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Abstract 

The successful adaptation of microorganisms to ever-changing environments depends to a 

great extent on their ability to maintain redox homeostasis. To effectively maintain the 

redox balance, cells have developed a variety of strategies mainly coordinated by a battery 

of transcriptional regulators through diverse mechanisms. Redox-responsive 

transcriptional regulation is an intricate process since identical signals may be sensed and 

transduced by different transcription factors, which often interplay with other DNA-

binding proteins with or without regulatory activity. This review focuses on the main 

mechanisms used by major redox-responsive regulators in prokaryotes and their 

relationship with the different redox signals received by the cell. An overview of the 

corresponding regulons is also provided. Taking into account the complexity of some 

regulators which may contain several sensing domains, we have classified them in three 

main groups. The first group contains one-component or direct regulators, whose sensing 

and regulatory domains are in the same protein. The second group comprises the classical 

two-component systems involving a sensor kinase that transduce the redox signal to its 

DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based 

photosensors whose mechanisms are not always fully understood and are often involved 

in more complex regulatory networks. This review provides an overall insight into redox-

based transcriptional regulation in bacteria, highlighting recent advances and challenges 

for future applications of these pivotal regulators in biotechnology and medicine.   
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I. Introduction  

II. Direct redox-sensing and regulation 

       A. Regulation involving oxidant-sensitive iron-sulfur clusters 

            1. SoxR 

            2. IscR 

            3. NsrR 

            4. RsrR 

  5. FNR 

            6. WhiB/Wbl 

 B. Redox-sensing by thiol-based targets 

1. Sensors involving cysteine-zinc clusters 

                1.1. DksA 

                1.2. TraR 

     1.3. RsrA 

2. Non-metallated thiol-based switches 

2.1. OxyR 

2.2. PpsR/CrtJ 

2.3. OhrR 

2.4. NemR 

2.5. FurA 

       C. Regulation by metal-catalyzed oxidation: PerR 

       D. Metionine oxidation-based transcriptional regulation: HypT 
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       E. Redox-sensing by heme-based sensor proteins 

            1. CooA 

            2. RcoM 

            3. Heme sensing by thiol-based switch sensors 

       F. Sensors of the NAD+/NADH balance: Rex 

III. Two component systems: redox control of sensor kinase regulation 

       A. Indirect redox-sensing based in PAS/GAF domains 

            1. Redox control of sensor kinase regulation involving metal clusters 

   1.1. PAS domain-heme: FixL-FixJ two component system 

               1.2. GAF domain-heme: DosS-DosR two component system 

   1.3. PAS domain-Fe-S cluster: NreB-NreC two component system 

   1.4. GAF domain-Fe-S cluster: AirS-AirR two component system 

            2. Sensing by NAD-binding PAS domains: KinA-KinE-Spo0A system. 

            3. Flavin-binding PAS-based histidine kinase sensors: MmoS-MmoQ two-component 

system 

            4. Signal modulation by disulfide bond formation: ArcB-ArcA two-component system 

            5. Atypical signal transduction PAS/GAF-based mechanisms: NifL-NifA system 

       B. Non-PAS domain redox sensing based on disulfide bond formation 

      1. RegB-RegA two-component system 

      2. PrrB-PrrA two-component system 
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IV. Redox photosensors based on flavins 

       A.  LOV-domains, a special class of PAS-domains 

 1. LOV/Helix-Turn-Helix DNA-binding proteins 

 2. Short-LOV proteins 

 3. Phototropins: YtvA (PfyP) and stress response 

       B.  Non-PAS domain photosensors   

  1. Blue Light sensors Using FAD (BLUF domains) 

  2. Cryptochromes  

V. Concluding remarks 
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I. Introduction     

Aerobic metabolism provides significant advantages in energy production, detoxification of 

xenobiotics and virulence of bacterial cells. However, reactive intermediates produced in 

the reduction of oxygen by electron transfer systems can damage all cellular components. 

In addition to these reactive oxygen species (ROS), other by-products of metabolism 

including reactive nitrogen species (RNS) and xenobiotics challenge cellular redox 

homeostasis. Among the main targets of ROS during oxidative stress are iron-containing 

proteins which become severely damaged due to the ability of H2O2 and O2
- to oxidize the 

iron present in exposed iron-sulfur clusters and other cofactors (164, 170). Furthermore, 

the release of Fe2+ from these centers promotes the Fenton reaction, which produces even 

more reactive hydroxyl radicals with deleterious consequences for cells (394). 

As a response to this scenario, bacteria have developed a set of redox-responsive proteins 

that trigger the appropriate inducible response according to the level of stress. Redox 

sensing by the cell is a complex process that integrates diverse stimuli such as O2 tension, 

nutrient availability, light intensity, RNS and ROS, among other parameters. Transduction 

of these redox signals is frequently carried out by transcriptional regulatory proteins 

through a variety of mechanisms (237, 334, 364). Due to the tight relationship between 

iron metabolism and redox homeostasis, the activity of many major regulators relies on 

iron, either as an ion cofactor assembled in iron-sulfur clusters or as heme-based sensors 

(80, 121, 134, 274, 288, 291). Other essential metal ions such as zinc or manganese also 

play important roles in reestablishing the redox balance (71, 234) and act as cofactors in 

transcriptional regulation (101, 200, 297, 325). Besides their role in zinc metalloregulation, 

zinc ions often prevent the oxidation of redox-sensitive cysteines that work as thiol-based 

redox switches in numerous transcriptional regulators (149, 200). 

As will be highlighted in further sections, multiple transcriptional regulatory mechanisms 

as response to oxidants are widespread strategies in most prokaryotes. Another 

interesting issue is the diversity of mechanisms developed by the cell to detect and 

detoxify the same signal. Thus, in Escherichia coli, nitrosative stress is sensed by several 

transcription factors, such as NorR, FNR, Fur, MetR and, to a lesser extent, SoxR and OxyR 

(84, 351).  In cyanobacteria, in addition to Fur and PerR, a prominent role for histidine 

kinases in the perception and signal transduction of H2O2 has been reported in 
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Synechocystis sp. PCC 6803 (32, 181). In Salmonella spp., peroxide is sensed by OxyR, SoxR 

and the zinc finger motif DksA (68, 97). Therefore, as a strategy for a more efficient 

adaptation, the same redox signal may induce different transduction mechanisms, 

allowing a finer tuning of the cell response.  

In order to better understand redox regulation beyond the identification of the antioxidant 

defensive genes, numerous mechanistic studies of the diverse regulators that convert 

redox signals into regulatory outputs have been carried out in recent decades. In this 

comprehensive review we revisit the main groups of redox-responsive transcriptional 

regulators with a particular emphasis on recent findings concerning the structural and 

mechanistic basis of their regulatory functions.  

 

II. Direct redox-sensing and regulation 

Most of the major direct redox sensors monitorize the redox state of the cell through 

oxidant-sensitive metal-sulfur clusters or non-metallated thiol-based switches. Other 

relevant mechanisms include those used by heme-based sensor proteins. A summary of 

the direct-redox sensors discussed in this section can be found in Tables 1 and 2. 

 

A. Regulation involving oxidant-sensitive iron-sulfur clusters 

Iron-sulfur clusters function as cofactors of a wide range of transcriptional regulators that 

exploit the redox and coordination properties of these clusters to act as sensors of 

environmental conditions.   

 

1. SoxR 

SoxR is a conserved regulator in Enterobacteriaceae that belongs to the MerR family of 

transcriptional regulators. MerR homologues share similar N-terminal winged helix-turn-

helix (wHTH) DNA binding regions, while C-terminal effector binding regions appear 

specific to the effector recognised (37). Most members of the family respond to stress 

signals, such as oxidative stress, heavy metals or antibiotics. SoxR was initially identified as 

an O2
- stress sensor (221, 370), though further studies showed the activation of SoxR by 

nitric oxide and a variety of  endogenous and xenobiotic redox-cycling agents (267, 412). 

Additionally, SoxR becomes activated though DNA-mediated oxidation by guanine radicals 

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 8 of 134 
 
 
 

8 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

which are produced in the early stages of oxidative stress (217). In E. coli, the SoxRS 

response involves around 100 genes whose transcription is modulated by SoxR through 

activation of its SoxS partner, an AraC-type regulator (135). Most genes composing this 

extensive regulon are involved in minimizing oxidative damage caused by free radicals, 

including destruction of superoxide (sodA), reduction of iron-sulfur clusters (fpr), DNA 

repair (nfo) and NADPH production (zwf), among others. Induction of the SoxR regulon 

also confers resistance to a variety of antibiotics due to the reduction in OmpF and S6A 

levels (78, 135). Conversely, since nonenteric bacteria lack SoxS, SoxR directly controls a 

small regulon of key genes involved not only in the detoxification of redox active 

compounds but also in antibiotic resistance and quorum-sensing which in many cases are 

essential for full virulence of mammalian pathogens (248, 260, 279). 

The mechanism of action of SoxR in enteric bacteria has been extensively investigated. In 

solution, SoxR is a homodimer that exhibits one [2Fe-2S] cluster per monomer coordinated 

by the four cysteines in the conserved sequence (CysX2CysXCysX5Cys) near the carboxyl 

terminus. In the absence of oxidative stress, SoxR with the reduced [2Fe-2S] cluster may 

bind to DNA but it is inactive for transcription initiation (Fig. 1A). As a MerR-like regulator, 

SoxR controls the expression of genes whose promoters contain suboptimal 19-bp spacers 

between their -35 and -10 elements, which are not recognized by the sigma factor of RNA 

polymerase (RNAP) (37). SoxR activates transcription of its counterpart soxS through the 

change in the oxidation state of the [2Fe-2S] cluster from [2Fe-2S]+1 to the [2Fe-2S]+2 form. 

Upon oxidation, untwisting the soxS promoter allows remodelling of -35 and -10 elements 

enabling its recognition by RNAP and in turn the soxS transcription, which increases 

around 100-fold (147). Notably, SoxR is the only regulator able to modulate its 

transcriptional activity undergoing a single change in the cluster redox state (64). The large 

conformational change of SoxR and the target promoter triggered just by cluster oxidation 

could be elicited by the remarkable asymmetric environment of the [2Fe-2S] cluster 

observed in the structural analysis of E. coli SoxR bound to DNA (390). Moreover, the [2Fe-

2S] cluster is completely solvent-exposed enabling fast electron transfer to several redox 

partners, as well as direct modification through nitrosylation. The completely conserved 

Arg55 and Trp91 interacting cysteine residues are important for SoxR activity. Direct 

interaction of the cluster-binding domain with the DNA-binding domain occurs through the 
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highly conserved residues Arg55´ and Trp91´ (390) (Fig. 1B). Previous electrochemical 

studies suggested that upon binding to DNA targets, the reduction potential of SoxR [2Fe-

2S] undergone a shift from -285 mV (free regulator) to +200 mV (complexed to DNA) (80). 

Those results suggested that only strong oxidants would be able to oxidize the cluster to 

the +2 state and were not in good agreement with the ability of SoxR to react with some 

redox-cycling drugs and other weak oxidants. However, a recent study using DNA-modified 

electrodes concluded that DNA binding causes a moderate shift in the reduction potential 

of SoxR, namely -320 mV of the SoxR bound to DNA versus -293 mV of the free protein 

versus NHE (normal hydrogen electrode),  in better concordance with the cognate E. coli 

SoxR signals (193).     

