290 research outputs found

    Trade through FDI: investing in services

    Get PDF
    The type of relationship between different modes of trading services internationally is of great interest, both for the academic literature and for liberalization policies under the GATS, because cross-border and commercial presence abroad might complement or substitute each other. This paper offers a consistent theoretical foundation for the application of the gravity model to services trade, using a composite demand model yielding testable hypothesis about that complementary or substitutive relationship and linking the results to market regulations as trade barriers. For the OECD countries over 1994-2004 a robust complementary effects in the short-run is found, reinforced in the long-run by an increased potential for cross-border imports bases on pervious FDI inflows, highlighting business, communication and financial services.Imports, services, panel data, substitution and complementary effects

    The home market effect in the Spanish industry, 1965-1995

    Get PDF
    This study was intended to identify empirically the existence of the home market effect (HME) in Spanish manufacturing industry, a case which shows some incipient evidence in very early stages of development, and an increasing relevance of this phenomenon over time. Our empirical test is carried out with 17 regions between 1965 and 1995, and lends support to the hypothesis of the existence of the HME in five of the nine industries analysed. These results are obtained using a specification in line with the traditional one but new in the sense that it is defined in proportions instead of levels; this approach has conceptual advantages because it is a relative one, like the definition of HME itself

    Overexpression of FurA in Anabaena sp. PCC 7120 Reveals New Targets for This Regulator Involved in Photosynthesis, Iron Uptake and Cellular Morphology

    Get PDF
    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for invitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator invivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 712

    Expanding the FurC (PerR) regulon in Anabaena (Nostoc) sp. PCC 7120: Genome-wide identification of novel direct targets uncovers FurC participation in central carbon metabolism regulation

    Get PDF
    FurC (PerR, Peroxide Response Regulator) from Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120) is a master regulator engaged in the modulation of relevant processes including the response to oxidative stress, photosynthesis and nitrogen fixation. Previous differential gene expression analysis of a furC-overexpressing strain (EB2770FurC) allowed the inference of a putative FurC DNA-binding consensus sequence. In the present work, more data concerning the regulon of the FurC protein were obtained through the searching of the putative FurC-box in the whole Anabaena sp. PCC 7120 genome. The total amount of novel FurC-DNA binding sites found in the promoter regions of genes with known function was validated by electrophoretic mobility shift assays (EMSA) identifying 22 new FurC targets. Some of these identified targets display relevant roles in nitrogen fixation (hetR and hgdC) and carbon assimilation processes (cmpR, glgP1 and opcA), suggesting that FurC could be an additional player for the harmonization of carbon and nitrogen metabolisms. Moreover, differential gene expression of a selection of newly identified FurC targets was measured by Real Time RT-PCR in the furC-overexpressing strain (EB2770FurC) comparing to Anabaena sp. PCC 7120 revealing that in most of these cases FurC could act as a transcriptional activator

    The Challenge of Iron Stress in Cyanobacteria

    Get PDF
    Iron is an essential nutrient for most living organisms. Due to the low solubility of ferric iron at physiological pH, the transition from an anaerobic atmosphere to the actual oxidant environment caused a dramatical decrease of iron bioavailability. Therefore, most organisms had to adapt their lifestyle to survive under an iron-depleted environment. In cyanobacteria, the electron transport chains involved in photosynthesis and respiration, as well as the enzymes involved in nitrogen metabolism have a high content of iron. Hence, cyanobacterial iron requirements are much higher than those of heterotrophic organisms. In this chapter, we revise different strategies developed by this important group of microorganisms to cope with iron deficiency, as well as the regulatory networks involved in the homeostasis of this indispensable element

    FurA modulates gene expression of alr3808, a DpsA homologue in Nostoc (Anabaena) sp. PCC7120

    Get PDF
    AbstractThe DNA-binding protein from stationary phase (Dps) protein family plays an important role in protecting microorganisms from oxidative and nutritional stresses. In silico analysis of the promoter region of alr3808, a dpsA homologue from the cyanobacterium Nostoc sp. PCC7120 shows putative iron-boxes with high homology with those recognized by FurA (ferric uptake regulator). Evidence for the modulation of dpsA by FurA was obtained using in vitro and in vivo approaches. SELEX linked to PCR was used to identify PdpsA as a FurA target. Concurrently, EMSA assays showed high affinity of FurA for the dpsA promoter region. DpsA expression analysis in an insertional mutant of the alr1690-αfurA message (that exhibited an increased expression of FurA) showed a reduced synthesis of DpsA. These studies suggest that FurA plays a significant role in the regulation of the DpsA

    Redox-based transcriptional regulation in prokaryotes: revisiting model mechanisms

    Get PDF
    Significance: The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. Critical Issues: Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. Future Directions: Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine

    Unbalancing Zur (FurB)-mediated homeostasis in Anabaena sp. PCC7120: Consequences on metal trafficking, heterocyst development and biofilm formation

    Get PDF
    Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche

    FurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation

    Get PDF
    FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation
    • …
    corecore