk = rk/(
∑

j r
j) such that

the weight decreases to 1/3 over n, an increasing weight incJS with the inverse trend,
and a uniform weight uniJS that corresponds to the uniform mixing over n wk = 1/n.

Vanilla Muesli Muesli, prior=5 +dJS-IVE(5) +dJS-EVE(5)
decJS incJS uniJS

0 50M 100M
0

4

8

12

Av
g.

 e
pi

so
de

 re
tu

rn

Train

Number of frames

(a) Train

0 50M 100M
0

3

6

9

Av
g.

 e
pi

so
de

 re
tu

rn

Test

Number of frames

(b) Test

+d
JS
-IV

E(
10

)

+d
JS
-IV

E(
5)

z
+
d J

S-I
VE

(5
)

0

100

200

300

AU
C

climber

(c) Variations

Figure C.7: Model-value inconsistency (see §5.2.2) as the Jensen-Shannon divergence
of the implicit value ensemble (see §5.2.1) for different numbers of ensemble components
n, trained across 100 Procgen levels error bars show SE over 3 seeds. (a) Mean episode
return during training with 100 Procgen levels, for Muesli baselines and for an agent
trained with optimistic divergence over an explicit ensemble dJS-EVE[5] and over IVE[5],
both with an increasing Jensen-Shannon disagreement. (b) Mean episode return for
evaluation without the optimistic disagreement for the same methods. (c) Ablation study
over dJS-IVE of varying length n = 5, 10 and by mixing in logit space z + d-IVE vs.
mixing in probability space +d-IVE.

In Figure C.7b we observe that learning with an optimistic bonus helps with generalisa-
tion at evaluation time. Figure C.7c we observe that mixing over probability space is less
sensitive to re-scaling β, but yields higher variance. We notice a trade-off between the

C.4.4 Ablation on pessimism for evaluation 131

weighting scheme used vs. the size of the IVE, for higher ns the best performing metric
has less weight on the larger k-MPVs. For the decreasing metric the results remain more
robust, suggesting that the inconsistencies are higher for larger ks. We used β = 0.1 for
mixing in probability and β = 1 for the logit case.

C.4.4 Ablation on pessimism for evaluation

We evaluate in Figure C.8 how sensitive the self-inconsistency signal is to different re-
scaling parameters β when acting pessimistically at test time z− β d-σ-IVE[5] with an
increasing weight. We trained a vanilla Muesli agent using 10/100 levels over 150M frames
and evaluated with a pessimistic bonus for the consecutive 20M frames over 3 seeds

β=0.0 β= -1.0 β= -10.0 β= -100.0 β= -1000.0

0.0
0.5
1.0
1.5
2.0

M
ea

n
Ep

iso
de

 R
et

ur
n chaser

0.0

0.5

1.0

1.5
climber

0

2

4

6
coinrun

−3

−2

−1

0
fruitbot

0.0

0.5

1.0

1.5

2.0
jumper

(a) #levels = 10

0

2

4

6

M
ea

n
Ep

iso
de

 R
et

ur
n chaser

0

2

4

6
climber

0

2

4

6

coinrun

0

5

10

15

fruitbot

0

1

2

jumper

(b) #levels = 100

Figure C.8: Mean episode return evaluated with pessimism bonus −dJS-IVE with
increasing weights for each procgen environment on a trained vanilla Muesli using (a) 10
levels and (b) 100 levels. Error bars show 95% CI.

132 C. Plan with model-value inconsistency

C.4.5 Dreamer variants

In §5.3.2, we modified the Dreamer (Hafner et al., 2019a) agent to improve its explo-
ration without having to learn an explicit ensemble of value functions. We modify the
behavioural policy used for collecting data, using the mean and standard deviation of
the implicit value ensemble, i.e., µ-IVE[5] and σ-IVE[5], respectively. We use the original
Dreamer setup otherwise.

In particular, for each time-step t, we sample action at
π from the learned policy π and

then calculate the IVE(5), similar to Eqn. (5.2). Then, we can form the mean-variance
knowledge equivalent (KE, Markowitz, 1952), given by:

U(s) = µ-IVE[5](s) + β · σ-IVE[5](s). (C.6)

We use online gradient-based or sample-based planning, a.k.a. model predictive con-
trol (MPC, Garcia et al., 1989) for selecting an action (see §2.3.3).

We used β = 0.1, 10 gradient steps or 10 samples from the learned policy for guiding the
search in all of our experiments, shown in Table C.1.

Table C.1: Results for the Dreamer (Hafner et al., 2019a) agent and IVE variants on
a modified version of the walker task with varying degrees of reward sparsity controlled
by η, where higher η corresponds to harder exploration. A “♢” indicates methods that
use gradient-based trajectory optimisation, while “♣” indicates methods that use sample-
based trajectory optimisation. We report mean and standard error of episodic returns
(rounded to the nearest tenth) over 3 runs after 1M steps. Higher-is-better and the per-
formance is upper bounded by 1000. The best performing method, per-task, is in bold.

Methods η = 0.0 η = 0.2 η = 0.3 η = 0.5

Dreamer 1000±00 720±10 570±60 80±50

Dreamer♢ 1000±00 540±30 240±50 40±30
µ-IVE[5]♢ 1000±00 860±40 690±70 210±60

µ+ σ-EVE[5]♢ 1000±00 1000±00 980±10 280±50
µ+ σ-EMVE[5]♢ 1000±00 910±20 730±40 210±60
µ+ σ-IVE[5]♢ 1000±00 1000±00 1000±00 330±70
µ+ σ-IVE[5]♣ 1000±00 1000±00 1000±00 280±40

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems, 2015.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine learning,
page 1, 2004.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint
arXiv:1806.06920, 2018.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective
on offline reinforcement learning. In International Conference on Machine Learning,
pages 104–114. PMLR, 2020.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo,
Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil. Learning
awareness models. arXiv preprint arXiv:1804.06318, 2018.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and
stabilization for deep reinforcement learning. In International conference on machine
learning, pages 176–185. PMLR, 2017.

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth
uncertainty in neural networks. arXiv preprint arXiv:2006.08437, 2020.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
https://arxiv.org/abs/1806.06920
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1804.06318
https://arxiv.org/abs/1804.06318
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/2006.08437
https://arxiv.org/abs/2006.08437

134 Bibliography

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Kenneth J. Arrow. The Theory of Risk-Bearing: Small and Great Risks. Journal of Risk
and Uncertainty, 1965.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the
compounding-error problem with a multi-step model. arXiv preprint arXiv:1905.13320,
2019.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls
of in-domain uncertainty estimation and ensembling in deep learning. arXiv preprint
arXiv:2002.06470, 2020.

Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML,
volume 97, pages 12–20. Citeseer, 1997.

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando
de Freitas. Playing hard exploration games by watching youtube. arXiv preprint
arXiv:1805.11592, 2018.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Tom Hennigan, Matteo Hessel, Steven Kapturowski,
Thomas Keck, Iurii Kemaev, Michael King, Lena Martens, Vladimir Mikulik, Tamara
Norman, John Quan, George Papamakarios, Roman Ring, Francisco Ruiz, Alvaro
Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan,
Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX Ecosystem, 2020.

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen
Roberts. Ready policy one: World building through active learning. In International
Conference on Machine Learning, pages 591–601. PMLR, 2020.

David Barber. Bayesian reasoning and machine learning. Cambridge University Press,
2012.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van
Hasselt, and David Silver. Successor features for transfer in reinforcement learning. In
Advances in neural information processing systems, pages 4055–4065, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe
Hamel, Daniel Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option
keyboard: Combining skills in reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pages 13052–13062, 2019.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast
reinforcement learning with generalized policy updates. Proceedings of the National
Academy of Sciences, 117(48):30079–30087, 2020.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.7985&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.7985&rep=rep1&type=pdf
http://www.jstor.org/stable/41760802
https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/2002.06470
https://arxiv.org/abs/2002.06470
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8531&rep=rep1&type=pdf
https://arxiv.org/abs/1805.11592
http://github.com/deepmind
https://arxiv.org/abs/2002.02693
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://arxiv.org/abs/1606.05312
https://proceedings.neurips.cc/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://www.pnas.org/doi/10.1073/pnas.1907370117
https://www.pnas.org/doi/10.1073/pnas.1907370117

Bibliography 135

Eric Baum and David Haussler. What size net gives valid generalization? Advances in
neural information processing systems, 1, 1988.

Feryal Behbahani, Kyriacos Shiarlis, Xi Chen, Vitaly Kurin, Sudhanshu Kasewa, Ciprian
Stirbu, Joao Gomes, Supratik Paul, Frans A Oliehoek, Joao Messias, et al. Learning
from demonstration in the wild. In 2019 International Conference on Robotics and
Automation (ICRA), pages 775–781. IEEE, 2019.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. Advances in
neural information processing systems, 29:1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C
Machado, Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous naviga-
tion of stratospheric balloons using reinforcement learning. Nature, 588(7836):77–82,
2020.

Richard Bellman. Dynamic programming. Princeton University Press, 1957a.

Richard Bellman. A Markovian decision process. Journal of mathematics and mechanics,
6(5):679–684, 1957b.

Daniel Bernoulli. Exposition of a new theory on the measurement of risk. 1738.