The absence of SoxS in Pseudomonas aeruginosa and Streptomyces coelicolor, as well as 

their lower SoxR sensitivity to superoxide, one order of magnitude smaller than that of the 

E. coli homologue, raised the question of SoxR functionality in non-Enterobacteriaceae 

(194, 279, 284, 343). In P. aeruginosa and S. coelicolor, unlike in E. coli, SoxR is not oxidized 

by redox-cycling agents and superoxide, but rather is activated by endogenous redox-

active pigments, namely pyocyanin and actinorhodin, to directly regulate a set of targets 

encoding enzymes likely to be involved in the modification and transport of small 

molecules, such as antibiotics (79, 338). Another interesting issue is the different 

selectivity against redox-cycling drugs of SoxR regulators from diverse species. Mutational 

studies demonstrated that small alterations in the SoxR structure can lead to the evolution 

of proteins with distinct specificities for redox-active small molecules (335). In addition, a 

series of physicochemical and mutational studies evidenced the importance of two lysine 

residues in the vicinity of the [2Fe-2S] cluster, namely Lys89 and Lys92 in E. coli SoxR 

crystal structure (Fig. 1B), which are substituted by alanine in non-enteric bacteria (108). 

Furthermore, the presence of the three-residue hydrophilic motif (Arg127Ser128Asp129) 

near the [2Fe-2S] cluster in E. coli SoxR, which is not conserved in non-enteric bacteria, 

also contributed to SoxR sensitivity to redox-active molecules (108). All these results gave 

valuable information about the molecular basis of functional differences between SoxR 

proteins and provide new insights into how species-specific residues could tune SoxR 

sensitivity to different oxidants. 
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2. IscR 

IscR belongs to the Rrf2 family of wHTH transcription factors.  Members of the Rrf2 

superfamily are widespread in bacteria and respond to different signals, such as nitric 

oxide (NsrR), iron limitation (RirA), cysteine availability (CymR) or O2 (RsrR) (93, 146, 167, 

256). IscR senses the iron-sulfur cluster status in the cell and it is an outstanding example 

of the integration of redox, sulfur and iron availability signals. IscR was first identified in E. 

coli and isolated in anaerobiosis as a [2Fe-2S]1+-repressor of the iscRSUA-hscBA-fdx operon 

involved in Fe-S cluster assembly (323). In a feed-back loop, IscR senses iron-sulfur 

homeostasis through the occupancy level of its own [2Fe-2S] cluster (118, 316). When 

iron-sulfur clusters are scarce, apo-IscR dissociates from DNA, derepressing transcription 

of the cluster biogenesis pathway. Under conditions of low iron, oxidative stress or 

disruption of the sulfur metabolism, apo-IscR activates transcription of the suf operon 

involved in iron-sulfur biogenesis (118, 402). Therefore, IscR can be active in both holo and 

apo forms, whose ratio is determined by iron availability, redox status and O2 tension. 

Consequently, IscR regulation and activity is directly or indirectly influenced by other 

master transcriptional regulators, such as FNR (fumarate nitrate reductase regulator), IHF 

(Integration host factor), OxyR, or Fur (ferric uptake regulator) (Fig. 2). An excellent review 

describing the roles, regulation and structural details of Isc proteins is available (316). Due 

to the prominent role of [Fe-S] clusters in metabolism, IscR is considered a master 

regulator that controls more than 40 genes of 20 predicted operons in the E. coli genome 

(118). IscR can recognize two different binding motifs. Type I promoters such as those in 

iscR, yadR and yhgY genes are targets for holo-IscR, while type II binding motifs deduced 

from hyaA, ydiU and sufA promoter regions exhibit a different consensus and may recruit 

holo and apo-IscR (118, 262). This dual activity enables IscR to control two different 

regulons and, in turn, coordinately regulate iron-sulfur cluster homeostasis. IscR also plays 

a critical function in P. aeruginosa, which lacks the SUF machinery. P. aeruginosa IscR 

controls the isc operon, and contributes to iron homeostasis and resistance to oxidants 

(311, 347). Furthermore, IscR controls the ferredoxin-NADP+ reductase fprB that in P. 

aeruginosa is involved in [4Fe-4S] cluster biogenesis and tolerance to several stresses 

(312). The relationship between FprB and IscR suggests that Pseudomonas IscR activity 

could contribute to the modulation of the NADP+/NADPH ratio through frpB regulation. 
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Since IscR is essential in the multiple stress response and pathogenesis of several 

organisms (248), it has been proposed as a potential therapeutic target for novel drugs. 

Although some aspects of the molecular mechanism of IscR remain unknown, significant 

advances in the understanding of IscR-ligand interaction have been made through the 

characterization of the IscR [2Fe-2S] cluster from E. coli (103), and with the resolution of 

free and DNA-bound structures of apo-IscR from E. coli and Thermincola potens (299, 315). 

Mössbauer spectroscopy analysis showed that, in vivo, the [2Fe-2S] cluster was 

predominantly reduced. Interestingly, the affinity of IscR for its binding site was not 

affected by partial cluster oxidation upon anaerobic isolation of the regulator, suggesting 

that the cluster oxidation state is not important for the regulation of DNA binding (103). 

Coordination of the [2Fe-2S] cluster takes place through three conserved cysteine residues 

at the C-terminus (Cys92, Cys98, and Cys104 in the E. coli regulator) and the highly 

conserved His107 residue. An exception to this 3Cys-1His-coordination is the IscR protein 

from the facultative phototrophic bacterium Rhodobacter sphaeroides whose single-Cys 

residue is not involved in cluster coordination (304). The three-dimensional structure of 

apo-IscR proteins exhibits an overall architecture similar to Rrf2 regulators harboring a 

wHTH DNA-binding motif and a dimerization  domain mainly composed of helix 5 in 

monomer 1 and helix 6 in the adjacent unit that stabilize dimer formation mainly by 

hydrophobic interactions. Analysis of the apo-IscA-DNA interface (PDB ID: 4CHU), together 

with sequence alignments of the DNA-binding domains, led to the identification of 

relevant residues for specific DNA recognition and highlights the role of Glu43 as a 

selectivity filter in apo-IscR to discriminate against type-1 binding motifs (316). Moreover, 

the characterization of IscR orthologs from different organisms suggests a high 

conservation of this unique mechanism of sequence discrimination, unveiling a similar 

regulation of [2Fe-2S] cluster biogenesis to maintain a perfect balance between favorable 

and adverse conditions (316). 

3. NsrR 

NsrR (nitric oxide sensitive repressor) is the master regulator of nitrosative stress response 

in most  and  Proteobacteria, with the exceptions of Pseudomonales, Pasteurellaceae 

and Vibrio cholerae (309). Under NO stress imposed by macrophages or as a by-product of 
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denitrification, NsrR derepresses the transcription of genes involved in NO detoxification. 

The most conserved member of the NsrR regulon is the flavohaemoglobin gene hmp. The 

main activity of this enzyme consists of the oxidation of NO to nitrate (66, 372). 

NsrR is a member of the Rrf2 family that can harbor either a [2Fe-2S] or a [4Fe-4S] cluster, 

depending on the organism and the purification conditions (167, 371, 407). In E. coli, NsrR 

mediates the adaptive response to NO together with NorR (28, 156), and controls a 

regulon with more than 60 genes including targets involved in iron-sulfur cluster repair, 

motility and biofilm development (28). Usually, NsrR works as a transcriptional repressor, 

recognizing and binding as a dimer to a conserved A/T-rich 11-3-11-bp inverted repeat 

sequence. Upon nitrosylation of the sulfo-ferric cluster, NsrR releases from DNA. However, 

it has been reported that NsrR can activate virulence gene expression in Salmonella 

typhimurium and in the enterohemorrhagic E. coli (35, 183). Moreover, in Bacillus subtilis 

two different types of regulation by NsrR have been described (Fig. 3A). The so-called class 

I promoters, such as those upstream of the hmp and nasR genes, are controlled by [4Fe-

4S]-NsrR in response to NO (407). Class II promoters are upstream of other genes of the 

NsrR regulon. DNA binding to class II regulatory sites is weaker, NO insensitive and involves 

apo-NsrR (196, 197). Class II sites are abundant in the NsrR regulon and many of those 

genes are controlled by multiple transcription regulators, such as ResD, AbrB, Rok and Fur. 

Further work evidenced the importance of combinatorial transcriptional control by NsrR, 

Fur and ResD in B. subtilis anaerobic gene regulation (59). NsrR has been shown to work 

coordinately with other transcription factors in several organisms. In S. typhimurium, NsrR 

controls a set of genes with overlapping binding sites for Fur and FNR (367), while in E. coli 

NsrR participates in the regulation of the sufABCDSE operon together with IscR and Fur 

(Fig. 2) (50, 213). 

The observation of active NsrR with [2Fe-2S] and [4Fe-4S] clusters has raised some 

controversy about the physiologically relevant structure of the iron-sulfur cluster in this 

regulator. Inactivation of aerobically purified [2Fe-2S] NsrR regulators from S. coelicolor 

and Neisseria gonorrhoeae only occurred upon nitrosylation of iron in the [2Fe-2S] cluster, 

suggesting that O2 does not affect the redox-sensing module (167, 371). However, 

anaerobically isolated NsrR from S. coelicolor and B. subtilis harbors [4Fe-4S] clusters that 

are also stable in aerobic cultures. It has been proposed that the [4Fe–4S] cluster in 
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aerobic cultures of B. subtilis could be stabilized by glutathione and low-molecular weight 

thiols, such as bacillithiol (407). In contrast, in NsrR from S. coelicolor, low molecular 

weight thiols dramatically reduce the O2 stability of the [4Fe-4S] cluster, leading to a fast 

stoichiometric conversion to the [2Fe-2S] form (66).  

Resolution of the crystal structure of [4Fe-4S] NsrR from S. coelicolor (Fig. 3B) revealed an 

unusual, asymmetric cluster coordination by three conserved cysteine residues (Cys93, 

Cys99 and Cys105) from one of the monomers and the Asp8 residue from the other, that is 

displaced by NO as a cluster ligand (385). Nitrosylation [4Fe-4S] disrupts several H-bonds 

causing the displacement of the DNA recognition helix and preventing apo-NsrR binding 

(385). This unique coordination of the redox center in holo-ScNsrR suggests that the 

breaking of both inter-monomer Asp8-[4Fe–4S] bonds, caused by their substitution with 

NO, will initiate both cluster degradation and structural changes. 

 

4. RsrR 

The Rrf2 regulator RsrR (Sven6563) was initially annotated as a NsrR homolog in 

Streptomyces venezuelae. However, comparative in vivo mapping of RsrR binding sites in S. 

venezuelae and a ΔrsrR mutant indicates that this regulator controls a large set of genes 

with different functions than NsrR (256). Targets of RsrR exhibit either an 11-3-11 bp 

inverted repeat motif (class I genes) or a single repeat/half site (class II genes). Class I 

genes represent around 2.7% of RsrR targets, including the bidirectional promoter located 

between rsrR and nmrA and other genes mainly involved in signal transduction and 

NAD(P)H metabolism. Class II targets comprise more than 600 genes with diverse 

functions, including 21 putative transcriptional regulators, genes involved in S. venezuelae 

metabolism, RNA/DNA replication and modification, small molecule-transporters and 

proteases, among others (256).  

