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Abstract 

Artificial Intelligence (AI) is defined as intelligence exhibited by machines, such as 

electronic computers. It can involve reasoning, problem solving, learning and 

knowledge representation, which are mostly in focus in the medical domain. Other 

forms of intelligence, including autonomous behavior, are also parts of AI. Data driven 

methods for decision support have been employed in the medical domain for some 

time.  Machine learning (ML) is used for a wide range of complex tasks across many 

sectors of the industry. However, a broader spectrum of AI, including deep learning 

(DL) as well as autonomous agents, have been recently gaining more focus and have 

risen expectation for solving numerous problems in the medical domain. A barrier 

towards AI adoption, or rather a concern, is trust in AI, which is often hindered by 

issues like lack of understanding of a black-box model function, or lack of credibility 

related to reporting of results. Explainability and interpretability are prerequisites for 

the development of AI-based systems that are lawful, ethical and robust. In this respect, 

this paper presents an overview of concepts, best practices, and success stories, and 

opens the discussion for multidisciplinary work towards establishing trustworthy AI. 
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Introduction 

Recent advances of AI and the success 

stories of the field in dealing with 

problems of great complexity (Samek et 

al.,2020; Weller, 2019), have renewed 

the urgency to consider the AI's socio-

economic impact and the requirements 

to safely adopt AI solutions. 

Organizations in the public and private 

sector are collaborating for 

the development and establishment 

of strategies and policy frameworks 

towards lawful and ethical AI.  In 

certain scenarios though, due to the 

inherent complexity and the 

nonlinearity that characterizes their 

interrelations, it is usual that the 

approach to their modeling and solution 

will carry a high degree of complexity. 

These models often make successful 

predictions and have high accuracy 

scores, but they are lacking in 

transparency, in a way that is difficult 

for an observer to discern how the input 

of the model affects its output. This also 

impedes the understanding of the 

decision-making process - i.e. why a 

decision has been made. Generally, we 

refer to this kind of systems, that we 

cannot observe their internal workings, 

as black boxes. Transparency may not 

always be necessary, but it is desired for 

high-stakes decision systems, such is 

the case of systems in the medical 

domain.   

As AI application comes to practice in 

various fields, even critical ones, the 

matter of ethical and trustworthy AI 

(European Commission, 2019) has been 

raised. The concept ‘ethical’ means to 

ensure that the system does not induce 

harm, is fair, and its decisions can be 

explained/understood, and the concept 

‘trustworthy’ that the system is lawful, 

ethical, and robust. Due to general 

concern of how ethical and trustworthy 

AI can be realized, the field of 

Explainable AI has emerged. Gunning 

and Aha define it as a suite of machine 

learning techniques that enables human 

users to understand, appropriately trust, 

and effectively manage the emerging 

generation of artificial intelligent 

partners (Gunning and Aha, 2019). 

 

Background Concepts 

McCarthy, the father of Artificial 

Intelligence, refers to AI as the "science 

and engineering of making intelligent 

machines". Another definition, given 

from the European Commission in a 

document addressed to the European 

Parliament (2020), expands on the 

previous definition and explains the 

term by specifying how systems display 

intelligence - i.e. "by analyzing their 

environment and taking actions -with 

some degree of autonomy- to achieve 

specific goals".  

There are numerous definitions of AI, 

apart from the previous ones, 

considering that there are many 

interpretations for intelligence, while 

lacking a general consensus about a 

single definition. A subfield of 

Artificial Intelligence is Machine 

Learning defined by Tom M. Mitchell 

as the study of algorithms that allow 

computer programs to improve through 

experience. ML aims to make informed 

decisions/predictions by generalizing 

from data, without the intervention of a 

human. Often the two terms are used 

interchangeably in the industry, though 

this is a common misconception. ML is 

a technique through which AI can be 

realized. The advancements in 

technology that took place in the last 

decade, specifically the increased 

computation capabilities and the vast 

amount of data available, transformed 

machine learning, and the field of AI in 

general, into a invaluable tool, tasked to 

deal with complex problems. The 

algorithms and models developed for 

this purpose, though adequately 

accurate to be deployed in real-world 
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scenarios, are not trusted yet in critical 

situations that involve medical 

diagnoses for example. A common 

barrier preventing this, is the 

uncertainty they evoke, regarding the 

process they follow to produce their 

results. Usually referred to, in the 

literature, as black-boxes, these AI 

models are required to be more 

transparent and explainable to be 

trustworthy (European Commission, 

2019; Thiebes et al., 2020; Wing, 2020) 

The meaning of trustworthy can vary 

from one domain to another. Regarding 

the field of health and medicine, it may 

be considered as an umbrella term, 

which encapsulates several properties 

an AI model/system should incorporate, 

such as accountability, fairness, 

transparency, and privacy - among 

others (European Commission, 2019) . 