Dimitri Bertsekas. Dynamic programming and optimal control, volume 4. Athena scientific,
2012.

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020. Software available
from wandb.com.

Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Survey: Robot
programming by demonstration. Handbook of robotics, 59(BOOK CHAP), 2008.

Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International Conference on Machine Learning,
pages 1613–1622. PMLR, 2015.

Ondřej Bojar and Aleš Tamchyna. Improving translation model by monolingual data. In
Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 330–336,
2011.

Diana Borsa, Bilal Piot, Rémi Munos, and Olivier Pietquin. Observational learning by
reinforcement learning. arXiv preprint arXiv:1706.06617, 2017.

https://proceedings.neurips.cc/paper/1988/file/1d7f7abc18fcb43975065399b0d1e48e-Paper.pdf
https://ieeexplore.ieee.org/abstract/document/8794412?casa_token=wI7ceS6mPOUAAAAA:RLqHCDuo65AbxrqOO7rnTIpHVTvUtsoAww0Euz6MQmTsQuTEmbNq5FhzOrkTGsnbAPyWxR1Fdv8
https://ieeexplore.ieee.org/abstract/document/8794412?casa_token=wI7ceS6mPOUAAAAA:RLqHCDuo65AbxrqOO7rnTIpHVTvUtsoAww0Euz6MQmTsQuTEmbNq5FhzOrkTGsnbAPyWxR1Fdv8
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1207.4708
https://arxiv.org/abs/1207.4708
https://www.nature.com/articles/s41586-020-2939-8
https://www.nature.com/articles/s41586-020-2939-8
https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://www.jstor.org/stable/24900506
https://psych.fullerton.edu/mbirnbaum/psych466/articles/bernoulli_econometrica.pdf
http://athenasc.com/dpbook.html
https://www.wandb.com/
https://www.researchgate.net/publication/37453816_Survey_Robot_Programming_by_Demonstration
https://www.researchgate.net/publication/37453816_Survey_Robot_Programming_by_Demonstration
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://aclanthology.org/W11-2138/
https://arxiv.org/abs/1706.06617
https://arxiv.org/abs/1706.06617

136 Bibliography

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van
Hasselt, David Silver, and Tom Schaul. Universal successor features approximators.
arXiv preprint arXiv:1812.07626, 2018.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of
Machine Learning Research, 2:499–526, 2002.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

Daniel S Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning from observations.
arXiv preprint arXiv:1904.06387, 2019.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science,
365(6456):885–890, 2019.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion. arXiv
preprint arXiv:1807.01675, 2018.

Lars Buesing, Theophane Weber, Sébastien Racaniere, SM Eslami, Danilo Rezende,
David P Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al.
Learning and querying fast generative models for reinforcement learning. arXiv preprint
arXiv:1802.03006, 2018.

Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner,
Michael Neunert, Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller.
Imagined value gradients: Model-based policy optimization with tranferable latent
dynamics models. In Conference on Robot Learning, pages 566–589. PMLR, 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A
multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027, 2019.

Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath:
Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv
preprint arXiv:1910.05449, 2019.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Deb-
deep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv preprint
arXiv:1810.00069, 2018.

https://arxiv.org/abs/1812.07626
https://www.jmlr.org/papers/volume2/bousquet02a/bousquet02a.pdf
https://web.stanford.edu/~boyd/cvxbook/
https://github.com/google/jax
https://arxiv.org/abs//1904.06387
https://arxiv.org/abs//1904.06387
https://www.science.org/doi/abs/10.1126/science.aay2400
https://arxiv.org/abs/1807.01675
https://arxiv.org/abs/1802.03006
https://arxiv.org/abs/1910.04142
https://arxiv.org/abs/1910.04142
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/1910.05449
https://arxiv.org/abs/1910.05449
https://arxiv.org/abs/1810.00069

Bibliography 137

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating.
arXiv preprint arXiv:1912.12294, 2019.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte
carlo. In International conference on machine learning, pages 1683–1691. PMLR, 2014.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld
Environment for OpenAI Gym, 2018.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan
Saharia, Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First Steps Towards
Grounded Language Learning With a Human In the Loop. In International Conference
on Learning Representations, 2019.

Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstrations
with mixed qualities using leveraged gaussian processes. IEEE Transactions on Robotics,
35(3):564–576, 2019.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun. The loss surfaces of multilayer networks. In Artificial intelligence and statistics,
pages 192–204. PMLR, 2015.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In Advances in Neural
Information Processing Systems, pages 4299–4307, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. arXiv
preprint arXiv:1805.12114, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

Adam Coates, Pieter Abbeel, and Andrew Y Ng. Learning for control from multiple
demonstrations. In Proceedings of the 25th international conference on Machine
learning, pages 144–151, 2008.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In International conference on
machine learning, pages 2048–2056. PMLR, 2020.

Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen Koltun, and Alexey Dosovit-
skiy. End-to-end driving via conditional imitation learning. In International Confer-
ence on Robotics and Automation (ICRA), pages 1–9. IEEE, 2018.

http://proceedings.mlr.press/v100/chen20a/chen20a.pdf
https://arxiv.org/abs/1402.4102
https://arxiv.org/abs/1402.4102
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://ieeexplore.ieee.org/document/8626460
https://ieeexplore.ieee.org/document/8626460
https://arxiv.org/abs/1412.0233
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://ai.stanford.edu/~ang/papers/icml08-LearningForControlFromMultipleDemonstrations.pdf
https://ai.stanford.edu/~ang/papers/icml08-LearningForControlFromMultipleDemonstrations.pdf
http://proceedings.mlr.press/v119/cobbe20a/cobbe20a.pdf
http://proceedings.mlr.press/v119/cobbe20a/cobbe20a.pdf
https://arxiv.org/abs/1710.02410

138 Bibliography

Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the
limitations of behavior cloning for autonomous driving. In International Conference
on Computer Vision (ICCV), pages 9329–9338, 2019.

G Coley, A Wesley, N Reed, and I Parry. Driver reaction times to familiar, but unexpected
events. TRL Published Project Report, 2009.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3213–3223, 2016.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

Constantin Cronrath, Emilio Jorge, John Moberg, Mats Jirstrand, and Bengt Lennartson.
BAgger: A Bayesian Algorithm for Safe and Query-efficient Imitation Learning, 2018.

Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen,
Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks. In 2019 International
Conference on Robotics and Automation (ICRA), pages 2090–2096. IEEE, 2019.

Aaron Davidson. Using artificial neural networks to model opponents in Texas hold’em.
Unpublished manuscript, 1999.

Peter Dayan. Improving generalization for temporal difference learning: The successor
representation. Neural Computation, 5(4):613–624, 1993.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation
learning. In Neural Information Processing Systems (NeurIPS), pages 11693–11704,
2019.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-learning. In Aaai/iaai,
pages 761–768, 1998.

Richard Dearden, Nir Friedman, and David Andre. Model-based Bayesian exploration.
arXiv preprint arXiv:1301.6690, 1999.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas,
et al. Magnetic control of tokamak plasmas through deep reinforcement learning.
Nature, 602(7897):414–419, 2022.

Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy
search for robotics. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3876–3881. IEEE, 2014.

https://openaccess.thecvf.com/content_ICCV_2019/papers/Codevilla_Exploring_the_Limitations_of_Behavior_Cloning_for_Autonomous_Driving_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Codevilla_Exploring_the_Limitations_of_Behavior_Cloning_for_Autonomous_Driving_ICCV_2019_paper.pdf
https://trid.trb.org/view/909272
https://trid.trb.org/view/909272
https://openaccess.thecvf.com/content_cvpr_2016/papers/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.pdf
https://hal.inria.fr/inria-00116992/document
https://personalrobotics.cs.washington.edu/workshops/mlmp2018/assets/docs/24_CameraReadySubmission_180928_BAgger.pdf
https://arxiv.org/abs/1809.10732
https://arxiv.org/abs/1809.10732
https://www.researchgate.net/publication/2379687_Using_Artifical_Neural_Networks_to_Model_Opponents_in_Texas_Hold'em
http://www.gatsby.ucl.ac.uk/~dayan/papers/d93b.pdf
http://www.gatsby.ucl.ac.uk/~dayan/papers/d93b.pdf
https://proceedings.neurips.cc/paper/2019/file/947018640bf36a2bb609d3557a285329-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/947018640bf36a2bb609d3557a285329-Paper.pdf
https://www.aaai.org/Papers/AAAI/1998/AAAI98-108.pdf
https://arxiv.org/abs/1301.6690
https://www.nature.com/articles/s41586-021-04301-9
https://rse-lab.cs.washington.edu/papers/multi-task-icra-14.pdf
https://rse-lab.cs.washington.edu/papers/multi-task-icra-14.pdf

Bibliography 139

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning.
Advances in neural information processing systems, 30, 2017.

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian
neural nets with rank-1 factors. In International conference on machine learning, pages
2782–2792. PMLR, 2020.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-
translation at scale. arXiv preprint arXiv:1808.09381, 2018.

Daniel Ellsberg. Risk, ambiguity, and the Savage axioms. The quarterly journal of
economics, 75(4):643–669, 1961.

Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling extremal events:
for insurance and finance, volume 33. Springer Science & Business Media, 2013.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures. In International
Conference on Machine Learning, pages 1407–1416. PMLR, 2018.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function
for model-based reinforcement learning. In Artificial Intelligence and Statistics, pages
1486–1494. PMLR, 2017.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and
atreec: Differentiable tree-structured models for deep reinforcement learning. arXiv
preprint arXiv:1710.11417, 2017.

Gregory Farquhar, Kate Baumli, Zita Marinho, Angelos Filos, Matteo Hessel, Hado P
van Hasselt, and David Silver. Self-Consistent Models and Values. In Advances in
Neural Information Processing Systems, volume 34, pages 1111–1125, 2021.

Sebastian Farquhar, Michael A Osborne, and Yarin Gal. Radial bayesian neural net-
works: Beyond discrete support in large-scale bayesian deep learning. In International
Conference on Artificial Intelligence and Statistics, pages 1352–1362. PMLR, 2020.

Stefan Faußer and Friedhelm Schwenker. Neural network ensembles in reinforcement
learning. Neural Processing Letters, 41(1):55–69, 2015.

https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/1711.03938
https://proceedings.neurips.cc/paper_files/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
https://arxiv.org/abs/2005.07186
https://arxiv.org/abs/2005.07186
https://arxiv.org/abs/1808.09381
https://arxiv.org/abs/1808.09381
http://mikael.cozic.free.fr/Ellsberg61.pdf
https://minerva.it.manchester.ac.uk/~saralees/book1.pdf
https://minerva.it.manchester.ac.uk/~saralees/book1.pdf
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1802.01561
https://proceedings.mlr.press/v54/farahmand17a.html
https://proceedings.mlr.press/v54/farahmand17a.html
https://arxiv.org/abs/1710.11417
https://arxiv.org/abs/1710.11417
https://arxiv.org/abs/2110.12840
https://proceedings.mlr.press/v108/farquhar20a.html
https://proceedings.mlr.press/v108/farquhar20a.html
https://link.springer.com/content/pdf/10.1007/s11063-013-9334-5.pdf
https://link.springer.com/content/pdf/10.1007/s11063-013-9334-5.pdf

140 Bibliography

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and
Sergey Levine. Model-based value expansion for efficient model-free reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), 2018.

Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine,
and Yarin Gal. Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 3145–3153.
PMLR, 2020.

Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, and Gregory
Farquhar. PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning. In Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 3305–3317. PMLR, 2021.

Angelos Filos, Eszter Vértes, Zita Marinho, Gregory Farquhar, Diana Borsa, Abram
Friesen, Feryal Behbahani, Tom Schaul, Andre Barreto, and Simon Osindero. Model-
Value Inconsistency as a Signal for Epistemic Uncertainty. In Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 6474–6498. PMLR, 2022.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International conference on machine
learning, pages 49–58, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on Machine Learning
(ICML), pages 1126–1135, 2017.

Sebastian Flennerhag, Jane X Wang, Pablo Sprechmann, Francesco Visin, Alexandre
Galashov, Steven Kapturowski, Diana L Borsa, Nicolas Heess, Andre Barreto, and
Razvan Pascanu. Temporal Difference Uncertainties as a Signal for Exploration. arXiv
preprint arXiv:2010.02255, 2020.

J Foerster. Deep multi-agent reinforcement learning. PhD thesis, University of Oxford,
2018.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing,
and Shimon Whiteson. DiCE: The infinitely differentiable monte carlo estimator. In
International Conference on Machine Learning, pages 1529–1538. PMLR, 2018.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss
landscape perspective. arXiv preprint arXiv:1912.02757, 2019.

https://arxiv.org/abs/1803.00101
https://arxiv.org/abs/1803.00101
https://arxiv.org/abs/2006.14911
https://arxiv.org/abs/2006.14911
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2112.04153
https://arxiv.org/abs/2112.04153
https://arxiv.org/abs/1603.00448
https://arxiv.org/abs/1603.00448
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/2010.02255
https://ora.ox.ac.uk/objects/uuid:a55621b3-53c0-4e1b-ad1c-92438b57ffa4
http://proceedings.mlr.press/v80/foerster18a/foerster18a.pdf
https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/1912.02757

Bibliography 141

Stan Franklin and Art Graesser. Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. In International Workshop on Agent Theories, Architectures,
and Languages, pages 21–35. Springer, 1996.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980.

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning
(ICML), pages 1050–1059, 2016.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimiza-
tion. In International Conference on Machine Learning, pages 10835–10866. PMLR,
2023.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforce-
ment learning from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory
and practice—A survey. Automatica, 25(3):335–348, 1989.

Dibya Ghosh, Marlos C Machado, and Nicolas Le Roux. An operator view of policy
gradient methods. Advances in Neural Information Processing Systems, 33:3397–3406,
2020.

Itzhak Gilboa, Andrew Postlewaite, and David Schmeidler. Is it always rational to satisfy
Savage’s axioms? Economics & Philosophy, 25(3):285–296, 2009.

Adam Gleave and Geoffrey Irving. Uncertainty estimation for language reward models.
arXiv preprint arXiv:2203.07472, 2022.

Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Tim Genewein, Elliot Catt, Kevin
Li, Anian Ruoss, Chris Cundy, Joel Veness, Jane Wang, et al. Beyond Bayes-optimality:
meta-learning what you know you don’t know. arXiv preprint arXiv:2209.15618, 2022.

Alex Graves. Practical variational inference for neural networks. In Neural Information
Processing Systems (NeurIPS), pages 2348–2356, 2011.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

http://lia.disi.unibo.it/courses/2007-2008/SMA-LS/papers/4/agentorprogram.pdf
http://lia.disi.unibo.it/courses/2007-2008/SMA-LS/papers/4/agentorprogram.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1364661399012942
http://papers.baulab.info/also/Fukushima-1980.pdf
http://papers.baulab.info/also/Fukushima-1980.pdf
https://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142
https://proceedings.mlr.press/v202/gao23h/gao23h.pdf
https://proceedings.mlr.press/v202/gao23h/gao23h.pdf
https://arxiv.org/abs/1802.05313
https://arxiv.org/abs/1802.05313
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Is_there_any_good_and_easy_to_understand_set_of_lectrues_or_a_good_reference_for_someone_who_wants_to_learn_optimal_control_theory/attachment/5a758d464cde266d58886cc7/AS%3A589894925692933%401517653318888/download/Model+Predictive+Control+_+Theory+and+Practice+a+Survey+Garca1989.pdf
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Is_there_any_good_and_easy_to_understand_set_of_lectrues_or_a_good_reference_for_someone_who_wants_to_learn_optimal_control_theory/attachment/5a758d464cde266d58886cc7/AS%3A589894925692933%401517653318888/download/Model+Predictive+Control+_+Theory+and+Practice+a+Survey+Garca1989.pdf
https://arxiv.org/abs/2006.11266
https://arxiv.org/abs/2006.11266
https://ageconsearch.umn.edu/record/275722/files/3-2009.pdf
https://ageconsearch.umn.edu/record/275722/files/3-2009.pdf
https://arxiv.org/abs/2203.07472
https://arxiv.org/abs/2209.15618
https://arxiv.org/abs/2209.15618
https://papers.nips.cc/paper/2011/hash/7eb3c8be3d411e8ebfab08eba5f49632-Abstract.html
https://arxiv.org/abs/1308.0850

142 Bibliography

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep
autoregressive networks. In International Conference on Machine Learning, pages
1242–1250. PMLR, 2014.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and
Aaron van den Oord. Shaping belief states with generative environment models for rl.
arXiv preprint arXiv:1906.09237, 2019.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equiva-
lence principle for model-based reinforcement learning. arXiv preprint arXiv:2011.03506,
2020.

Daniel H Grollman and Aude Billard. Donut as I do: Learning from failed demonstrations.
In 2011 IEEE International Conference on Robotics and Automation, pages 3804–3809.
IEEE, 2011.

Arthur Guez, Fabio Viola, Théophane Weber, Lars Buesing, Steven Kapturowski, Doina
Precup, David Silver, and Nicolas Heess. Value-driven hindsight modelling. arXiv
preprint arXiv:2002.08329, 2020.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and
Rémi Munos. Neural predictive belief representations. arXiv preprint arXiv:1811.06407,
2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. Learning latent dynamics for planning from pixels. In
International Conference on Machine Learning, pages 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari
with discrete world models. arXiv preprint arXiv:2010.02193, 2020.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims
Witherspoon, Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber.
On the role of planning in model-based deep reinforcement learning. arXiv preprint
arXiv:2011.04021, 2020.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley,
and Volodymyr Mnih. Fast task inference with variational intrinsic successor features.
arXiv preprint arXiv:1906.05030, 2019.

http://proceedings.mlr.press/v32/gregor14.pdf
http://proceedings.mlr.press/v32/gregor14.pdf
https://arxiv.org/abs/1906.09237
https://arxiv.org/abs/2011.03506
https://arxiv.org/abs/2011.03506
https://ieeexplore.ieee.org/document/5979757/
https://arxiv.org/abs/2002.08329
https://arxiv.org/abs/1811.06407
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2011.04021
https://arxiv.org/abs/1906.05030

Bibliography 143

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in
deep reinforcement learning. In International Conference on Machine Learning, pages
1804–1813, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016b.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval
Tassa. Learning continuous control policies by stochastic value gradients. Advances in
neural information processing systems, 28, 2015.