RrsR DNA-binding activity is controlled by the status of its [2Fe-2S] cluster that works as a 

redox switch in a manner similar to SoxR. Under anaerobic conditions, RsrR is a dimer with 

each monomer containing a reduced [2Fe-2S]+1 cluster that is rapidly oxidized to [2Fe-2S]+2 

by O2, increasing in vitro DNA-binding activity. This redox transition controls the affinity of 

RrsR for its DNA targets, while apo-RrsR in inactive in DNA binding. Since RrsR mechanism 

and target genes differ of those from NsrR, it has been proposed that RsrR displays a novel 

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 14 of 134 
 
 
 

14 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

sensing domain for an Rrf2 protein and therefore represents a new member of this 

superfamily (256).   

 

5. FNR 

FNR is a widespread sensor of environmental O2 that switches the transition between 

aerobic and anaerobic respiration. Identified in E. coli in the 70´s (204), FNR is a member of 

the CRP family of transcriptional regulators. Its structure comprises a sensory domain at 

the N-terminus with a -roll motif and a long -helix involved in subunit dimerization, and 

a C-terminal DNA binding domain that contains a HTH motif. Unlike CRP, FNR holds an N-

terminal extension that contains four cysteines involved in the coordination of the iron-

sulfur cluster, which functions as a direct sensor of O2 (133). In anaerobic conditions, FNR 

contains one [4Fe-4S]2+ cluster per monomer that in the presence of O2 is rapidly 

converted into a [2Fe-2S]2+ form through a [3Fe-4S]1+ intermediate, releasing Fe2+ and O2
- 

with the subsequent DNA damage (63, 64).  The conversion of the cubic [4Fe-4S]2+ center 

to planar [2Fe-2S]2+ requires a series of rearrangements in the proximity of the cluster 

that, in turn, modifies the dimerization interface, causing dimer dissociation and release 

from DNA (64). This process may be reverted under low O2 tension. However, if O2 persists 

in the environment, the [2Fe-2S]2+ clusters are slowly degraded to produce inactive apo-

FNR that, depending of the redox status in the cell, will either work as a scaffold for the 

incorporation of novel [4Fe-4S]2+ clusters or will be degraded by the ClpXP protease (Fig. 4) 

(104, 245). The active dimeric [4Fe-4S]2+-FNR is also sensitive to NO, that generates a 

mixture of monomeric and dimeric dinitrosyl-iron-cysteine complexes suppressing its 

ability to bind DNA (69). Therefore, the behavior of FNR differs considerably from that of 

most CRP family members which are stable homodimers and bind DNA upon activation by 

their corresponding effectors. In contrast, a dimer-monomer transition driven by ligation 

of one [4Fe-4S]2+ cluster per subunit and/or O2 tension is critical for precise FNR activity. 

Exceptions to this general working model are the FNR regulators from Bacillus spp. FNR  

from B. subtilis is a permanent dimer  activated by the ligation of one [4Fe-4S]2+ per 

cluster,  coordinated by three cysteine residues and one aspartate (136). Conversely, B. 

cereus apo-FNR appeared active in DNA-binding in both dimeric and monomer forms. 

Although further work should be done to fully understand the mechanism used by B. 
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cereus FNR, it has been shown that the interaction with ResD and PicR of both the holo-

form and the cluster-free FNR is involved in the control of enterotoxin production by this 

pathogen (91). 

FNR can work as either a repressor or an activator of a different set of genes. For positive 

regulation, FNR contains three individual activating regions that mediate contacts with 

RNA polymerase depending on the promoter architecture (324). Class II promoters, whose 

FNR binding site is around 41.5-bp upstream of the TSS, predominate over class I with the 

recognition site at -61.5-bp. Different studies have unveiled the complexity of the FNR 

regulon in E. coli. Although FNR can bind up to 207 sites across the E. coli chromosome, the 

in vivo FNR occupancy is restricted by nucleoid-binding proteins, as well as by the larger 

number of other regulators bound at FNR-regulated promoters. Thus, changes in 

accessibility of FNR would occur under the appropriate growth conditions, resulting in a 

highly ductile gene regulation (258). The core of the FNR regulon appears to be conserved 

across many facultative anaerobes and, typically, contains operons associated with 

anaerobic respiration (e.g., nar, dms and frd), including glycolytic and fermentative 

enzymes, whose transcription is activated by FNR. On the other hand, FNR represses a set 

of genes encoding several aerobic respiratory enzymes, such as cytochrome oxidase and 

NADH dehydrogenase, among others. Most of these FNR-repressed genes in E. coli are co-

regulated by ArcA and other FNR-regulatory networks which may involve the pyruvate 

sensing PdhR and the GadE regulators (244, 258). Furthermore, as part of the strategy to 

overcome changes in O2 tension suffered during the course of infection, FNR triggers 

virulence gene expression during host colonization and infection in many facultative 

anaerobic pathogens (134, 248). 

Prior to the resolution of the FNR structure from Aliivibrio fischeri (384), a CRP-based 

model from the E. coli FNR was used in numerous studies to understand the mechanism of 

this regulator. Thus, the characterization of a series of site-directed mutants has provided 

valuable information about the conformational alterations driven by O2 that mediate FNR 

activity. In particular, some of those involving mutations with altered O2-sensing 

mechanisms or mutants with miss-regulated FNR dimerization deserve to be highlighted 

(Fig. 4). While the Leu28His variant showed increased resistance to O2, substitution of 

Ser24 for different amino acids enhanced the aerobic activity of FNR in vivo (20, 172). 

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 16 of 134 
 
 
 

16 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

Furthermore, residues Asp154 and Ile151 were critical for proper monomer-dimer 

transition (252, 253). A detailed comparison between the structural information provided 

by A. fischeri crystals in relation to these results obtained from FNR mutants can be found 

in a recent review by Mettert and Kiley (244). The authors dissect the protein in four main 

regions, namely cluster-binding, dimerization, DNA binding and interaction with RNA 

polymerase. The N-terminal region, which contains the four cysteine ligands of the [4Fe-

4S]2+ cluster, exhibits high conformational flexibility and is more disordered than the rest 

of the protein. Cluster assembly seems to organize the FNR N-terminal region eliciting O2 

accessibility to the redox center. A network of hydrophobic interactions proximal to the 

redox cluster that involves residues of the A, B, and C -helices would serve as a signaling 

relay between O2-mediated cluster oxidation and dimer dissociation (244, 384). Residue 

Asp154, which has an inhibitory effect on dimerization, together with Glu150 form a 

negatively charged pocket in holo-FNR, proximal to Ile151. In contrast to what was 

previously proposed, Ile151 does not shelter Asp154 to afford dimerization, but 

establishes inter-subunit van der Waals contacts that are critical for dimer stability. 

Another important amino acid is Arg140, which enables the O2 sensitivity of the FNR 

monomer-dimer equilibrium through the formation of a salt bridge with Asp130 belonging 

to the αB helix of the opposite subunit (244). 

Previous studies, as well as a comparison with the structure of the FNR-homolog FixK2 

from Bradyrhizobium japonicum in a complex with DNA point to Glu209, Ser212 and 

Arg213, located in the αF helix of the HTH motif, as key residues involved in FNR-DNA 

interaction (29, 244). Furthermore, it is well established that activating regions denoted as 

AR1 and AR3 have predominant roles in the interaction of FNR with RNA polymerase. The 

Arg184 residue located in AR1 stabilizes FNR in a conformation optimal for interaction with 

RNA polymerase allowing AR1 to hasten RNAP isomerization from a closed to an open 

complex (392). Notably, the region consisting of residues 183 to 186 is in the vicinity of the 

[4Fe-4S]2+ cluster binding domain, suggesting that this close proximity could permit 

communication between the cluster binding domain and AR1 upon cluster ligation (244). 

Furthermore, Ile81, Gly85 and Asp86 were found to be relevant residues for proper 

interaction of AR3 with 70 (205). 
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The variability across species of the residues composing the cluster-binding domain in the 

vicinity of the four conserved cysteines likely determines cluster sensitivity to O2 in each 

organism, according to the environment (86, 244, 396). Moreover, the occurrence of 

multiple FNR proteins in several organisms, such as Pseudomonas putida and Burkholderia, 

exhibiting different reactivities extends the range of O2-responsive gene expression within 

a single bacterium (158). More complex is the situation in B. japonicum and other bacterial 

species that use nitrate as a respiratory substrate, which need to adapt their respiratory 

pathways not only to O2 tension but also to the available sources of nitrogen (242). 

 

6. WhiB/Wbl 

WhiB and Wbl (WhiB-like) are a family of multifunctional proteins exclusive to 

actinomycetes.  Wbl proteins play diverse roles in morphogenesis, cell division, 

metabolism, virulence and antibiotic production. WhiB was first discovered in 

Streptomyces as an essential regulator of sporulation (76). Further studies expanded this 

family, which in Mycobacterium tuberculosis consists of seven WhiB paralogs (24, 169). 

Anaerobically isolated Wbl proteins contain a C-terminal DNA-binding domain and a [4Fe-

4S]1+ redox cluster at the N-terminus. The DNA-binding domain contains a Trp/Gly-rich 

motif, predicted to form a -turn, followed by two positively charged amino acid motifs 

with different degrees of similarity with the DNA-binding motif known as AT-hook (11, 300, 

314, 345). The [4Fe-4S]1+ cluster is NO sensitive, though in some paralogs it also becomes 

oxidized upon exposure to O2. The redox cluster is coordinated by four conserved 

cysteines, two of them in a CysXXCys motif, commonly found in the thioredoxin fold and in 

oxido-reductases.  

Nitrosylation of the [4Fe-4S]1+ cluster is a multistep process that consumes up to 8 NO 

molecules and if the stress persists is followed by complete loss of the cluster (67). 

Depending on the environment, the coordinating cysteine residues may then remain as –

SH, or establish intramolecular disulfide bridges. Unlike other transcriptional regulators 

containing iron-sulfur clusters, nitrosylated and apo-Wbl strongly bind DNA. The oxidized, 

disulfide-containing apo-protein exhibits the highest DNA-binding affinity. In contrast, DNA 

interaction with the holo-form is very weak or null (314). Therefore, besides gene 

regulation mediated by the redox status of the cluster, changes in the redox state of the 
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cysteines provide Wbl with an additional layer of regulation. Moreover, most Wbl proteins 

present disulfide-reductase activity representing a novel redox system in M. tuberculosis 

(4). 

The increasing knowledge of this intriguing family of proteins has revealed significant 

differences among them, possibly related to their functional diversity. The chromosome of 

S. coelicolor contains 11 wbl genes. Nevertheless, not all of them are [4Fe-4S]2+ 

transcription factors and the functions of some Wbl proteins still remain controversial (3, 

105, 186). A recent Streptomyces genome-wide chromatin immunoprecipitation 

sequencing analysis evidenced that WhiA and WhiB cooperatively control the expression 

of a common set of WhiAB target genes (40). Characterization of the holo and the cluster-

free forms of WhiD identified a ROS sensitive [4Fe-4S] cluster whose disassembly was 

partially protected by low molecular weight thiols. Unlike other Wbl proteins, WhiD did 

not show disulfide-reductase activity (62). Functional and mechanistic analyses of WhiB 

proteins from M. tuberculosis reveal a variety of roles for the seven paralogs (Table 1).  

Several important differences may account for the functional divergence among them. 

