9 research outputs found

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    A community-sourced glossary of open scholarship terms

    Get PDF
    Supplementary Information: This list of terms represents the ‘Open Scholarship Glossary 1.0’ (available at: https://forrt.org/glossary/. Glossary available under a CC BY NC SA 4.0 license at: https://static-content.springer.com/esm/art%3A10.1038%2Fs41562-021-01269-4/MediaObjects/41562_2021_1269_MOESM1_ESM.pdf).https://static-content.springer.com/esm/art%3A10.1038%2Fs41562-021-01269-4/MediaObjects/41562_2021_1269_MOESM1_ESM.pd

    A community-sourced glossary of open scholarship terms

    Get PDF
    Open scholarship has transformed research, introducing a host of new terms in the lexicon of researchers. The Framework of Open and Reproducible Research Teaching (FORRT) community presents a crowd-sourced glossary of open scholarship terms to facilitate education and effective communication between experts and newcomers

    Solid State Polymorphism of Isotactic and Syndiotactic Polypropylene

    No full text
    The crystal structure and polymorphism of isotactic (iPP) and syndioactic polypropylene (sPP) are illustrated, highlighting the rich variety of phase behavior of these polymers, the conditions of obtainment of the different polymorphs and the disorder phenomena occurring in the crystals. After description of the concepts of packing and conformational polymorphism occurring in the case of iPP and sPP respectively, the crystal structure of the different polymorphs of iPP and sPP are described. In particular, the main structural features relative to the monoclinc α-, the trigonal β- and the orthorhombic γ-forms, of iPP including the mesomorphic form, and the trigonal form which develops in random isotactic copolymers of propylene with pentene or hexene units, are described at first, the chain conformation in all these polymorphs being the 3/1 helix. Then, the complex polymorphism of sPP and the crystal structure of the orthorhombic helical form I and II, the orthorhombic trans-planar form III, the monoclininc form IV, and the trans-planar and helical mesophases are illustrated. The implications of the crystal structure with the final properties are outlined for these polymers, the great fortune of which was the almost simultaneous discovery of the polymerization catalyst systems and the structural elucidation

    Eosinophils in innate immunity: an evolving story

    No full text
    corecore