Joseph Henrich. The secret of our success: How culture is driving human evolution,
domesticating our species, and making us smarter. Princeton University Press, 2017.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A
survey of learning in multiagent environments: Dealing with non-stationarity. arXiv
preprint arXiv:1707.09183, 2017.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. Agent modeling as auxiliary
task for deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages 31–37,
2019.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In International Conference on Machine
Learning (ICML), pages 1861–1869, 2015.

TM Heskes. Solving a huge number of similar tasks: a combination of multi-task learning
and a hierarchical bayesian approach, 1998.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent
Sifre, Theophane Weber, David Silver, and Hado van Hasselt. Muesli: Combining
improvements in policy optimization. arXiv preprint arXiv:2104.06159, 2021.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning
from demonstrations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth annual
conference on Computational learning theory, pages 5–13, 1993.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. arXiv
preprint arXiv:1606.03476, 2016.

https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1510.09142
https://press.princeton.edu/books/paperback/9780691178431/the-secret-of-our-success
https://press.princeton.edu/books/paperback/9780691178431/the-secret-of-our-success
https://arxiv.org/abs/1707.09183
https://arxiv.org/abs/1707.09183
https://arxiv.org/abs/1907.09597
https://arxiv.org/abs/1907.09597
https://arxiv.org/abs/1502.05336
https://arxiv.org/abs/1502.05336
https://www.researchgate.net/publication/2663686_Solving_a_huge_number_of_similar_tasks_A_combination_of_multi-task_learning_and_a_hierarchical_Bayesian_approach
https://www.researchgate.net/publication/2663686_Solving_a_huge_number_of_similar_tasks_A_combination_of_multi-task_learning_and_a_hierarchical_Bayesian_approach
https://arxiv.org/abs/2104.06159
https://arxiv.org/abs/2104.06159
https://arxiv.org/abs/1704.03732
https://arxiv.org/abs/1704.03732
https://dl.acm.org/doi/pdf/10.1145/168304.168306
https://dl.acm.org/doi/pdf/10.1145/168304.168306
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf

144 Bibliography

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al.
Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020.

Keith Hoskin. The ‘awful idea of accountability’: inscribing people into the measurement
of objects. Accountability: Power, ethos and the technologies of managing, 265, 1996.

John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh Jain,
Sammy Omari, Vladimir Iglovikov, and Peter Ondruska. One thousand and one hours:
Self-driving motion prediction dataset. arXiv preprint arXiv:2006.14480, 2020.

National Highway Traffic Safety Administration. Pre-crash scenario typology for crash
avoidance research, 2007.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks
with stochastic depth. In European conference on computer vision, pages 646–661.
Springer, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

John D Hunter. Matplotlib: A 2D graphics environment. IEEE Annals of the History of
Computing, 9(03):90–95, 2007.

Aleksëı Grigor’evich Ivakhnenko and Valentin Grigorevich Lapa. Cybernetic predicting
devices. Joint Publications Research Service, 1966.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon
Wilson. What are Bayesian neural network posteriors really like? In International
conference on machine learning, pages 4629–4640. PMLR, 2021.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population
based training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

William James. The principles of psychology, volume 1. Macmillan London, 1890.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems,
32, 2019.

https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/2006.00979
https://gwern.net/doc/statistics/decision/1996-hoskin.pdf
https://gwern.net/doc/statistics/decision/1996-hoskin.pdf
https://arxiv.org/abs/2006.14480v2
https://arxiv.org/abs/2006.14480v2
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1704.00109
https://ieeexplore.ieee.org/iel5/4160243/4160244/04160265.pdf?casa_token=z4juTDjMUu4AAAAA:4wX75cc11iYBafTwM2zz5VFZ5zkvtqZdtCefxxJrstv5ltdiEOREcMh_MxDUjXvxxEJxpVodi6kh
https://gwern.net/doc/ai/1966-ivakhnenko.pdf
https://gwern.net/doc/ai/1966-ivakhnenko.pdf
https://arxiv.org/abs/2104.14421
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1711.09846
http://www.public-library.uk/ebooks/50/61.pdf
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/1906.08253

Bibliography 145

David Janz, Jiri Hron, Przemys law Mazur, Katja Hofmann, José Miguel Hernández-
Lobato, and Sebastian Tschiatschek. Successor uncertainties: exploration and uncer-
tainty in temporal difference learning. In Advances in Neural Information Processing
Systems, pages 4507–4516, 2019.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega,
DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation
for multi-agent deep reinforcement learning. In International Conference on Machine
Learning, pages 3040–3049. PMLR, 2019.

Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen, and Jonathon Shlens. Scalable
scene flow from point clouds in the real world. IEEE Robotics and Automation Letters,
7(2):1589–1596, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine.
Uncertainty-aware reinforcement learning for collision avoidance. arXiv preprint
arXiv:1702.01182, 2017.

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey
Levine. Scalable deep reinforcement learning for vision-based robotic manipulation. In
Conference on Robot Learning, pages 651–673. PMLR, 2018.

Rudolf Emil Kalman. When is a linear control system optimal? Journal of Basic
Engineering, 1964.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous
deep reinforcement learning. In Conference on Robot Learning, pages 195–206. PMLR,
2017.

Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical
model inference problem. Machine learning, 87:159–182, 2012.

Zachary Kenton, Angelos Filos, Owain Evans, and Yarin Gal. Generalizing from a few
environments in safety-critical reinforcement learning. arXiv preprint arXiv:1907.01475,
2019. Presented at the SafeML ICLR 2019 Workshop.

R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan,
B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao,
L. Platinsky, W. Jiang, and V. Shet. Lyft Level 5 AV Dataset 2019, 2019.