First, the variability in cluster environments and exposure to oxidants indicates differences 

in the redox potentials, consistent with the unequal O2 sensitivity among WhiB paralogs 

(5). Their similar behavior against NO is supported by mechanistic studies evidencing that 

nitrosylation takes place through a common mechanism in phylogenetically unrelated 

regulatory proteins (65). Secondly, unconserved amino acid residues between the key 

CysXXCys motifs will certainly result in different redox potentials for each WhiB paralog 

and, therefore, different disulfide-reductase activities. As an exception, the WhiB2 paralog 

lacks disulfide reductase activity and, instead, has a chaperone-like function (Table 1) 

(198). Besides, a comparative study of the thermal stability of all seven WhiB proteins from 

M. tuberculosis evidences important structural differences among them (5). Moreover, the 

variability in the sequences of their AT-hook motifs results in different DNA-binding 

patterns (24). Furthermore, the function of some members, namely WhiB3 and WhiB7 

depends on their direct interaction with SigA (38, 353). Finally, the different responses 

upon induction with CRP as part of the diversity of factors influencing their regulation 

under different redox environments (115, 209, 411) endow M. tuberculosis with a robust, 

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 19 of 134 
 
 
 

19 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

versatile redox-responsive system to successfully infect and survive in hostile 

environments. 

 

B. Redox-sensing by thiol-based switches 

The activity of transcriptional regulators with thiol-based switches builds on the oxidation 

state of cysteine thiol groups. Thus, –SH groups can be reversibly oxidized upon exposure 

to redox active compounds so that a chemical signal is transformed into a biological signal 

through a conformational change in the regulator that modifies its DNA binding affinity. 

Several classes of structural changes undergone by the regulator can be observed: major 

reorganization of the polypeptide backbone in association with disulfide redox-activity, 

order/disorder transitions, changes in the quaternary structure or disulfide oxidation 

following the expulsion of metals (95). A comprehensive review of a large number of 

bacterial thiol-based redox sensors that specifically sense ROS, reactive electrophile 

species (RES) and HOCl via thiol-based mechanisms and regulate gene transcription is 

available (149). In the next section, an overview of how these proteins are structurally 

influenced by the formation of disulfide bonds or other oxidative modifications is 

provided. 

 

1. Sensors involving cysteine-zinc clusters 

1.1. DksA 

Prolonged oxidative stress leads to the inactivation of key enzymes of the central 

metabolism, leading to nutritional starvation. As a response, a transcriptional program 

known as the stringent response provides bacteria with survival advantages and efficient 

environmental adaptation (295). The major regulatory component of the stringent 

response are hyperphosphorilated guanines ((p)ppGpp) whose accumulation in the 

bacterial cell modifies the transcriptional profile through the binding to RNA polymerase, 

inducing a large-scale restructuration of metabolic gene expression (366). Together with 

the alarmone (p)ppGpp, the global regulator DksA is critical for the stringent response of 

most Gram-negative bacteria. Without binding to DNA, as a consequence of amino acid 

limitation, DksA binds to the RNA polymerase secondary channel, destabilizing the open 
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promoter complex and impairing transcriptional initiation. In this way, bacteria quickly 

reprogram transcription in response to changes in nutrient availability (287). 

Beyond its participation in the stringent response and independently of (p)ppGpp, DksA 

works as a redox-dependent global regulator that has different organism-specific functions 

(Fig. 5). In Legionella pneumophila, DksA is required for pathogenicity and is critical for 

differentiation, flagellar gene activation, lysosome avoidance, and macrophage resistance 

(74). DksA also contributes to efficient symbiosis between Sinorhizobium meliloti and 

Medicago sativa (395). In P. aeruginosa, DksA is required for the secretion of extracellular 

virulence factors through posttranscriptional control of las and rhl quorum-sensing 

systems (176). In Salmonella enterica DksA plays a central role in the coordination of 

antioxidant defences through the modulation of glutathione biosynthetic genes and the 

central metabolism (138). In this way, DksA controls the NAD(P)H/NAD(P)+ redox balance 

that, in turn, fuels downstream antioxidant enzymatic systems essential for adaptation to 

nutrient starvation (138). 

In most Gram-negative bacteria, DksA consists of a coiled-coil domain separated from the 

C-terminal -helix by a hinge region containing a 4-cysteine zinc finger motif (290). The 

coiled-coil domain presents an AspXXAspXAla motif in the loop at its tip that is essential for 

the protein function (220), while the relationship between the presence of Zn2+ and the 

functionality of the protein seems more complex. It has been established that thiols in the 

4-cysteine zinc finger motif sense oxidative and nitrosative stresses by releasing the zinc 

ion, independently of the second messenger ppGpp (Fig. 5) (139). Zn2+ release causes an 

evident loss in-helicity of the protein, likely due to disulfide bond formation, since it can 

be reverted by DTT. This oxidation, which has been suggested to occur in the complex 

DksA-RNA polymerase, converts DksA into a stronger repressor of down-regulated genes 

or, alternatively, fails in the transcriptional activation of DksA-activated promoters, 

increasing the threshold of the stringent response. These results are consistent with a role 

for Zn2+-bound thiolates as redox sensors of nitrosative and/or oxidative stress and 

evidence the ability of 4-cysteine DksA to rapidly integrate nutritional, oxidative and 

nitrosative signals into a coordinated transcriptional response (139, 162).   

Interestingly, under conditions of zinc limitation, some organisms express DksA paralogues 

that do not contain zinc, such as DksA2 from P. aeruginosa, which is functional in 
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regulating RNA polymerase and successfully complements a dksA deletion mutant in E. coli 

(109). In Pseudomonadales, DksA2 is also involved in zinc homeostasis under the control of 

the Zur regulator (25). Both paralogues from Pseudomonas have been used to 

complement a S. enterica strain defective in dksA in order to gain more insights into the 

relationship between zinc content in DksA and redox homeostasis (68). This study shows 

that both four-cysteine, zinc bound and two-cysteine, zinc-free DksA proteins are 

functional in mediating the stringent control in S. enterica and conserve the ability to sense 

reactive species via thiol oxidation. However, zinc-containing DksA proteins were more 

tolerant to oxidative or nitrosative stresses than cysteine-free DksA homologues, revealing 

a redox-active sensory function for DksA. Following these observations, the authors 

proposed that zinc would work as an antioxidant, dampening cysteine reactivity against 

moderate levels of reactive species. 

In addition to DksA2 from Pseudomonas, other atypical DksAs lacking two or three of the 

four cysteines making up the zinc-finger motif have been described in the alpha-

proteobacteria Caulobacter crescentus, the rhizobia S. meliloti and some strains of the 

purple bacterium R. sphaeroides, among others (139, 219, 395). However, all these DksA 

proteins contained a highly conserved cysteine, namely C114, surrounded by several 

charged and hydrophobic residues that stabilize the thiolate form and are usually involved 

in thiol-mediated sensing of reactive species, as in the cases of thiol-based redox sensing 

of OhrR and OxyR (379), and cyanobacterial FurA, reviewed in the following section (33). 

 

1.2. TraR 

TraR is a 73-amino acid protein that exhibits 29% sequence identity with the C-terminal 

half of DksA (26). TraR is encoded in the E. coli F element and appears to be ubiquitous in 

bacteria even in phyla distant from the Proteobacteriaceae. In spite of its smaller size, 

expression of TraR compensates for dksA activities in vivo, even in the absence of the 

alarmone ppGpp. TraR contains one zinc ion coordinated by 4 cysteines that are located in 

positions equivalent to those of DksA (130). Unlike DksA, TraR variants with single cysteine 

to alanine substitutions of residues corresponding to the zinc binding motif in DksA, were 

unable to complement a ΔdksA strain for growth in minimal medium, suggesting that zinc 
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coordination is essential for TraR activity. Whether the TraR zinc finger motif can be 

involved in redox sensing, remains to be investigated. 

 

1.3. RsrA 

RsrA functions as an R-specific zinc-associated anti-sigma factor (ZAS) that inhibits R-

directed transcription under reducing conditions, regulating the response to thiol oxidative 

stress in the cytoplasm of Actinobacteria (7, 73, 277). S. coelicolor RsrA contains seven 

cysteines, being three of them, Cys11, Cys41 and Cys44, essential for redox sensing in vivo 

and in vitro. All three cysteines, along with His37 coordinate a single zinc ion in both, RsrA 

and the RsrA-R complex [168, 169]. Disulfide stress-inducing compounds lead to the 

formation of a degenerate trigger disulfide bond between Cys11 and either Cys41 or Cys44 

that displaces the zinc and causes a dramatic structural change. As a result, R dissociates 

from RsrA, thereby allowing R-dependent transcription (Fig. 6) [170]. RsrA utilizes its 

hydrophobic core to bind to the sigma factor R preventing its association with RNA 

polymerase. Zinc plays a central role in maintaining this high-affinity complex. The system 

can be reset by the reduction of RsrA by cellular thiol-disulfide oxidoreductases such as 

thioredoxins, whose transcription is activated by R [171]. Several R target genes have 

been identified. Their products include thioredoxin systems (TrxBA, TrxC), the protein 

MshA involved in mycothiol synthesis, mycoredoxin-1 (Mrx-1), proteolytic components 

(Lon, PepN, ClpX), UV resistance components (UvrA system) and proteins involved in 

cysteine production (CysM), methionine sulfoxide reduction (MsrA, MsrB), guanine synthesis 

(GuaB), ribosome-associated function (RpmE, RelA) or detoxification of electrophiles (179, 

182, 189). Apart of the control of R by the antisigma factor RsrA, SigR activity is also 

controlled at the translation level (99). 

 

2. Non-metallated thiol-based switches 

2.1. OxyR 

OxyR was the first transcriptional regulator discovered to have the ability to sense ROS. It 

regulates the expression of defensive genes against the harmful effect of H2O2 such as 

those encoding catalases (katG), alkyl hydroperoxide reductases (ahpCF) or superoxide 

dismutases (sod) (58), as well as others involved in iron homeostasis, including the master 
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regulator Fur (fur) and the mini-ferritin Dps (dps) (413). Furthermore, genes related to 

quorum sensing (rsaL), protein synthesis (rpsL), oxidative phosphorylation and respiration 

(cyoA and snr1) also belong to the OxyR regulon (387, 391) (Table 2). OxyR from E. coli is 

activated in response to peroxide stress via an intramolecular disulfide bond between the 

conserved cysteines Cys199 and Cys208 (211) (Fig. 7). However, in some bacteria OxyR 

functions as a repressor in its reduced form by binding to a more extended region of the 

target promoters than in its oxidized state, occluding RNA polymerase binding. In 

particular, it has been demonstrated that the catalase expression in Corynebacterium 

glutamicum follows a negative regulation by OxyR (365) (Fig. 7C) and a 

repression/activation mechanism of catalase control by OxyR has been reported in P. 

aeruginosa PA14 and Neisseria meningitidis (141, 159) (Fig. 7D). As other members of the 

LysR family of transcriptional regulators, the OxyR fold consists of two domains: the N-

terminal DNA binding domain containing a helix-turn-helix (HTH) motif, and a C-terminal 

regulatory domain (319, 363). In reduced OxyR, the regulatory domain consists of two / 

domains that exhibit a similar folding pattern. The redox active Cys199 resides between 

two / domains whereas Cys208 is located at the lower part of one of domains separated 

from Cys199 by ~17 Å (Fig. 7B). Upon disulfide bond formation between Cys199 and 

Cys208, the short helix formed by residues 199-203 in the reduced structure uncoils 

leading to a significant rearrangement of the secondary structure of the domain that 

allocates Cys208 (55). The oxidation of OxyR involves changes in the orientation of 

monomers in the dimer, compared to the reduced form, that affect the inter-dimer 

orientation in the tetramer and eventually the binding to DNA (Fig. 7A). Oxidation of OxyR 

by H2O2 proceeds in a two-step mechanism that involves selective oxidation of Cys199 to 

form sulfenic acid (Cys199-SOH) and its subsequent reaction with Cys208, resulting in an 

intramolecular disulfide bond (211). The structure of a P. aeruginosa OxyR mutant in which 

the peroxidatic cysteine (Cys199) was substituted by an aspartate to mimic the sulfinic acid 

moiety contained an H2O2 molecule near the mutated aspartic acid residue, suggesting 

that deprotonation of Cys199 and the donation of the proton to H2O2 are coupled. 