While this list is not exhaustive, and all 

these properties are of equal importance 

and interconnected with each other, we 

will address the issue of transparency. 

Transparency can be interpreted 

informally as the opposite of opaque 

(Lipton, 2017), which is an undesired 

characteristic of AI black-box models. 

The lack of transparency, as a direct 

result from the increased complexity of 

AI models, hinders the understanding of 

the decision-making process, leading to 

AI systems that are not trusted and 

consequently are not adopted by the 

industry (Lin,2020; Ribeiro et al., 2016; 

The Royal Society, 2019). 

Transparency can have various kinds of 

interpretations, depending on the 

context and which type of user is 

intended for (Weller, 2019). In his 

article about algorithmic decision 

making, Diakopoulos writes that 

transparency can be inspected under 

five dimensions, namely: human 

involvement, data, the model, 

inferencing and algorithmic presence 

(Diakopoulos, 2016). In its general 

form though, transparency is aimed 

towards the creation of a more 

explainable model or system (Waltl and 

Vogl, 2018; Bücker et al., 2021; 

(European Commission, 2019). 

Transparency is closely related to 

interpretability and explainability and 

often used as synonyms (Doran et al., 

2017), but it is highlighted through 

literature (Lipton, 2017; Rudin, 2019, 

Arya et al., 2019) that they convey a 

different meaning, so in this paper they 

will be used distinguishably.  

Interpretability addresses the issue of 

conveying some of the properties of an 

ML model in terms understandable to a 

human (Roscher  et al., 2020). It aims to 

increase the understandability of the 

system, which has been proposed in 

relevant work to be used as a evaluation 

metric (Allahyari and Lavesson, 2011), 

by clarifying the link between the 

prediction of the machine learning 

model and its selected features. It is 

worth mentioning that with 

understandability we refer to the 

functional aspects of the system, and 

not to its technical inner mechanisms, as 

it is also mentioned in (Lipton, 2017). 

Explainability, on the other hand, does 

not have a clear definition, although it 

has been recognized that is an important 

characteristic of AI models (Roscher et 

al., 2020). It is described in relevant 

literature as, the knowledge of what 

each component of the system 

represents and its contribution towards 

the system's results. In the document 

containing guidelines for trustworthy 

AI, from European Commission (2019), 

it is also stated that explainability is 

about the technical processes of the 

model and the related human decisions 

made by it. Holzinger (Holzinger et al., 

2017) does not provide a distinct 

definition for explainability; instead, 

the author explains that there are two 

types of interpretability/explainability - 

namely one that explains what is 

already interpretable (post-hoc 

explainability) and one that builds 

explainable components into the 
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structure of an AI model (ante-hoc 

explainability). 

An enhancement to the 

interpretability/explainability endeavor 

of black box models is to try and give 

insights about the causal relationships 

that are shaped. As previously 

mentioned (Doshi-Velez and Kim, 

2017), interpretable ML, causality 

implies that the predicted change in 

output due to a perturbation will occur 

in the real system, Approaches that 

address causality in the, can improve 

the interpretable characteristics of a 

model by providing information about 

the contribution of its components in its 

final decisions. Moraffah et 

al.  distinguishes between traditional 

interpretability, or else statistical, and 

causal interpretability, which aims to 

answer questions of the type “What-if” 

(causal interventional interpretability) 

and “Why” (counterfactual 

interpretability) (Moraffah et al., 2020). 

ML models are capable of discerning 

associations and correlations in a vast 

amount of data, but they cannot provide 

causal explanations for these. A 

relevant term is causabilty, as Holzinger 

defines it (Holzinger et al., 2019), 

distinguishing it from causality, as a 

property which examines causality 

from the user scope and is measured for 

how understandable and transparent is 

to a human expert. Defining cause-

effect relations is a method to deal with 

data bias in models and make them 

more robust to it. 

Additionally, when considering 

interpretability, bias is a major topic to 

the field. All data-driven methods are 

expected to be built upon diverse 

datasets, that represent the 

actual diverse patient populations it 

addresses for diagnosis and treatment 

support. Data selection bias occurs to 

some extent with any data set, due to its 

limited volume. This bias often 

originates from over-representation or 

under-representation of groups or 

subsets based on gender, ethnic, social, 

environmental, or economic factors, as 

well as health-related confounding 

factors, like comorbidities or 

treatments. Sometimes, bias is 

introduced by technical or 

organisational processes, like methods 

of labeling, post-processing, and 

annotating (Geis et al., 2019). 