https://arxiv.org/abs/1810.06530
https://arxiv.org/abs/1810.06530
https://arxiv.org/abs/1810.08647
https://arxiv.org/abs/1810.08647
https://arxiv.org/abs/2103.01306
https://arxiv.org/abs/2103.01306
https://pdf.sciencedirectassets.com/271585/1-s2.0-S0004370200X00410/1-s2.0-S000437029800023X/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEMz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQCB%2FoHEozUWNYGfpuJ%2B19pRhdfbItgzjdnkXzbXjSbNCAIhAI3heMJLcG9gPA3p93pOoljeH63simwW6qyyCtbW4OVbKtIECEUQBRoMMDU5MDAzNTQ2ODY1Igz%2BeYsSROM1SDA60t8qrwQAgEsvLpYaJn35m9f49aCQIMnFYepqOH8pIr3YG9eOruSQm9UlTfaU4ykQymURWsDSb0V3QSyVR7Q8w0VFb0Xd565pxDHB3fGOs54ybZvIKwjWWQS%2BvUi%2BAqE8WyqOGBmeBKP7d8ykV0ibC5wi%2BbfY3OJW%2BczhgFaXhcErQDx44BfrXMIeM8ojLK96prguxzW0Epazr2Mn%2B%2BOraFWTDXlQwaLRdDkK%2Fd%2Bx7pNSRfiwts%2FNq379%2B8KW8FgvhdF1BdPFFZj2sQbAXnPcI4QbqYg89adWLzSbpShUtlgTkjiw4LRkJOJ9HPYx%2FfyLWDVohmAL5sO6uarZUFkZl85yU%2BweFpZGWPrV7GihQfkwUtiozZNZWT75NM9leMngvgU794jPNInAaV8u%2B2V8U5qBn2M8RYR7IxHu1S%2FDupWgQc5ZpUYUNQMzz9g6rBJIMQsyUttGzwmKwdxRQCOqdew%2BpaqdaT247t8141FtMoaV9p%2BUR96BCKUzjCDrtNJ73pJzxQwAGvYhS%2FszPehNjcq9i46eyjLasrY3FS5MVbDeRcAaUvMaGDwLw5N7C9Yrv51PgcyFhLzeE4JbS%2F7XlwJsZMQR%2F7TpYEwR%2F0H5uJ17%2BpfNEVFL9rUM7dlx6SIfJTrbN4YlCkbSK%2B02i9jBoYhd4pDaxhqTVCUJXw3I2iJl3JVRH2vZjWPeRtwLfBUHZvC45JsL70vWPA6t0bzH%2BB4sAS0o8pmR9BKSvLgRlAkf01rbMMGSg5gGOqgBost12CrXpB9QXsp7cjF8kDTlOIiv5KdWflhVT3QlaQXUhsM014h%2FglZ3mEhOF79KPXrU5gcxgADCQ0vSkJCGu%2FjtoO5RF5wYfApXbNtCuR8fbJKILtDVcBpL81uZE9UZ6g8m3S0aHnsn1cRKGJ9f4IqYC8svtKLAwT6T6GFKIrGLoS6cp1H1IYpm4OP6u8R4ohRSdHw1cKS76Qz5IrLiKnvsPNBwjhXj&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220820T124008Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYYF3JPWWM%2F20220820%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=bcbc80efab6dacf50d9b462a92737002052254ede8496c3e8dac7916bda1801b&hash=593aa9a13e6e6bb2eace47e1351e46881b6dd1d262d1fc246a3684ccb71c2a77&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S000437029800023X&tid=spdf-1348cb0d-ba75-4606-8f5b-8da0741b20bd&sid=abec5dc0778592447d9af604b918822d61f3gxrqb&type=client&ua=5155050c555353055309&rr=73db321c6f3d7797
https://pdf.sciencedirectassets.com/271585/1-s2.0-S0004370200X00410/1-s2.0-S000437029800023X/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEMz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQCB%2FoHEozUWNYGfpuJ%2B19pRhdfbItgzjdnkXzbXjSbNCAIhAI3heMJLcG9gPA3p93pOoljeH63simwW6qyyCtbW4OVbKtIECEUQBRoMMDU5MDAzNTQ2ODY1Igz%2BeYsSROM1SDA60t8qrwQAgEsvLpYaJn35m9f49aCQIMnFYepqOH8pIr3YG9eOruSQm9UlTfaU4ykQymURWsDSb0V3QSyVR7Q8w0VFb0Xd565pxDHB3fGOs54ybZvIKwjWWQS%2BvUi%2BAqE8WyqOGBmeBKP7d8ykV0ibC5wi%2BbfY3OJW%2BczhgFaXhcErQDx44BfrXMIeM8ojLK96prguxzW0Epazr2Mn%2B%2BOraFWTDXlQwaLRdDkK%2Fd%2Bx7pNSRfiwts%2FNq379%2B8KW8FgvhdF1BdPFFZj2sQbAXnPcI4QbqYg89adWLzSbpShUtlgTkjiw4LRkJOJ9HPYx%2FfyLWDVohmAL5sO6uarZUFkZl85yU%2BweFpZGWPrV7GihQfkwUtiozZNZWT75NM9leMngvgU794jPNInAaV8u%2B2V8U5qBn2M8RYR7IxHu1S%2FDupWgQc5ZpUYUNQMzz9g6rBJIMQsyUttGzwmKwdxRQCOqdew%2BpaqdaT247t8141FtMoaV9p%2BUR96BCKUzjCDrtNJ73pJzxQwAGvYhS%2FszPehNjcq9i46eyjLasrY3FS5MVbDeRcAaUvMaGDwLw5N7C9Yrv51PgcyFhLzeE4JbS%2F7XlwJsZMQR%2F7TpYEwR%2F0H5uJ17%2BpfNEVFL9rUM7dlx6SIfJTrbN4YlCkbSK%2B02i9jBoYhd4pDaxhqTVCUJXw3I2iJl3JVRH2vZjWPeRtwLfBUHZvC45JsL70vWPA6t0bzH%2BB4sAS0o8pmR9BKSvLgRlAkf01rbMMGSg5gGOqgBost12CrXpB9QXsp7cjF8kDTlOIiv5KdWflhVT3QlaQXUhsM014h%2FglZ3mEhOF79KPXrU5gcxgADCQ0vSkJCGu%2FjtoO5RF5wYfApXbNtCuR8fbJKILtDVcBpL81uZE9UZ6g8m3S0aHnsn1cRKGJ9f4IqYC8svtKLAwT6T6GFKIrGLoS6cp1H1IYpm4OP6u8R4ohRSdHw1cKS76Qz5IrLiKnvsPNBwjhXj&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220820T124008Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYYF3JPWWM%2F20220820%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=bcbc80efab6dacf50d9b462a92737002052254ede8496c3e8dac7916bda1801b&hash=593aa9a13e6e6bb2eace47e1351e46881b6dd1d262d1fc246a3684ccb71c2a77&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S000437029800023X&tid=spdf-1348cb0d-ba75-4606-8f5b-8da0741b20bd&sid=abec5dc0778592447d9af604b918822d61f3gxrqb&type=client&ua=5155050c555353055309&rr=73db321c6f3d7797
https://arxiv.org/abs/1702.01182
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://arxiv.org/abs/1806.10293
https://asmedigitalcollection.asme.org/fluidsengineering/article-abstract/86/1/51/392203/When-Is-a-Linear-Control-System-Optimal?redirectedFrom=fulltext
http://proceedings.mlr.press/v78/kalweit17a/kalweit17a.pdf
http://proceedings.mlr.press/v78/kalweit17a/kalweit17a.pdf
https://link.springer.com/article/10.1007/s10994-012-5278-7
https://link.springer.com/article/10.1007/s10994-012-5278-7
https://arxiv.org/abs/1907.01475
https://arxiv.org/abs/1907.01475
https://level5.lyft.com/dataset/

146 Bibliography

Arne Kesting, Martin Treiber, and Dirk Helbing. Enhanced intelligent driver model to
access the impact of driving strategies on traffic capacity. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1928):
4585–4605, 2010.

Hajime Kimura, Shigenobu Kobayashi, et al. An Analysis of Actor/Critic Algorithms
Using Eligibility Traces: Reinforcement Learning with Imperfect Value Function. In
ICML, volume 98, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. Advances in neural information processing systems, 28, 2015.

Edouard Klein, Bilal Piot, Matthieu Geist, and Olivier Pietquin. A cascaded supervised
learning approach to inverse reinforcement learning. In Joint European conference on
machine learning and knowledge discovery in databases, pages 1–16. Springer, 2013.

Frank Hyneman Knight. Risk, uncertainty and profit, volume 31. Houghton Mifflin, 1921.

Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. Algorithms for decision
making. MIT press, 2022.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt,
Ramana Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the
flip side of AI ingenuity. DeepMind Blog, 3, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

Panqanamala Ramana Kumar and Pravin Varaiya. Stochastic systems: Estimation,
identification, and adaptive control. SIAM, 2015.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Neural Information
Processing Systems (NeurIPS), pages 6402–6413, 2017.

Kevin N Laland. Darwin’s unfinished symphony: How culture made the human mind.
Princeton University Press, 2018.

https://arxiv.org/abs/0912.3613
https://arxiv.org/abs/0912.3613
http://users.umiacs.umd.edu/~hal/courses/2016F_RL/Kimura98.pdf
http://users.umiacs.umd.edu/~hal/courses/2016F_RL/Kimura98.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1506.02557
https://arxiv.org/abs/1506.02557
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_1
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_1
https://discoversocialsciences.com/wp-content/uploads/2018/03/knight-uncertainty-and-profit.pdf
https://algorithmsbook.com/
https://algorithmsbook.com/
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.jstor.org/stable/2236703
https://epubs.siam.org/doi/book/10.1137/1.9781611974263
https://epubs.siam.org/doi/book/10.1137/1.9781611974263
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://press.princeton.edu/books/hardcover/9780691151182/darwins-unfinished-symphony

Bibliography 147

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective
mismatch in model-based reinforcement learning. arXiv preprint arXiv:2002.04523,
2020.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 29–37. JMLR Workshop and Conference Proceedings, 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model. arXiv preprint
arXiv:1907.00953, 2019a.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship
learning with deep successor features. arXiv preprint arXiv:1903.10077, 2019b.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies
via search in cooperative partially observable games. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7187–7194, 2020.

Edouard Leurent. An Environment for Autonomous Driving Decision-Making, 2018.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Lihong Li, Michael L Littman, and Thomas J Walsh. Knows what it knows: a framework
for self-aware learning. In Proceedings of the 25th international conference on Machine
learning, pages 568–575, 2008.

Zhihao Li, Toshiyuki Motoyoshi, Kazuma Sasaki, Tetsuya Ogata, and Shigeki Sugano.
Rethinking self-driving: Multi-task knowledge for better generalization and accident
explanation ability. arXiv preprint arXiv:1809.11100, 2018.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel,
and Roy Fox. Reducing variance in temporal-difference value estimation via ensemble
of deep networks. In International Conference on Machine Learning, pages 13285–
13301. PMLR, 2022.

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative
reinforcement learning for vision-based self-driving. In European Conference on Com-
puter Vision (ECCV), pages 584–599, 2018.

https://arxiv.org/abs/2002.04523
https://arxiv.org/abs/2002.04523
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://arxiv.org/abs/1907.00953
https://arxiv.org/abs/1907.00953
https://www.ijcai.org/proceedings/2019/819
https://www.ijcai.org/proceedings/2019/819
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://ojs.aaai.org/index.php/AAAI/article/view/6208
https://github.com/eleurent/highway-env
https://arxiv.org/abs/1805.00909
https://arxiv.org/abs/1805.00909
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://link.springer.com/content/pdf/10.1007/s10994-010-5225-4.pdf
https://link.springer.com/content/pdf/10.1007/s10994-010-5225-4.pdf
https://arxiv.org/abs/1809.11100
https://arxiv.org/abs/1809.11100
https://proceedings.mlr.press/v162/liang22c/liang22c.pdf
https://proceedings.mlr.press/v162/liang22c/liang22c.pdf
https://arxiv.org/abs/1807.03776
https://arxiv.org/abs/1807.03776

148 Bibliography

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and
Ion Stoica. Tune: A Research Platform for Distributed Model Selection and Training.
arXiv preprint arXiv:1807.05118, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.

Robert K Lindsay, Bruce G Buchanan, Edward A Feigenbaum, and Joshua Lederberg.
DENDRAL: a case study of the first expert system for scientific hypothesis formation.
Artificial intelligence, 61(2):209–261, 1993.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for
label shift with black box predictors. In International conference on machine learning,
pages 3122–3130. PMLR, 2018.