According to this mechanism and the results of susceptibility tests to H2O2 of different P. 

aeruginosa OxyR variants in vivo, it is required that H2O2 binds to the catalytic pocket in 

order to react with Cys199-SH (174). Moreover, the crystal structure of the full-length P. 
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aeruginasa OxyR shows that it has a tetrameric arrangement assembled via two distinct 

dimerization interfaces. Thus, the OxyR tetramer consists of two compact subunits and 

two extended subunits. Each subunit is composed of a DNA binding domain and a 

regulatory domain which are connected by a short hinge region. Four DNA binding 

domains are arranged in the bottom of the tetramer. Polar interactions between the DNA 

binding domain and the regulatory domain occur in the compact subunits, whereas none 

were observed between those in the extended subunits. The dimeric interface at the DNA 

binding domain is formed by hydrophobic interactions together with some polar 

interactions, suggesting that the DNA binding domain dimers are relatively stable even 

upon structural changes in the regulatory domains.(174). In some pathogenic bacteria 

oxyR is found in an operon with regG helicase gene. For some of them, such as P. 

aeruginosa, P. putida and E. coli it has been reported that purified RecG binds to the 

promoters of many OxyR controlled genes and that expression of these genes is not 

induced under conditions of oxidative stress in RecG mutants suggesting that induction of 

the OxyR regulon might require unwinding palindromic DNA by RecG for transcription 

(403).  

However, the OxyR thiol-disulfide switch model appears to be more complex since this 

regulator can be activated by different post-translational thiol modifications. In this way, 

anaerobic respiration on nitrate of E. coli cells revealed that S-nitrosylation of OxyR 

induced transcription from a regulon that is distinct from the regulon induced by OxyR 

oxidation.   Interestingly, the expression of those anaerobically controlled genes was found 

to protect against S-nitrosothiols (329). Also, cysteine overoxidation has emerged as a 

mechanism of regulation of OxyR1 and OxyR2 from Vibrio vulnificus. Both, OxyR1 and 

OxyR2 are 2-Cys OxyRs that show different sensitivity to H2O2 and induce expression of 

two different peroxidases (Prx1 and Prx2) in defense to oxidative stress (190). Unlike 

OxyR1, OxyR2 exhibits limited sequence similarity to other OxyR proteins and is more 

sensitive to H2O2. Structural data suggest that a glutamic acid (Glu204), (position occupied 

by glycine in other OxyR proteins) in the vicinity of the peroxidatic cysteine (Cys206) is 

important to provide in that region the rigidity necessary for different H2O2 sensing (175). 

According to mass spectrometry data, high levels of H2O2 lead to the overoxidation of 

Cys206 to S-sulfonated cysteine (Cys-SO3H) in vitro and in vivo, deterring prx2 
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transcription. In this way, the production of useless Prx2 under inactivating levels of H2O2 

is avoided (18).  

 

2.2. PpsR/CrtJ 

PpsR, directly or indirectly controls the synthesis of all the different components of the 

photosystem in purple bacteria. It belongs to the LuxR family of transcriptional regulators 

and is redox sensitive through the formation of an intramolecular disulfide bond (171). 

Unlike OxyR, formation of this disulfide bond in PpsR is insensitive to the addition of H2O2 

but is sensitive to O2 indicating a different mechanism of disulfide formation from that 

used by OxyR where disulfide bond formation is stimulated by trace amounts of hydrogen 

peroxide even under reducing conditions (Fig. 8) (12).        

The PpsR proteins have been mainly characterized in two related species Rhodobacter 

capsulatus and R. sphaeroides, although in the latter the PpsR orthologue is named CrtJ. 

PpsR and CrtJ have similar behavior. Under oxidizing conditions, both proteins bind to a 

palindromic (TGTN12ACA) motif and block transcription of bacteriochlorophyll, carotenoid, 

light harvesting, or respiratory gene expression (puf and puhA operons) (357). In addition 

to photosystem genes, direct targets of PpsR repression are genes involved in the early 

steps of tetrapyrrole biosynthesis (hemC and hemE) in R. sphaeroides (254). R. capsulatus 

active site titration data support an octameric PpsR species for DNA binding (Fig. 8) (393). 

PpsR and CrtJ share 53% amino acid identity and the presence of a HTH DNA binding motif 

placed at the C-terminal region. In PpsR from R. sphaeroides, the redox dependent DNA 

binding response relies on the formation of an intramolecular disulfide bond between 

Cys251 and Cys424 (49, 240). However, direct evidence of the formation of this disulfide 

bond between homologous Cys249 and Cys420 in R. capsulatus CrtJ has not yet been 

obtained. A comparison with other PpsRs amino acid sequences indicates that only the 

cysteine residue located in the HTH domain is conserved so that a general scheme for 

modulating PpsRs includes, apart from disulfide bond formation, the change of the redox 

state of that thiol into diverse derivatives (sulfenic, sulfinic or sulfonic acid). Thus, 

alteration of the redox state of Cys420, beyond disulfide bond formation, is a major 

contributor to redox regulation of CtrJ DNA activity (49). In vivo labeling with 4-(3-

azidopropyl)cyclohexane-1,3-dione indicates that Cys420 is in vivo modified and forms 
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sulfenic acid when cells are exposed to O2. Moreover, the substitution of Cys420 by serine, 

an amino acid that mimics a cysteine sulfenic acid, results in a ~4-fold increase of DNA 

binding activity. However, Cys420 to alanine mutation that leads to a ~60-fold reduction of 

DNA binding activity. Since mutations of Cys249 to alanine and serine behave as the wild 

type strain, it can be assumed that the stimulation of DNA binding activity is not only 

achieved by disulfide bond formation between both cysteines (49), suggesting that 

different homologues are regulated by different types of oxidizing situations. The DNA 

binding mechanism of the PpsR proteins from other organisms show variations. 

Bradyyrhizobium and Rhodopseudomonas palustris regulation of photosystem synthesis 

depends on the light quality and O2 tension conditions. It involves the unexpected dual 

action of two different regulators, PpsR1 and PpsR2, which have a strong similarity with 

PpsR/CtrJ from the Rhodobacter species in their predicted architectures, DNA recognition 

sequences, and photosynthesis target genes. However, they show fundamental 

differences with the PpsR/CtrJ family of regulators. In particular, PpsR1 is a redox sensitive 

activator through the formation of a disulfide bond that unlike PpsR is intermolecular. 

Furthermore, oxidation of PpsR1 remains very limited in response to O2. Unlike PpsR1, 

PpsR2 does not contain cysteine residues and is not redox sensitive. Therefore, the DNA 

binding affinity of PpsR2 is redox independent (171). Regulation of this type of regulator 

can undergo further modulation by its association with other proteins. In R. sphaeroides 

the light-sensing anti-repressor AppA inhibits DNA binding of PpsR by two mechanisms. 

One mechanism involves AppA-mediated reduction of the disulfide bond in PpsR. The 

second mechanism entails the formation of a stable AppA-Ppsr2 complex that prevents 

PspR binding to DNA (Fig. 8) (239). In contrast to PpsR from R. sphaeroides, the repressive 

activity of CtrJ from R. capsulatus is not antagonized by AppA.  

2.3. OhrR 

The OhrR family of regulators sense organic hydroperoxides (OHP) and other ROS by 

oxidation of a critical and highly conserved cysteine residue. OhrR belongs to the MarR 

(Multiple antibiotic resistance-type regulators) superfamily of transcriptional regulators. It 

primarily regulates the expression of organic hydroperoxide reductase (Ohr) but also genes 

related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing 
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systems), the degradation of the aromatic moiety of the model compound cumene 

hydroperoxide and genes involved in the protection against other secondary stresses (DNA 

repair, heat shock, iron limitation, and nitrogen starvation responses) or virulence (113, 

298, 328). Ohr also responds to NaOCl stress since transcriptome studies indicated that 

ohrA gene was the most strongly up-regulated gene in NaOCl stressed B. subtilis (52). Two 

OhrR subfamilies have been described based on their peroxide sensing mechanism (Fig. 9): 

the single cysteine class, represented by B. subtilis OhrR, whose DNA binding activity is 

modulated by cysteine oxidation and the second class, represented by Xanthomonas 

campestris OhrR that requires the reversible formation of a disulfide bridge between two 

cysteines, either intersubunit or mixed, to modulate the repressor function (149). In both 

1-Cys and 2-Cys OhrR subfamilies, the initial step leading to transcription derepression 

mediated by peroxide involves oxidation of a sensing cysteine to sulphenic acid (Cys-SOH) 

that is not sufficient to derepress transcription. In the first case (Fig. 9A), B. subtilis Ohr has 

a single, conserved cysteine (Cys15) that is ionized at physiological pH (151, 216). 

According to in vitro studies, exposure of OhrR to model organic hydroperoxides results in 

oxidation of Cys15 to sulfenic acid (107). The subsequent reaction of the Cys15 sulfenate 

with a low molecular weight thiol, to generate a mixed disulfide or with the backbone of 

the protein, to generate a sulfenamide derivative correlates with transcription 

derepression (216). In this sense, in vivo changes in the transcriptome and redox proteome 

of B. subtilis caused by the strong oxidant hypochloric acid identified OhrR as a S-

bacillithiolated protein, indicating that OhrR forms mixed disulfides with the redox buffer 

bacillithiol leading to inactivation of the OhrR repressor and up-regulation of the thiol-

dependent OhrA peroxiredoxin to protect the cells against organic hydroperoxides and 

NaOCl (52). OhrR homologues that contain a single cysteine have been characterized in S. 

coelicolor (270) or Mycobacterium smegmatis, where OhrR is induced by organic 

hydroperoxides in the intracellular environment upon ingestion of the bacteria by 

macrophages (113). In the 2-Cys OhrR-type described in X. campestris OhrR (Fig. 9B), a 

reactive cysteine (Cys22) located in the N-terminus is oxidized by OHP to a sulphenic acid 

intermediate and undergoes the rapid formation of an intermolecular disulfide bond with 

residue Cys127 of the other subunit in the homodimer, leading to major structural change 

(263, 281). Disulfide-linked dimer formation induces the dissociation of OhrR from DNA 
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and the expression of a peroxidase that reduces OHP to their corresponding alcohols (263, 

281). A 2-Cys OhrR-type homologue has been reported in P. aeruginosa (13, 14). 

Therefore, depending on their amino acid content OhrR proteins isolated from different 

bacteria can exhibit varied DNA binding properties. Even oligomerization can be important 

in controlling OhrR activity. Burkholderia thailandesis OhrR forms oligomeric species by 

virtue of reversible disulfide bonds formed between redox-active cysteines on treatment 

with organic and inorganic oxidants. These disulfide bonds involve conformational changes 

that result in attenuated OhrR DNA binding in the presence of oxidants (280). 