 

Existing Tools and Approaches 

The current report will focus on the 

aspect of the transparency of the model 

(not the algorithm), a concept that 

serves to enhance its explainability. It 

can be achieved through two 

approaches or their combination in 

some cases (Molnar, 2019): the 

deployment of interpretable models - 

models that are sufficiently transparent 

by their nature and thus understandable 

to the user, or the utilization of 

explanation methods, that are applied 

after the deployment of a model. 

  In the first category fall under, 

according to recent literature (Freitas, 

2014; European Commision, 2020; 

Thiebes et al., 2020; Huysmans et al.,  

2011) these models: decision tree, rules, 

linear models. Linear regression models 

are used widely in various fields due to 

their inherent interpretability. This is 

based on their ability to quantify the 

outcome of a prediction and by showing 

the degree of influence of each variable. 

Linear models make predictions based 

on the weighted sum of the features of a 

model's instance, hence their 

interpretability lies in the interpretation 

of their features.  This can be done by 

considering the feature importance, 

which is basically the contribution of 

each feature for a given prediction. This 

becomes evident by visualizing them. 

There is an option of visualizing the 

various features' weights (weight plot), 

but this has the disadvantage of 

measurements being on a different 

scale. As an alternative solution, we can 

plot the weights multiplied by their 
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feature (effect plot), in order to 

understand how much the features and 

their weights influence the outcome. 

The greatest advantage of linear 

models, which is their linearity, is also 

one of its limiting factors. Because of 

their simplistic nature, they cannot 

model sufficiently the complexity of 

real-world scenarios.  Furthermore, 

any interaction between features that 

creates nonlinearities must be addressed 

by forming new input features based on 

knowledge (Molnar, 2019). 

  Decision rules, most often of the form 

IF-THEN, are also one of the 

intrinsically interpretable models. A 

decision rule is a function which maps 

an observation to an appropriate action. 

The if clause is a condition or a 

combination of conditions conjuncted 

with the logical AND, and the then part 

is the prediction. Decision trees have a 

graph structure that resembles a tree. A 

decision tree model starts from a node 

(root) that branches into other nodes 

that represent a question (test) for a 

feature, and they also branch to a child 

node for each possible answer or to 

another node with a different input 

feature. The path from the root to the 

leaves of the tree represent the rules that 

the classification is based upon and they 

can be extracted. Trees have the 

advantage of being able to deal with 

categorical and continuous variables, in 

contrast with decision rules, where the 

features have to be of the former type 

(Kingsford and Salzberg, 2008). 

Interpretations can be extracted by 

examining the structure of decision tree 

and rules models and tracing how they 

make their predictions (Molnar et al., 

2020). This however becomes quite 

challenging with complex scenarios, in 

which they require a large number of 

rules and features that interact with each 

other or a high degree of depth in the 

decision tree. Both decision trees and 

rules are quite interpretable, although 

their representation of interpretation 

varies. Decision trees have a strong 

visual characteristic due to their 

graphical representation, whereas 

decision rules interpretation is based on 

their textual form (Guidotti et al., 2019). 

  These models are inherently 

interpretable or, as often mentioned in 

the literature, white box models (Reyes 

et al., 2020). In contrast, when ML 

models do not have interpretable 

properties, certain techniques are 

utilized for extracting explanations after 

the deployment of the model. These 

methods that operate on black box 

models are post-hoc explainability 

methods (Holzinger et al., 2017). In this 

work, we will focus on methods that are 

not model specific. According to the 

taxonomy proposed by Arrieta et al, 

model-agnostic techniques approach 

explainability through model 

simplification, feature relevance 

estimation and visualization techniques 

(Arrieta et al., 2020). A common 

technique for model simplification is 

Local Interpretable Model-Agnostic 

Explanations (LIME) (Thiebes et al., 

2020). LIME attempts to formulate 

explanations for the predictions of a 

model, by approximating it with a more 

simple, interpretable model. It focuses 

on local explainability, i.e., attempts to 

explain individual predictions of the 

model. Ribeiro et al. report that by using 

LIME, even non-expert users can be 

benefited from provided explanations, 

something that may contribute towards 

scenarios where a trustworthy AI model 

is of foremost importance. 

   Another group of techniques to 

generate explanations for black box 

models is visualization. Visualization 

tools and techniques can be powerful 

methods to convey information in a 

human-interpretable manner. These 

post-hoc visual explanations aim to 

interpret the model’s behavior through 

visual components. Representative 

examples of this category of methods 

are individual conditional expectation 
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(ICE) (Goldstein et al., 2014) and 

partial dependence plots (PDP) 

(Friedman, 2001). The purpose of PDP 

is to offer insights about the importance 

of some of the model’s features on the 

predicted outcome. According to 

Friedman, it can be useful to depict their 

relationship and help with the 

interpretability of a model, but its result 

can be misleading for highly correlated 

features. While PDP focuses on the 

global effect a feature has on a 

prediction, ICE highlights the influence 

of an individual contribution (Goldstein 

et al., 2014). Both methods apply the 

concept that if you make alterations to a 

value of an important feature, then it is 

expected to show at the model’s 

outcome. Reyes et al. argue that PDP 

and ICE could prove useful in the field 

of radiology, since features are not 

generated by an algorithm but are hand-

crafted based on prior knowledge, 

which can be validated through the 

former visualization techniques (Reyes 

et al., 2020). 