Chenggang Liu and Christopher G Atkeson. Standing balance control using a trajectory
library. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3031–3036. IEEE, 2009.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from
observation: Learning to imitate behaviors from raw video via context translation.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
1118–1125. IEEE, 2018.

Alan J Lockett, Charles L Chen, and Risto Miikkulainen. Evolving explicit opponent
models in game playing. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 2106–2113, 2007.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in
model-based reinforcement learning by empirically estimating learning progress. In
Neural Information Processing Systems (NIPS), 2012.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational
bayesian neural networks. In International Conference on Machine Learning, pages
2218–2227. PMLR, 2017.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mor-
datch. Plan online, learn offline: Efficient learning and exploration via model-based
control. arXiv preprint arXiv:1811.01848, 2018.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma.
Algorithmic framework for model-based deep reinforcement learning with theoretical
guarantees. arXiv preprint arXiv:1807.03858, 2018.

https://arxiv.org/abs/1807.05118
https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/30758/0000409.pdf%3Bjsessionid%3D70A227C7B0C5A1B04090514F8977501C?sequence%3D1
https://arxiv.org/abs/1802.03916
https://arxiv.org/abs/1802.03916
https://ieeexplore.ieee.org/document/5354018
https://ieeexplore.ieee.org/document/5354018
https://arxiv.org/abs/1707.03374
https://arxiv.org/abs/1707.03374
https://nn.cs.utexas.edu/downloads/papers/lockett-gecco07.pdf
https://nn.cs.utexas.edu/downloads/papers/lockett-gecco07.pdf
https://hal.inria.fr/file/index/docid/755248/filename/nips.pdf
https://hal.inria.fr/file/index/docid/755248/filename/nips.pdf
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1703.01961
https://arxiv.org/abs/1703.01961
https://arxiv.org/abs/1811.01848
https://arxiv.org/abs/1811.01848
https://arxiv.org/abs/1807.03858
https://arxiv.org/abs/1807.03858

Bibliography 149

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational model-based
reinforcement learning for complex observations. arXiv e-prints, pages arXiv–2008,
2020.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and
Murray Campbell. Eigenoption discovery through the deep successor representation.
arXiv preprint arXiv:1710.11089, 2017.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration
with the successor representation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 5125–5133, 2020.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in
Neural Information Processing Systems, 32, 2019.

Harry Markowitz. Portfolio Selection. The Journal of Finance, 7(1):77–91, 1952.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 230–234, 1998.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24,
pages 109–165. Elsevier, 1989.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. EnsembleDagger:
A bayesian approach to safe imitation learning. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5041–5048. IEEE, 2019.

Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. Evaluating uncertainty quan-
tification in end-to-end autonomous driving control. arXiv preprint arXiv:1811.06817,
2018.

Thomas P Minka. Expectation propagation for approximate Bayesian inference. arXiv
preprint arXiv:1301.2294, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

https://arxiv.org/abs/2008.02430
https://arxiv.org/abs/2008.02430
https://arxiv.org/abs/1710.11089
https://arxiv.org/abs/1807.11622
https://arxiv.org/abs/1807.11622
https://authors.library.caltech.edu/13793/1/MACnc92b.pdf
https://arxiv.org/abs/1902.02476
https://www.math.hkust.edu.hk/~maykwok/courses/ma362/07F/markowitz_JF.pdf
https://dl.acm.org/doi/pdf/10.1145/279943.279989
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://www.sciencedirect.com/science/article/abs/pii/S0079742108605368
https://jontalle.web.engr.illinois.edu/uploads/410-NS.F22/McCulloch-Pitts-1943-neural-networks-ocr.pdf
https://jontalle.web.engr.illinois.edu/uploads/410-NS.F22/McCulloch-Pitts-1943-neural-networks-ocr.pdf
https://arxiv.org/pdf/1807.08364.pdf
https://arxiv.org/pdf/1807.08364.pdf
https://arxiv.org/abs/1811.06817
https://arxiv.org/abs/1811.06817
https://arxiv.org/abs/1301.2294
https://arxiv.org/abs/1312.5602

150 Bibliography

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning, pages
1928–1937. PMLR, 2016.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and
efficient off-policy reinforcement learning. arXiv preprint arXiv:1606.02647, 2016.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Overcoming exploration in reinforcement learning with demonstrations. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE,
2018.

Kamal Ndousse, Douglas Eck, Sergey Levine, and Natasha Jaques. Multi-agent Social
Reinforcement Learning Improves Generalization. arXiv preprint arXiv:2010.00581,
2020.

Radford M Neal. Bayesian learning for neural networks. Springer Science & Business
Media, 1995.

Gergely Neu and Csaba Szepesvári. Training parsers by inverse reinforcement learning.
Machine learning, 77:303–337, 2009.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Icml, volume 99, pages
278–287, 1999.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In
Icml, volume 1, pages 663–670, 2000.

Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejus Gupta, Lisa Lee, and Ben Eysenbach. f-
IRL: Inverse reinforcement learning via state marginal matching. In Conference on
Robot Learning, pages 529–551. PMLR, 2021.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-
Oriented Model-Based Reinforcement Learning with Implicit Differentiation. arXiv
preprint arXiv:2106.03273, 2021.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint
arXiv:1707.03497, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped DQN. Advances in neural information processing systems, 29:
4026–4034, 2016.

https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1709.10089
https://arxiv.org/abs/2010.00581
https://arxiv.org/abs/2010.00581
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://link.springer.com/content/pdf/10.1007/s10994-009-5110-1.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
http://www.eecs.harvard.edu/cs286r/courses/spring06/papers/ngruss_irl00.pdf
https://arxiv.org/abs/2011.04709
https://arxiv.org/abs/2011.04709
https://arxiv.org/abs/2106.03273
https://arxiv.org/abs/2106.03273
https://arxiv.org/abs/1707.03497
https://arxiv.org/abs/1602.04621
https://arxiv.org/abs/1602.04621

Bibliography 151

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. arXiv preprint arXiv:1806.03335, 2018.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift. Advances
in neural information processing systems, 32, 2019.

Tom Le Paine, Sergio Gómez Colmenarejo, Ziyu Wang, Scott Reed, Yusuf Aytar, Tobias
Pfaff, Matt W Hoffman, Gabriel Barth-Maron, Serkan Cabi, David Budden, et al.
One-shot high-fidelity imitation: Training large-scale deep nets with rl. arXiv preprint
arXiv:1810.05017, 2018.

Tom Le Paine, Caglar Gulcehre, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert
Soyer, Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, et al.
Making Efficient Use of Demonstrations to Solve Hard Exploration Problems. arXiv
preprint arXiv:1909.01387, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International conference on machine
learning, pages 2778–2787. PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In International conference on machine learning, pages 5062–5071.
PMLR, 2019.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks:
Approximately bayesian ensembling. In International conference on artificial intelli-
gence and statistics, pages 234–244. PMLR, 2020.

Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton, Oscar Beijbom, and Eric M
Wolff. CoverNet: Multimodal Behavior Prediction using Trajectory Sets. arXiv preprint
arXiv:1911.10298, 2019.

Alois Pichler and Ruben Schlotter. Entropy based risk measures. European Journal of
Operational Research, 285(1):223–236, 2020.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Neural
Information Processing Systems (NeurIPS), pages 305–313, 1989.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural computation, 3(1):88–97, 1991.

John W Pratt. Risk aversion in the small and in the large. In Uncertainty in economics,
pages 59–79. Elsevier, 1978.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

https://arxiv.org/abs/1806.03335
https://arxiv.org/abs/1806.03335
https://arxiv.org/abs/1906.02530
https://arxiv.org/abs/1906.02530
https://arxiv.org/abs/1810.05017
https://arxiv.org/abs/1909.01387
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1906.04161
http://arxiv.org/abs/1906.04161
http://proceedings.mlr.press/v108/pearce20a/pearce20a.pdf
http://proceedings.mlr.press/v108/pearce20a/pearce20a.pdf
https://arxiv.org/abs/1911.10298
https://arxiv.org/abs/1801.07220
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://www.ri.cmu.edu/pub_files/pub3/pomerleau_dean_1991_1/pomerleau_dean_1991_1.pdf
https://www.ri.cmu.edu/pub_files/pub3/pomerleau_dean_1991_1/pomerleau_dean_1991_1.pdf
https://msuweb.montclair.edu/~lebelp/PrattRiskSmalllargeEC1964.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887

152 Bibliography

Martin L Puterman and Moon Chirl Shin. Modified policy iteration algorithms for
discounted Markov decision problems. Management Science, 24(11):1127–1137, 1978.

Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, SM Eslami, and
Matthew Botvinick. Machine theory of mind. arXiv preprint arXiv:1802.07740, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding impact-driven exploration for
procedurally-generated environments. arXiv preprint arXiv:2002.12292, 2020.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt:
Learning robust neural network policies using model ensembles. arXiv preprint
arXiv:1610.01283, 2016.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087,
2017.

Louis B Rall. Automatic differentiation: Techniques and applications. Springer, 1981.