Furthermore, binding of the small molecule 2-aminophenol to Burkholderia xenovorans 

LB400, which lacks oxidizing properties, attenuates the regulator affinity for its DNA 

operator sequence by promoting a conformational change in the regulator. In this case, 2-

aminophenol functions in B. xenovorans as a typical effector molecule. It plays a role in the 

response to ROS by this organism because 2-aminophenol is an intermediate in tryptophan 

or nitrobenzene metabolism and can be metabolized to generate ROS but it does not 

affect the redox state of cysteines (264). 

In Staphylococcus aureus, two homologues of the MarR/OhrR 1-Cys-type repressor are 

present, the MgrA and SarZ global regulators that confer antibiotic resistance and 

virulence (17, 178, 369). The MgrA regulon includes a battery of genes involved in 

virulence (cap5(8)-locus, hla, coa, spa, splABCDEF, nuc), autolysis (lytM, lytN), antibiotic 

resistance (norA, norB, tetAB), as well as virulence regulators (agr, lytRS, arlRS, sarS, sarV) 

(232). According to MgrA homodimer crystal structure, a unique cysteine residue located 

at the protein dimer interface can be oxidized by H2O2 and OHPs leading to dissociation of 

MgrA from DNA (47). MgrA activity can also be reversibly regulated by cysteine 

phosphorylation (355). In the same way, SarZ can be controlled by cysteine 

phosphorylation (355). SarZ is a global transcriptional regulator that uses a single cysteine 

(Cys13) to sense peroxide stress and control genes involved in hydroperoxide resistance 

(ohr, hla, agr), hemolysin production and virulence regulation in S. aureus and even can be 

involved in biofilm formation as reported in Staphylococcus epidermidis (48, 178, 389). 

Structural data indicate that protein with Cys13 sulphenic acid modified is competent to 

bind to DNA. A further reaction with an external thiol is necessary to disrupt SarZ DNA 
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binding ability (294). It has been suggested that S. aureus MgrA and SarZ could be 

controlled by S-bacillithiolation (163). 

Besides MarR/OhrR family of redox sensors there are other MarR-type regulators that 

belong to the MarR/DUF24 subfamily, conserved in Gram-positive bacteria (7). Unlike 

OhrR, in B. subtilis DUF24 family regulators respond specifically to RES (diamide, quinones, 

aldehydes) instead to ROS (6). In particular, YodB regulator (renamed QsrR) controls the 

azoreductase AzoR1 and also regulates the expression of the catDE operon (catechol-2,3-

dioxygenase CatE and oxidoreductase CatD), that belong to detoxification pathways that 

confer resistance to quinones and diamide (53, 218). YodB contains three cysteine residues 

(Cys6, Cys101 and Cys108) that are involved in its mechanism of inactivation. The accepted 

model of functioning indicates that upon treatment with diamide and quinones YodB is 

inactivated by formation of a Cys6-Cys101 intersubunit disulfide both in vitro and in vivo 

(51). B. subtilis also contains HypR (formerly YybR), another MarR/ DUF24 protein. It is 

activated by Cys14-Cys49 intersubunit disulfide formation, entailing reorientation of the 

monomers and repositioning of -helices that are involved in major groove recognition 

(278). HypR is a positive regulator of the nitroreductase HypO that confers NaOCl 

resistance and is induced by NaOCl, diamide and quinones (278).  

 

2.4. NemR 

The NemR repressor (formerly named YdhM) belongs to the TetR family of transcriptional 

regulators and responds to cysteine-modifying electrophiles, alkylation and reactive 

chlorine species (RCS) (375). The oxidation of cysteine residues by RCS is a reversible 

process that leads to a decrease in NemR DNA binding affinity and the consequent 

derepression of transcription of the NemR-controlled genes gloA and nemA. The gloA gene 

encodes glyoxalase I (GlxI), the first enzyme of the glyoxalase system for the conversion of 

toxic alpha ketoaldehydes into non-toxic 2-hydroxycarboxilic acids. The nemA gene 

encodes N-ethylmaleimide reductase, an enzyme involved in reductive degradation of N-

ethylmaleimide (NEM) and other nitrous compounds (132, 375). Both gene products 

contribute to detoxification of toxic compounds that can be reused as nitrogen sources. In 

fact, phenotypic studies suggest that deletion of gloA and nemA increases the HOCl 

sensitivity of E. coli cells since both contribute to increased bleach resistance in E. coli by 
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detoxifying reactive electrophiles produced during RCS stress (132). However, the 

response in NemR to RCS does not depend on any commonly known oxidative cysteine 

modifications. According to crystal structure data of E. coli NemR, RCS treatment of NemR 

results in the formation of a reversible Cys106-Lys175 sulfenamide bond that is favored by 

the inherent structural flexibility within the EF loop. In this case, the formation of the bond 

allows control of gene expression while the overall architecture of the protein is 

maintained (131).  

 

2.5. FurA 

Fur is the master regulator of iron homeostasis in most heterotrophic bacteria, where it 

works as a classical repressor. In a simplified model of regulation, Fur binds to its target 

sequences using Fe2+ as co-repressor to block the transcription of an ample regulon (92, 

101). Fur belongs to a superfamily including homologues that control processes intimately 

linked to redox homeostasis, such as PerR (response to peroxide stress) and Zur (control of 

zinc homeostasis). Remarkably, peroxide transduction by PerR is carried out through a 

completely different mechanism than that described by Fur (discussed in the next section). 

Both PerR and Zur can work with Fur to coordinately regulate a set of genes involved in the 

response to oxidative stress or virulence, among other important processes (152, 325, 

368). Furthermore, anaerobiosis affects the gene expression programs of Fur and the small 

RNA regulator RyhB in E coli K-12. The impact of O2 availability on the Fur regulon suggests 

a change in the set point for iron homeostasis and evidences the relationship between Fur 

and redox regulation (21, 22). This link has also been reported for Helicobacter pylori 

where Fur mediates the response to oxidative stress by an allosteric regulatory mechanism 

that specifically targets iron inducible apo-Fur repressed genes (289).  

Usually, Fur proteins contain a structural Zn2+ ion that is absent in the cyanobacterial 

regulator (142). Thus, the lack of structural Zn2+ in FurA from Anabaena sp. PCC 7120 elicits 

a redox-response controlled by thiol-disulfide interconversion mediated by cysteines 

belonging to CysXXCys motifs which usually are involved in the coordination of Zn2+ in the 

regulators from heterotrophic bacteria (41, 101, 383). In this way, FurA couples iron 

homeostasis and the response to oxidative stress with major physiological processes in 

cyanobacteria (125, 126). The cyanobacterial FurA regulon contains genes that belong to 
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diverse functional categories including iron homeostasis, photosynthesis and respiration, 

heterocyst differentiation, oxidative stress defense and light-dependent signal 

transduction mechanisms, among others (125, 127-129). FurA contains five cysteine 

residues, four of them arranged into two active CysXXCys redox motifs (Cys101XXCys104 

and Cys141XXCys144) located in the C-terminal domain of the protein (dimerization 

domain). FurA needs not only metal but also reducing conditions to remain fully active in 

vitro (143), and both CysXXCys motifs display disulfide reductase activity (31). Notably, 

Cys141 is also part of a CysPro heme regulatory motif (HRM) (discussed in section E). 

Moreover, FurA is mainly a monomer with a single free cysteine in the cytoplasm of 

Anabaena sp. PCC 7120 at the stationary phase, suggesting the ability of this regulator to 

form two disulfide bonds. A mutational study of single cysteines introduced in FurA 

revealed that Cys101 and its particular redox state is critical for the coordination of the 

metal co-repressor which ultimately controls the FurA ability to bind to DNA in vitro. When 

Cys101 is oxidized, FurA loses the metal and dissociates from the DNA. Taking into account 

that the redox status of Cys101 varies with the presence or absence of Cys133 or Cys104 

from the Cys101XXCys104 redox motif, the environments of these cysteines are apparently 

mutually interdependent suggesting a mechanism of FurA activation/inactivation based on 

a thiol/disulfide redox switch that involves these cysteines and controls the redox state of 

Cys101 which coordinates the co-repressor metal. Accordingly, Cys133 would be 

responsible for maintaining Cys104 in the oxidized state to avoid Cys101-Cys104 disulfide 

bond formation and consequent inactivation of the protein (Fig. 10). This thiol-disulfide 

exchange of FurA responds to the alteration of the cellular redox potential (33). 

Apparently, this mechanism is specific for cyanobacterial Fur homologues since it relies on 

Cys133, a residue conserved in cyanobacterial Fur homologues but absent in Fur 

homologues from heterotrophic bacteria. The FurA redox switch resembles that described 

for RsrA in the previous section. In both cases, a disulfide bond between both cysteines of 

a CysXXCys motif controls the redox state of a third cysteine that coordinates the metal 

ion. However, whereas in RsrA the coordination of Zn2+ keeps cysteines in a reduced state 

determining oxidation kinetics of this regulator, in FurA the Fe2+ that binds to the reduced 

cysteine plays a role as co-repressor metal, coordinating in this way iron homeostasis and 

redox responses. 
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C. Regulation by metal-catalyzed oxidation: PerR          The metal-

catalyzed oxidation of histidine to 2-oxo-histidine is an important marker of oxidative 

stress commonly associated to the regulation of enzyme activity (322). Unlike other Fur 

paralogs that regulate their target genes in response to the availability of different metals, 

PerR activity is based on metal-catalyzed oxidation of a histidine residue located in the 

conserved HisHisHisXHisX2CysX2Cys motif positioned at the hinge between the metal-

sensing C-terminus and the DNA-binding domain of Fur proteins (173). Oxidation of PerR 

leads to loss of the iron cofactor and its dissociation from DNA to derepress transcription 

of genes involved in the antioxidant response. The mechanistic differences between Fur 

and PerR from heterotrophic bacteria have recently been reviewed (291). PerR may 

function as both activator and repressor of gene expression. Targets include antioxidant 

enzymes, virulence genes and other regulators (36, 306, 377).  

 

D. Methionine oxidation-based transcriptional regulation: HypT 

The E.coli hypochlorite-responsive transcription factor HypT (formerly YjiE) positively and 

negatively regulates the expression of several genes in response to HOCl oxidation (83). 

HypT belongs to the LysR family of transcriptional regulators (319), and is activated 

through the oxidation of three methionine residues (Met123, Met206 and Met230) to 

methionine sulfoxide. Most of the genes that are positively regulated are involved in the 

biosynthesis of cysteine and methionine, whereas most of the genes that are negatively 

regulated are involved in iron acquisition and homeostasis (114). This could indicate that 

the intracellular pool of cysteine and methionine must be replenished in response to 

oxidative damage, whereas the intracellular concentration of iron, which could enhance 

the production of superoxide and hydroxyl radicals, must be kept at low levels (94). HypT 

has different multimeric forms. On binding to DNA, the dodecameric ring-like structure of 

HypT dissociates into an active tetrameric form that acts as a transcriptional activator. The 

current model proposes that the oxidation of methionine residues promotes the transition 

of the inactive dodecameric form of HypT to the active tetrameric form (83). Methionine 

sulfoxide reductase A (MsrA) and MsrB are required to reverse the oxidation state of the 

oxidized methionine residues, thus inactivating the activity of HypT1 (83).  
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E. Redox-sensing by heme-based sensor proteins  

Bacterial heme-based sensor proteins exploit the redox chemistry of heme to sense 

environmental gases (e.g., O2, CO, NO) (96) and the intracellular redox state of the 

bacterium. These particular sensor proteins typically contain two distinct domains, a 

heme-containing regulatory domain and a catalytic domain. Gas binding to the heme-

containing regulatory domain regulates the catalytic domain function, including binding to 

DNA (153). 