  For techniques that produce 

explanations by examining the 

influence of each feature, a 

characteristic example may be Shapley 

additive explanations (SHAP) 

(Lundberg and Lee, 2017), based on the 

concept of Shapley values from game 

theory. In this analogy, the game is the 

result decision of the model and the 

players are the features. According to 

Lundberg and Lee, SHAP is a unified 

framework of other explainability 

methods. It aims to interpret the 

prediction of an instance of the machine 

learning model (game) by measuring 

the contribution of its features (players) 

to that prediction. From the definition of 

the method, it is evident that it focuses 

on local interpretability. But it is 

feasible to provide global 

interpretations for the model, by 

aggregating the required Shapley values 

for each feature. 

 

Exemplary Applications in the 

Health Domain 

One of the main barriers regarding the 

application of AI tools in medicine is 

the inability of the medical 

professionals to understand the 

rationale behind specific decisions 

proposed by the algorithms and thus, 

XAI seems to be vital for the integration 

of AI into decision support systems. 

One of the fields that a significant effort 

was paid is the management of critically 

ill patients. The medical condition of 

such patients may change dramatically 

in time while a plethora of 

heterogeneous data are available for 

each of them. In this respect, accurate 

decision making is crucial, while time 

plays a vital role. Most XAI methods 

that have been implemented for ICU 

patients focus on highlighting indented 

feature importance. According to Ge et 

al.,  this approach was followed in order 

to identify the most contributing 

features for the prediction of mortality 

in ICU patients (Ge et al., 2018). On the 

other hand, Kaji et al. focused on the 

identification of those parameters that 

could predict the initiation of critical 

events during patients' stay in ICU (Kaji 

et al., 2019), while Shickel et al.  

proposed a score that could accurately 

predict patient’s severity of illness 

during an ICU stay (Shickel et al., 

2019). 

The outbreak of the COVID-19 

pandemic affected the research related 

to XAI. In this respect, a significant 

effort was paid to implement AI models 

which can quantify the disease, stratify 

patients, and predict outcome. Most 

works use XAI to provide more 

information regarding the disease 

detection using CT scans or chest 

radiograph (X-ray) (Ahsan et al., 

2020).  XAI is succeeded through the 

provision of powerful visualization and 

confidence scores for each layer of the 

DL model. A characteristic recent work 

(Chassagnon et al., 2021) proposes the 
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use of imaging characteristics extracted 

from CT scans (radiomics), while they 

combine them with diverse types of 

data, such as clinical and biological 

attributes to select the most significant 

ones, regarding the outcome prediction 

(severe and non-severe cases). The 

incorporation of visualization aspects 

allows the implementation of a COVID-

19 Holistic Multi-Omics Signature & 

Staging mechanism, leading to data 

augmentation and improving the 

explainability of the predictive models. 

 

Discussion: Technical and 

Methodological Challenges 

As machine learning is increasingly 

used in real-world decision processes, 

the necessity for transparency will 

continue to grow. The emerging field of 

explainable AI in the medical domain 

holds promising results towards more 

transparent machine learning models 

and a broader adoption in the 

healthcare. In this direction, there are 

several challenges to overcome, 

including: 

1. what is an explanation, and how it 

depends on the problem (i.e. a 

diagnostic case) and the user (i.e. 

clinical expert or other user) 

2.  what are the metrics for 

comprehensibility, and how can 

they be contextualized 

Many questions still remain to be 

solved, towards creating a formal 

framework in explainable AI, with 

extensions to trustful AI. Such a 

framework is foreseen to form a general 

background regarding concepts that are 

not well defined yet and create a 

common taxonomy , in order to 

promote further research and facilitate 

comparison between related works. In 

addition, a XAI framework is expected 

to formalize the tools and best practices 

thar can boost explainability in different 

scenarios and contexts.  

 

 

Conclusion  

This paper serves as an introduction of 

the field of explainable AI and comes as 

an effort to lay out the outline, without 

overwhelming the reader. We reviewed 

the concept of what trustworthy AI is 

and what are the challenges that come 

from using black box AI models. We 

approached the definition of 

trustworthy AI from the domain of 

transparency, as this quality is often 

used to confirm other desired aspects of 

AI models. 
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