Deepak Ramachandran and Eyal Amir. Bayesian Inverse Reinforcement Learning. In
IJCAI, volume 7, pages 2586–2591, 2007.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning.
In Proceedings of the 23rd international conference on Machine learning, pages 729–
736, 2006.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via
reinforcement learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Danilo J Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary Ke, Ray
Jiang, Theophane Weber, Karol Gregor, Hamza Merzic, Fabio Viola, Jane Wang,
et al. Causally correct partial models for reinforcement learning. arXiv preprint
arXiv:2002.02836, 2020.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows. arXiv preprint arXiv:1505.05770, 2015.

Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. PRECOG:
PREdiction Conditioned On Goals in Visual Multi-Agent Settings. International
Conference on Computer Vision, 2019.

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep Imitative Models for
Flexible Inference, Planning, and Control. In International Conference on Learning
Representations (ICLR), April 2020.

https://www.jstor.org/stable/2630487
https://www.jstor.org/stable/2630487
https://arxiv.org/abs/1802.07740
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://arxiv.org/abs/2002.12292
https://arxiv.org/abs/2002.12292
https://arxiv.org/abs/1610.01283
https://arxiv.org/abs/1610.01283
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1709.10087
https://link.springer.com/chapter/10.1007/3-540-10861-0_5
https://dl.acm.org/doi/10.5555/1625275.1625692
https://martin.zinkevich.org/publications/maximummarginplanning.pdf
https://arxiv.org/abs/1905.11108
https://arxiv.org/abs/1905.11108
https://arxiv.org/abs/2002.02836
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1905.01296
https://arxiv.org/abs/1905.01296
https://arxiv.org/abs/1810.06544
https://arxiv.org/abs/1810.06544

Bibliography 153

Jacques Richalet, André Rault, JL Testud, and J Papon. Model predictive heuristic
control. Automatica (journal of IFAC), 14(5):413–428, 1978.

Mark Bishop Ring et al. Continual learning in reinforcement environments, 1994.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In 6th International Conference on Learning Representations,
ICLR 2018-Conference Track Proceedings, volume 6. International Conference on
Representation Learning, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

German Ros, Vladlen Koltun, Felipe Codevilla, and M. Antonio Lopez. CARLA Challenge,
2019.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Artificial Intelligence and
Statistics (AISTATS), pages 627–635, 2011.

Ariel Rubinstein. Modeling bounded rationality. MIT press, 1998.

H̊avard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace approximations. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 71(2):319–392, 2009.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101–103, 1998.

Stuart Russell. Human compatible: Artificial intelligence and the problem of control.
Penguin, 2019.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning
deep neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3(3):210–229, 1959. doi: 10.1147/rd.33.0210.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

https://www.sciencedirect.com/science/article/abs/pii/0005109878900018
https://www.sciencedirect.com/science/article/abs/pii/0005109878900018
https://www.cs.utexas.edu/~ring/Ring-dissertation.pdf
https://openreview.net/pdf?id=Skdvd2xAZ
https://openreview.net/pdf?id=Skdvd2xAZ
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://carlachallenge.org
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
http://online.kottakkalfarookcollege.edu.in:8001/jspui/bitstream/123456789/5820/1/MODELING.pdf
http://www.statslab.cam.ac.uk/~rjs57/RSS/0708/Rue08.pdf
http://www.statslab.cam.ac.uk/~rjs57/RSS/0708/Rue08.pdf
https://www.nature.com/articles/323533a0.pdf?origin=ppub
https://www.nature.com/articles/323533a0.pdf?origin=ppub
https://dl.acm.org/doi/pdf/10.1145/279943.279964
https://people.eecs.berkeley.edu/~russell/hc.html
https://arxiv.org/abs/1711.03705
https://arxiv.org/abs/1711.03705
http://people.csail.mit.edu/brooks/idocs/Samuel.pdf
https://arxiv.org/abs/1801.04381

154 Bibliography

Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional affordance learning for
driving in urban environments. arXiv preprint arXiv:1806.06498, 2018.

Leonard J Savage. The foundations of statistics. Wiley Publications in Statistics, 1954.

Frederic Schick. Consistency and rationality. The Journal of philosophy, 60(1):5–19, 1963.

Jürgen Schmidhuber. An on-line algorithm for dynamic reinforcement learning and
planning in reactive environments. In 1990 IJCNN international joint conference on
neural networks, pages 253–258. IEEE, 1990.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages
1889–1897. PMLR, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dominic Scott. Plato’s Meno. Cambridge University Press, 2006.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and
Deepak Pathak. Planning to explore via self-supervised world models. In International
Conference on Machine Learning, pages 8583–8592. PMLR, 2020.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised learning
from video. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1134–1141. IEEE, 2018.

Kyriacos Shiarlis, Joao Messias, and SA Whiteson. Inverse reinforcement learning from
failure, 2016.

Edward H Shortliffe. Mycin: A knowledge-based computer program applied to infectious
diseases. In Proceedings of the Annual Symposium on Computer Application in Medical
Care, page 66. American Medical Informatics Association, 1977.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration.
In International conference on machine learning, pages 5779–5788. PMLR, 2019.

https://arxiv.org/abs/1806.06498
https://arxiv.org/abs/1806.06498
https://philpapers.org/rec/SAVTFO-2
https://www.jstor.org/stable/2023058
https://mediatum.ub.tum.de/doc/814960/file.pdf
https://mediatum.ub.tum.de/doc/814960/file.pdf
https://www.nature.com/articles/s41586-020-03051-4
http://proceedings.mlr.press/v37/schulman15.pdf
http://proceedings.mlr.press/v37/schulman15.pdf
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.cambridge.org/core/books/platos-meno/37AB68E87D7F9AD89BB0882990669A91
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1704.06888
https://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/shiarlisaamas16.pdf
https://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/shiarlisaamas16.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf
https://arxiv.org/abs/1810.12162

Bibliography 155

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley,
Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The
predictron: End-to-end learning and planning. In International Conference on Machine
Learning, pages 3191–3199. PMLR, 2017.

Leo Smigel. Algorithmic Trading History: A Brief Summary, 2022.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin,
D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. In Neural Infor-
mation Processing Systems (NeurIPS), pages 13969–13980, 2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforce-
ment learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Dale O Stahl. Evolution of smart-n players. Games and Economic Behavior, 5(4):604–
617, 1993.

Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environ-
ments: Introduction to covariate shift adaptation. MIT Press, 2012.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,
Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in
Perception for Autonomous Driving: An Open Dataset Benchmark. arXiv preprint
arXiv:1912.04838, 2019.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,
Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability
in perception for autonomous driving: Waymo open dataset. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 2446–2454,
2020.

Wen Sun, Geoffrey J Gordon, Byron Boots, and J Bagnell. Dual policy iteration. Advances
in Neural Information Processing Systems, 31, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
ACM Sigart Bulletin, 2(4):160–163, 1991.

Richard S Sutton. TD models: Modeling the world at a mixture of time scales. In
Machine Learning Proceedings 1995, pages 531–539. Elsevier, 1995.

https://www.nature.com/articles/nature16961
https://arxiv.org/abs/1612.08810
https://arxiv.org/abs/1612.08810
https://analyzingalpha.com/algorithmic-trading-history
https://arxiv.org/abs/1906.02530
https://arxiv.org/abs/1906.02530
https://arxiv.org/abs/1507.00814
https://arxiv.org/abs/1507.00814
https://www.sciencedirect.com/science/article/abs/pii/S089982568371033X
https://mitpress.mit.edu/books/machine-learning-non-stationary-environments
https://mitpress.mit.edu/books/machine-learning-non-stationary-environments
https://arxiv.org/abs/1912.04838
https://arxiv.org/abs/1912.04838
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://proceedings.neurips.cc/paper/2018/file/15e122e839dfdaa7ce969536f94aecf6-Paper.pdf
https://link.springer.com/content/pdf/10.1007/BF00115009.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6005&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.9670&rep=rep1&type=pdf

156 Bibliography

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
Press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

George T Taoka. Brake reaction times of unalerted drivers. ITE journal, 59(3):19–21, 1989.

Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. Integrating reinforcement
learning with human demonstrations of varying ability. In The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 617–624,
2011.

Robert Tibshirani. A comparison of some error estimates for neural network models.
Neural Computation, 8(1):152–163, 1996.