 

1. CooA 

CooA (bacterial CO oxidation transcriptional activator) is a heme-binding protein that 

controls the expression of a regulon allowing anaerobic growth of Rhodospirillum rubrum 

upon CO oxidation (331). It belongs to the CAP/CRP superfamily and is distantly related to 

the O2 sensor FNR and the denitrification regulator/nitric oxide reductase regulator 

(DnrD/NNR) group of NO sensors. Its heme-binding is an example of a heme-containing 

regulatory domain where the intracellular redox status, heme and DNA-binding activity are 

related. CooA is a homodimer and each monomer contains a b-type heme as the active 

site for sensing CO. The structure of CO-free Fe2+ CooA (inactive for DNA binding) has been 

solved and although the structure of the CO-bound Fe2+ CooA (active for DNA binding) has 

not yet been determined, experimental data and comparisons with the crystal structure of 

the active form of the CRP homologue bound to DNA have enabled a model of operation 

to be proposed (10, 206). Apparently, this protein exists in the cell in three general heme 

states (Fig. 11). Under oxidizing conditions low-spin Fe3+ heme is axially coordinated by 

Cys75 and Pro2, a residue located in the N-terminus of each protein monomer. In this 

situation, the protein is unable to associate to CO and consequently to bind to specific 

DNA sequences efficiently. In reducing conditions, Fe2+ heme is obtained and Cys75 is 

replaced by His77 as an axial ligand of ferrous iron. Therefore, a redox-dependent axial 

ligand exchange between Cys75 (ferric form) and His77 (ferrous form) occurs on reduction 

of the heme iron (332).  After exposure of RrCooA to CO under anaerobic conditions CO 

binds to Fe2+ heme and displaces the Pro2 iron ligand (Fig. 11A) (9). Displacement of Pro2 

entails a conformational change leading to a reposition of the heme exposing the CO-

bound heme to the long -helices (C-helices) that extend along the homodimer interface 
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(Fig. 11B) (188, 406). This interaction stabilizes an alternative conformation of the domain 

containing these C-helices that alters the hinge region separating the DNA- and CO-binding 

domains. When the geometry of the hinge region alters, the inactive form of CooA 

destabilizes and the active form stabilizes (405). Reorientation of CooA DNA-binding 

domains is necessary to produce a transcriptionally active state (157). A semi-apo state of 

the CooA dimer, with a heme-bound monomer in a CO-bound form of Carboxydothermus 

hydrogenformans CooA structures reveals a heme and C-helix displacement that support 

this model (30). The reduction midpoint potential of ferric CooA with cysteine thiolate as 

an axial ligand is -320 mV whereas the heme having histidyl imidazole as an axial ligand 

shows an oxidation midpoint potential of -260 mV (259). The difference between the 

reduction and oxidation midpoint potentials seems to be caused by the redox-controlled 

ligand exchange of the heme between Cys75 and His77. Since only ferrous CooA binds CO, 

the low oxidation potential of CooA would facilitate the oxidation of the heme in order to 

prevent CooA activation in vivo, once O2 is present in the cells. Therefore, RrCooA is an 

example wherein the binding of O2 leads to the oxidation of heme iron Fe3+ and the 

inactivation of the protein function under normoxic conditions. This oxidation links the 

redox state of the cell to the sensing capability of CooA. Oxidized CooA must be reduced 

upon anoxia in order to bind CO (96). 

CooA modulates the expression of the coo regulon, which allows the CO-dependent 

anaerobic growth of R. rubrum (405). The CO oxidation system is encoded by two CO-

regulated transcriptional units, cooMKLXUH and cooFSCTJ. The key products of this 

regulon are the O2-sensitive CO dehydrogenase CooS, the CooS-associated Fe-S protein 

CooF, and the CO-tolerant hydrogenase CooH. 

 

2. RcoM 

RcoM (regulator of CO metabolism) is a CO-sensing transcription factor that undergoes a 

redox-mediated ligand switch and may utilize redox active heme to sense the redox state 

of the cell. It couples an N-terminal PAS fold (like the mammalian NPAS2 CO sensor) to a C-

terminal DNA-binding LytTR domain, but its particular heme ligation characteristics, DNA 

binding modules, and organization of domains are different from those reported for 

mammalian sensors (187). In different organisms, it appears to regulate coo (encoding 
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proteins of the CO-oxidizing H2-producing enzymatic complex) and cox (encoding the 

aerobic CO oxidation system) gene expression. RcoM1 and RcoM2 from B. xenovorans are 

the most extensively characterized RcoM proteins. Both activate the expression of the 

coxM gene according to in vivo reporter assays where lacZ is fused to the coxM promoter 

(187). Similar to the CO sensing R. rubrum CooA, B. xenovorans RcoM-2 undergoes redox-

dependent ligand switching and CO-induced ligand displacement. In the Fe3+ oxidation 

state, the heme is low-spin and six-coordinate with a cysteine (thiolate) as one of the two 

ligands. The sixth ligand is a histidine (His74), which is present in all states of the protein. 

Reduction to the Fe2+ oxidation state results in replacement of the cysteine (thiolate) with 

a neutral thioether ligand, Met104. CO binds to the Fe2+BxRcoM-2 heme opposite the 

histidine ligand. Thus, coordination state changes involve redox-dependent loss of a 

cysteine (thiolate) ligand and displacement of a relatively weakly bound axial ligand by the 

effector gas molecule (236). Electronic absorption, resonance Raman and electron 

paramagnetic resonance spectroscopies have revealed that Cys94 is the distal Fe3+ heme 

ligand in BxRcoM-2 (344). 

In the aforementioned heme-proteins, heme exists as a stable and essential prosthetic 

group. However, recent studies reveal that the function of some proteins is acutely 

modulated by the reversible binding of heme that acts as a cellular signaling messenger 

(257). The association/dissociation of the heme iron complex to/from the protein 

regulates(s) its functions, including catalytic reactions (kinase and proteolysis) or DNA 

binding. In contrast to heme-based gas sensors where gas molecules (O2, CO) bind only to 

the heme Fe2+ complex, proteins that are regulated by the reversible binding of heme 

associate/dissociate to the heme Fe3+ complex. Under reducing conditions, a heme-

responsive heme sensor can be converted into a heme-based gas sensor (337). 

 

3. Heme sensing by thiol-based switch sensors 

Some of the previously described regulators whose mechanism of action relies on a thiol-

based switch have also shown the ability to bind heme through redox sensing cysteines 

affecting their DNA-binding activity. In these cases, the reversible binding of heme plays a 

pivotal role in up- and down-regulation of transcription factors. Heme-responsive proteins 

of this type display fast, easy heme association and dissociation. They contain a HRM 
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characterized by the presence of a CysPro sequence. The cysteine of the CysPro motif is an 

axial ligand of Fe3+-heme, but upon reduction a redox-dependent ligand switch occurs and 

the cysteine of the CysPro sequence is no longer a ligand of Fe+2-heme (160). 

It has been demonstrated for both PpsR and FurA that the binding of heme alters their 

DNA-binding pattern and inhibits their ability to form higher-order complexes with DNA. 

Cyanobacterial FurA binds heme in the micromolar concentration range and this 

interaction negatively affects its in vitro DNA binding ability in a concentration-dependent 

fashion (144). Cys141, within a CysPro motif or HRM (409), is an axial ligand of the Fe3+ 

high-spin heme but it does not bind the Fe2+ heme centre, suggesting a redox-dependent 

ligand switch (288). FurA exhibits the typical physicochemical characteristics just described 

for a heme sensor protein (160, 161). In the case of PpsR, the Cys424 present in its DNA 

binding domain is critical for heme interaction. The binding of heme changes PpsR-DNA 

binding pattern, inhibiting the formation of higher order PpsR-DNA complexes and 

inducing increased transcription of several PpsR regulated genes. This interaction seems to 

provide a mechanism for bacteria to react to the unbound tetrapyrrole products since in 

this way excess heme can quickly change the state of photosynthetic gene expression from 

inhibition to activation (404). Oxidation of Cys424 in the absence of heme stimulates the 

DNA binding of PpsR. This redox regulation is also observed while heme is present. It 

appears that Cys424 could be a versatile target for different types of modification such as 

forming/breaking disulfide-bridges (239), coordinating heme and potentially being 

oxidized into different oxidation states. One notable difference with FurA is that an Ile 

residue follows Cys424 instead of Pro, as would be expected for a typical heme sensing 

protein. However, PpsR utilizes cysteine as the critical axial residue as is the case for FurA 

and other HRM-containing heme sensors. Thus it is feasible that Cys coordinated to 

Fe2+/Fe3+ in heme is a conserved strategy for heme sensing (404). 

 

F. Sensors of the NAD+/NADH balance: Rex  

Beyond working as a cofactor for oxidoreductase enzymes, NAD+/NADH serves as a 

substrate for a wide range of proteins and provides a direct link between the cellular redox 

status and the control of signalling and transcriptional events. The ratio of NAD+ to NADH 

inside the cell is mainly affected by substrate availability and O2 tension, driving a set of 
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responses aimed at maintaining redox homeostasis. Modification of this ratio is often used 

in industrial processes in order to improve the productivity of certain metabolites (225, 

333, 410). 

The main actor that converts the redox signal provided by the NAD+/NADH balance into a 

regulatory input is the transcriptional regulator Rex, whose ability to bind DNA is 

modulated specifically by the NAD+/NADH ratio (Fig. 12) (133). Rex has been identified and 

characterized in archaea and eubacteria regardless of their O2 requirements (154). Overall, 

Rex is a transcriptional repressor that remains bound to its DNA targets when the 

NAD+/NADH ratio is sufficiently high. Under microaerobic or anoxic conditions, NADH 

competitively binds to the Rex C-terminal domain, causing a conformational change of the 

Rex homodimer and subsequent release from its recognition sites on DNA, allowing 

transcription of downstream genes. An estimated value of this ratio for transcription 

derepression has been calculated in S. coelicolor, where the level of NADH has to rise by 

around 2% to impair the binding of Rex to DNA ~50% (133). Further characterization 

studies of the B. subtilis repressor show that its affinity for NAD+ is 20.000 times lower 

than that for NADH. Interestingly, the affinity for NAD+ increased around 30 fold upon DNA 

binding, suggesting that there is a positive allosteric coupling between DNA binding and 

NAD+ binding (388).  The available crystal structures of Rex in complex with DNA and/or 

NADH (PDB code 2VT3) indicate that Rex comprises an N-terminal wHTH-fold domain 

interacting with DNA and a C-terminal Rossmann-fold domain binding NADH and 

mediating subunit dimerization (241, 339, 388). 

Key domains involved in DNA-binding and NAD-sensing are broadly conserved in Rex 

orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, 

Deinococcus-Thermus, and Proteobacteria (302). Similarly, the DNA-binding motifs harbor 

the conserved consensus TTGTGAANNNNTTCACAA. In anaerobic bacteria, a different Rex 

regulation mechanism has been proposed (414), which could be the result of subtle 

variations in the NAD+/NADH binding motifs of the Rex-family, such as the substitution of 

Tyr98 by histidine in the regulator characterized from anaerobes. The Tyr98 residue, highly 

conserved in aerobic bacteria, has been proposed to play a key role in the switching 

mechanism between open and closed dimers though the interaction with a conserved Asp 

residue that is essential for binding DNA. Furthermore, the DNA-binding motifs recognized 
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by anaerobic Rex-family members exhibit consistent deviations from the consensus 

established for aerobic bacteria (302, 414). These substitutions in the operator motifs 

seem essential for optimal protein-DNA interaction and a settling factor for the different 

structural bases for NAD+/NADH sensing between aerobic and anaerobic Rex proteins.  