Tishby, Levin, and Solla. Consistent inference of probabilities in layered networks:
predictions and generalizations. In International 1989 joint conference on neural
networks, pages 403–409. IEEE, 1989.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control:
Software and tasks for continuous control. Software Impacts, 6:100022, 2020.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical
and empirical analysis of Expected Sarsa. In 2009 ieee symposium on adaptive dynamic
programming and reinforcement learning, pages 177–184. IEEE, 2009.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of complexity, pages 11–30.
Springer, 1971.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot,
Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging
demonstrations for deep reinforcement learning on robotics problems with sparse
rewards. arXiv preprint arXiv:1707.08817, 2017.

http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.372.2748&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.9936&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.9936&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.1022&rep=rep1&type=pdf
http://mcn2017public.pbworks.com/w/file/fetch/137810298/TishbyLevinSolla89.pdf
http://mcn2017public.pbworks.com/w/file/fetch/137810298/TishbyLevinSolla89.pdf
https://arxiv.org/abs/1805.01954
https://arxiv.org/abs/2006.12983
https://arxiv.org/abs/2006.12983
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gwydion-1/OldFiles/OldFiles/python/Doc/ref.ps
https://ieeexplore.ieee.org/document/4927542
https://ieeexplore.ieee.org/document/4927542
https://statisticalsupportandresearch.files.wordpress.com/2017/05/vladimir-vapnik-the-nature-of-statistical-learning-springer-2010.pdf
https://link.springer.com/chapter/10.1007/978-3-319-21852-6_3
https://link.springer.com/chapter/10.1007/978-3-319-21852-6_3
https://arxiv.org/abs/1707.08817
https://arxiv.org/abs/1707.08817
https://arxiv.org/abs/1707.08817

Bibliography 157

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and
Matthieu Geist. Leverage the average: an analysis of kl regularization in reinforcement
learning. Advances in Neural Information Processing Systems, 33:12163–12174, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.
Princeton university press, 1944.

Abraham Wald. Contributions to the theory of statistical estimation and testing hy-
potheses. The Annals of Mathematical Statistics, 10(4):299–326, 1939.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292,
1992.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. King’s
College, Cambridge United Kingdom, 1989.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller.
Embed to control: A locally linear latent dynamics model for control from raw images.
arXiv preprint arXiv:1506.07365, 2015.

Pawe l Wawrzyński. Real-time reinforcement learning by sequential actor–critics and
experience replay. Neural networks, 22(10):1484–1497, 2009.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement
learning. arXiv preprint arXiv:1301.2315, 2001.

Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit assignment
techniques in stochastic computation graphs. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 2650–2660. PMLR, 2019.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Swiatkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin.
How good is the bayes posterior in deep neural networks really? arXiv preprint
arXiv:2002.02405, 2020.

Paul J Werbos. Learning how the world works: Specifications for predictive networks in
robots and brains. In Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, NY, 1987.

Peter Whittle. Risk-sensitive linear/quadratic/Gaussian control. Advances in Applied
Probability, 13(4):764–777, 1981.

Jörg Wichard, Christian Merkwirth, and Maciej Ogorzalek. Building ensembles with
heterogeneous models, 2003.

https://proceedings.neurips.cc/paper/2020/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://www.nature.com/articles/s41586-019-1724-z
https://www.degruyter.com/document/doi/10.1515/9781400829460/html
http://www.stat.yale.edu/~hz68/619/Wald-1939.pdf
http://www.stat.yale.edu/~hz68/619/Wald-1939.pdf
https://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf
https://d1wqtxts1xzle7.cloudfront.net/50360235/Learning_from_delayed_rewards_20161116-28282-v2pwvq-with-cover-page-v2.pdf?Expires=1661437253&Signature=I7n6mTunKk0wtbhsBNUC1-QW4gycOURv8u-nMmvN3l-zSN2NgneaUs9cWw7BJkgbP~hAMcQWf73KkzzIhah34uSiBq~QhbYXnBlPEKL65mEw7yoS-4N-IF5miAPBj820tyh7JpaJn6-wxKsg6XKI8A58iYxJr4j2xBF39oE6JiHx1aK9zLwOIiQk7OhuyAGCrfTNk2Hp6LxJ5mGteqHTtYJ0k~4gh9wGntykFEm5Ws5iHzt5HDg~R0n42JZvgsJqeqlMhYy9Lz8NtlfJKwYXuw1kJW1OBRXIqulyQ9SOEpzsS1t5d-n2Qnrz7Lxmas71k50~U~4IC89M53r33LUVyw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://arxiv.org/abs/1506.07365
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=196561bab61cea5fd26f37b00eb83f273e8a00b5
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=196561bab61cea5fd26f37b00eb83f273e8a00b5
https://arxiv.org/abs/1301.2315
https://arxiv.org/abs/1301.2315
https://arxiv.org/abs/1901.01761
https://arxiv.org/abs/1901.01761
https://arxiv.org/abs/2002.02405
https://bibbase.org/network/publication/werbos-learninghowtheworldworksspecificationsforpredictivenetworksinrobotsandbrains-1987
https://bibbase.org/network/publication/werbos-learninghowtheworldworksspecificationsforpredictivenetworksinrobotsandbrains-1987
https://www.cambridge.org/core/journals/advances-in-applied-probability/article/abs/risksensitive-linearquadraticgaussian-control/9D29B8E7D13589A3823E75525181117F
http://www.j-wichard.de/publications/salerno_lncs_2003.pdf
http://www.j-wichard.de/publications/salerno_lncs_2003.pdf

158 Bibliography

Bernard Widrow. Pattern recognition and adaptive control. IEEE Transactions on
Applications and Industry, 83(74):269–277, 1964.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforce-
ment learning algorithms. Connection Science, 3(3):241–268, 1991.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. arXiv preprint arXiv:2002.08791, 2020.

David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

Wako Yoshida, Ray J Dolan, and Karl J Friston. Game theory of mind. PLoS Comput
Biol, 4(12):e1000254, 2008.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and
reproducible reinforcement learning experiments. arXiv preprint arXiv:1903.03176,
2019.

Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen.
Playvirtual: Augmenting cycle-consistent virtual trajectories for reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end
autonomous driving. arXiv preprint arXiv:1605.06450, 2016.

Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. Robust bayesian inverse reinforcement
learning with sparse behavior noise. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014.

Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart,
Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn:
Meta-learning from demonstrations and reward. arXiv preprint arXiv:1906.03352, 2019.

Kemin Zhou, JC Doyle, and Keither Glover. Robust and optimal control. Control
Engineering Practice, 4(8):1189–1190, 1996.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5407756
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6bc8db0c7444d9c07aad440393b2fd300fb3595c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6bc8db0c7444d9c07aad440393b2fd300fb3595c
https://arxiv.org/abs/2002.08791
https://arxiv.org/abs/2002.08791
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=585893&casa_token=iiWX8ivnlowAAAAA:6TFAZQdntOsUQFSvwCk-71g3ChxtJ6SxbmNF85NirxC3tPaNQCmQN4oq81Awkfap4N_b2mQcFA&tag=1
https://pubmed.ncbi.nlm.nih.gov/19112488/
https://arxiv.org/abs/1903.03176
https://arxiv.org/abs/1903.03176
https://arxiv.org/abs/2106.04152
https://arxiv.org/abs/1605.06450
https://arxiv.org/abs/1605.06450
https://ojs.aaai.org/index.php/AAAI/article/view/8979/8838
https://ojs.aaai.org/index.php/AAAI/article/view/8979/8838
https://arxiv.org/abs/1906.03352
https://arxiv.org/abs/1906.03352
https://www.lirmm.fr/~chemori/Temp/Control_books/robust_and_optimal_control-zhou.pdf
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf

	List of figures
	List of tables
	List of acronyms
	List of symbols
	Introduction
	Thesis statement
	Contributions and outline

	Background & literature review
	Decision-making under uncertainty
	Decision-making under risk
	Decision-making under ignorance

	slSupervised learning (sl)
	Probabilistic inference
	dlDeep learning (dl)
	Ignorance-aware deep nn
	ilImitation learning (il)

	rlReinforcement learning (rl)
	Agent-environment interface & definitions
	mdp solvers
	Planning
	Overoptimising a learned objective
	Ignorance-aware rl agents

	Plan and adapt from expert demonstrations
	Background & problem setting
	Methods
	ripRobust imitative planning (rip)
	adaripAdaptive robust imitative planning (adarip)

	Experiments
	Detecting distribution shifts
	Recovering from distribution shifts
	Adapting to distribution shifts

	Related work
	Conclusion & discussion

	Plan and adapt from sub-optimal demonstrations
	Background & problem setting
	Methods
	itdInverse temporal difference (itd) learning
	psiphilearning with no-reward demonstrations

	Experiments
	Accelerating rl with no-reward demonstrations
	Inferring reward functions
	Predicting other agents' behaviour
	Transfer and few-shot generalisation

	Related work
	Conclusion & discussion

	Plan with model-value inconsistency
	Background & problem setting
	Method
	iveImplicit value ensemble (ive)
	Model-value inconsistency

	Experiments
	Detecting out-of-distribution regimes with self-inconsistency
	Optimism and pessimism in the face of self-inconsistency
	Planning with averaged model-predicted values

	Related work
	Conclusion & discussion

	Afterword
	Plan and adapt from expert demonstrations
	CARNOVEL: Suite of tasks under distribution shift
	adarip examples

	Plan and adapt from sub-optimal demonstrations
	Experimental details
	Highway
	Roundabout
	CoinGrid
	Fruitbot

	Implementation details
	Proofs
	Visualisations

	Plan with model-value inconsistency
	Experimental details
	Environments
	Experiments

	Implementation details
	Tabular methods
	Dreamer hafner2019dream
	Muesli hessel2021muesli
	VPN oh2017value

	Extensions
	ive with the Bellman optimality operator
	mpv with action-value functions

	Additional experiments
	Measuring self-inconsistency in ood states
	Measuring eve variance in ood states
	How to use the ive[[5]] signal?
	Ablation on pessimism for evaluation
	Dreamer variants

	Bibliography