Rex regulons have been identified in several bacteria, highlighting the importance of this 

protein in the control of redox homeostasis, central metabolism or hydrogen production, 

among other processes (207, 302). In Clostridium kluyveri Rex has been described as a 

global redox-sensing transcriptional regulator (154). In S. aureus, Rex acts as a central 

regulator of anaerobic metabolism leading to anaerobic NAD+ regeneration. Its regulon 

comprises at least 19 genes, some of them involved in lactate, formate, and ethanol 

fermentation (adh1, adhE, lctP, ldh1, pflBA) and nitrate respiration (narG, nirC, nirR) 

(276). In Streptomyces avermitilis, in addition to regulating aerobic metabolism, Rex also 

controls avermectin production and morphological differentiation (226). However, a 

bioinformatic reconstruction of the sets of Rex-regulated genes in 119 genomes from 11 

taxonomic groups also revealed remarkable variations in the functional repertoires of 

candidate Rex-regulated genes in various microorganisms (302), most of them being 

lineage specific. 

 

III. Two-component systems: redox control of sensor kinase regulation 

One of the main mechanisms that allow bacteria to overcome changes in the 

physicochemical parameters of natural environments is the regulation mediated by two-

component systems (199). These systems are usually composed of a sensory protein called 

sensor kinase or histidine kinase (HK) and a response regulator (RR) protein. The sensor 

kinase is able to sense the signal and as a consequence the protein performs 

autophosphorylation of a conserved histidine residue located in the histidine kinase 

domain. The phosphate is then transferred to an aspartate residue of the response 

regulator through a process called transphosphorylation. The phosphorylation of the 

response regulator causes its activation and then the response regulator binds to 

promoters of target genes modulating their transcription. However, sometimes the 

response regulator promotes other cellular responses in the cell different to 

transcriptional modulation. For example, some response regulators contain catalytic 
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domains that once activated by phosphorylation are able to carry out enzymatic activities 

(111). Canonical two-component systems perform transphosporylation in one step, while 

phosphorelays work in multistage processes to allow a fine-tune regulation of the system. 

Phosphorelays are found in non-orthodox two-component systems and in hybrid sensor 

kinases (199).  

Sensor kinases may sense a wide variety of environmental signals including single 

molecules, such as nitrate or citrate, and more complex signals such as light or gas 

molecules (O2, CO or NO) (34, 121, 184, 210). In the present review, we focus on sensor 

kinases that perceive redox signals and respond to these signals modulating the 

transcriptional regulation of the cell. A summary of the two-component systems reviewed 

in this work can be found in Table 3.  

A. Indirect redox-sensing based in PAS/GAF domains  

The widespread Per-Arnt-Sim (PAS) domain functions as a transduction module acting as a 

sensor of environmental stimuli such us light, redox state, respiration, O2 and overall 

energy level of the cells, among others (364). PAS domains are present in both one-

component and two-component systems, as well as in many other proteins that may 

contain an ample range of different domains simultaneously.  

The PAS domains have a highly conserved three-dimensional structure, although they 

exhibit low sequence homology. They consist of approximately 300 amino acid-region with 

several imperfect repeats, sometimes associated with a PAS-associated C-terminal motif. 

These motifs contain a conserved sequence of about 40 amino acids at the C-terminal of 

PAS domains, contributing to the correct structure and folding of the PAS (140).  

The highly versatile and multipurpose PAS scaffold can bind a broad range of redox ligands, 

including heme, flavins and metal ions (140). PAS domains may also determine the 

specificity of transcriptional factors in modulating the expression of target genes. Some 

proteins, such as cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA (GAF) 

contain domains with a very similar fold to PAS, known as GAF domains (150).  

Classification of the PAS/GAF proteins is difficult because tandem and multiple PAS 

domains are common in individual proteins, and often many other domains are also 

present; about one third of PAS proteins contain two or more PAS domains (140). PAS-
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proteins may include simultaneously PAS domains that bind heme, flavin mononucleotide 

(FMN), flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, C3-C4 carboxylic acids 

(malonate, malate and succinate), C6 carboxylic acids (citrate), and divalent metal cations. 

It has also been suggested that fatty acids may play a role as a PAS ligand (192). In any 

case, PAS domains have evolved as multifunction protein modules and they have very 

diverse functions, including redox sensing. 

 

1. Redox control of sensor kinase regulation involving metal clusters  

Sensor kinases are able to sense the presence of signal molecules by using sensor domains 

(e.g., TodS or CitA) (39, 303), transmembrane domains (e.g., DesK) (72) or even through 

accessory proteins (e.g., CheA) (273). Redox-sensing is conducted mainly by PAS or GAF 

domains containing cofactors such as heme, iron-sulfur clusters or FAD and FMN, or using 

mechanisms based on the oxidation or reduction of cysteine residues. These redox-sensing 

mechanisms are described in detail below using some model sensor kinases. 

 

1.1. PAS domain-heme: FixL-FixJ two-component system 

The FixL-FixJ two-component system is involved in the regulation of nitrogen fixation 

genes that are tightly controlled by O2 availability. This system has been widely studied in 

symbiotic bacteria S. meliloti and B. japonicum (121, 318). Once the activation of FixL 

sensor kinase occurs in S. meliloti, the response regulator FixJ activates the transcription of 

two transcriptional factors, NifA and FixK, which induce the expression of nif and fix genes 

involved in nitrogen fixation (2, 75, 110, 305). The expression of these genes must be 

induced in the developing nodule of symbiotic bacteria when the concentration of O2 

remains below 50 μM (349). In B. japonicum, FixJ activates the transcription of the FixK2 

transcriptional regulator whose targets are fixNOPQ and fixGHIS operons (296), heme 

biosynthetic genes (hemA, hemB, hemN1, hemN2) (43, 102, 275), denitrification genes 

(napEDABC, nirK, norCBDQ and nosRZDFYLX) (77, 243, 308, 380, 381), and some hydrogen 

oxidation genes (hup) (85). 

FixL in S. meliloti (SmFixL) contains four transmembrane regions in the N-terminal domain 

followed by a PAS domain, a HK domain and an ATPase domain (Fig. 13A) (120, 228). In 

contrast, its ortholog in B. japonicum BjFixL apparently does not contain transmembrane 
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regions (8), but holds two PAS domains and the HK domain (Fig. 13B). SmFixL contains a 

heme moiety located inside its PAS domain (Fig. 13A) and BjFixL inside its PAS2 domain 

(Fig. 13B). In SmFixL, heme is non-covalently attached to the His194 of the PAS domain 

(251). Biochemical studies revealed that changes in the spin-state of Fe inside the heme 

moiety can modulate the regulatory effect mediated by the sensor domain (123). The 

authors proposed that under oxygen-limiting conditions, no O2 was bound to the sensory 

domain and the heme assumed a high-spin state. In this configuration the auto-

phosphorylation of FixL was allowed, after which FixL phosphorylated FixJ that in turn 

activated the transcription of nifA and fixK genes (Fig. 13C). Conversely, when O2 was 

bound to heme, the auto-phosphorylation of FixL was inhibited (Fig. 13C) (122). More 

recently, a model of an allosteric transduction pathway for SmFixL has been proposed. The 

authors suggest that the PAS domain undergoes structural changes in the presence of O2 

that are transmitted to the HK domain. In this model, changes in the Tyr201 residue when 

O2 is dissociated from FixL trigger conformational changes that increase kinase activity and 

initiate the signalling cascade (400, 401).  

 

1.2. GAF domain-heme: DosS-DosR two-component system 

DosS-DosR is a two-component system involved in the dormancy process of M. 

tuberculosis. The dormant state of this pathogenic bacterium has been related to 

anaerobic conditions and CO or NO presence, since these conditions are found in infected 

macrophages (202). DosS (also known as DevS) histidine kinase contains two GAF domains 

called GAF-A and GAF-B, followed by a HK domain and an ATPase domain (Fig. 14A). The 

GAF-A domain contains a heme moiety and GAF-B seems to be essential to the folding of 

GAF-A in the conformation that allows the inhibition of kinase activity (408). The GAF-A 

heme domain is able to bind different gas molecules such as O2, NO and CO (203, 215, 

317). It has been reported that the hydrogen-bonding network is a key factor in gas-

molecule recognition. Two amino acids, Tyr171 and Glu87, seem to play an important role 

in gas discrimination (19). DosS shows kinase activity in Fe2+deoxy, Fe2+-CO and Fe3+-NO 

forms and has little activity in the Fe3+ and Fe2+-O2 forms (Fig. 14B) (165, 166). The 

formation of Fe2+-O2 complex has been described, but other groups have described the 

oxidation of Fe2+ to Fe3+ when it is exposed to O2 (54, 165, 203, 285, 350). In view of these 
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contradictory reports, the detailed mechanism of O2 sensing remains unknown. On the 

other hand, it has been reported that DosS can act as a bifunctional enzyme, showing both 

kinase and phosphatase activities (185).  In response to the availability of O2, NO, CO and 

ascorbic acid, the DosS-DosR two-component system induces the expression of 

approximately 50 genes (202, 282, 336, 362). The role of DosR in the regulation of devRS, 

hspX, narK2 and tgs1 gene expression, among others, has been investigated (Fig. 14B) (44-

46).  

 

1.3. PAS Domain-Fe-S cluster: NreB-NreC two-component system 

Some sensor kinases use FeS-containing PAS domains to sense changes in O2 tension. NreB 

sensor kinase is the cognate partner of the NreC response regulator, both present in 

Staphylococcus carnosus and in S. aureus. The NreB/NreC two-component system is able 

to regulate nitrate/nitrite respiration under O2-limiting conditions (98). S. carnosus grows 

preferentially by aerobic respiration but nitrate can be used as a terminal electron 

acceptor in the electron transport chain under anaerobic conditions. Nitrate and nitrite 

reduction are catalyzed by a membrane-bound nitrate reductase NarG (narGHJI genes) 

and a cytoplasmic nitrite reductase, respectively (98, 321). The expression of both operons 

is controlled by the NreB/NreC two-component system (98). NreB is a classical sensor 

kinase containing a PAS domain followed by a HK domain and an ATPase domain (Fig. 

15A). Under anoxic conditions, the PAS domain holds an [4Fe-4S]2+ iron-sulfur cluster 

coordinated by four conserved cysteines (180, 255). In this configuration it performs auto-

phosphorylation and transphosphorylation of its response regulator NreC. Once activated, 

this response regulator achieves transcriptional regulation (Fig. 15B). In the presence of O2, 

the [4Fe-4S]2+ cluster is converted into [2Fe-2S]2+ which is unstable and becomes degraded 

(Fig. 15B). Recently, it has been reported that a third protein called NreA interacts with 

NreB and is involved in the regulation of the NreB phosphorylation level. The NreA crystal 

structure shows that the protein binds one molecule of nitrate at its GAF domain. The 

authors suggested a nitrate/O2 co-sensing by NreA/NreB system as part of what is called 

NreABC system (265, 266). 
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1.4. GAF-domain-Fe-S cluster: AirS-AirR two-component system 

The AirS-AirR two-component system (formerly called YhcS-YhcR) contains an [Fe-S] 

cluster inside a GAF domain. This system has been described in S. aureus and responds to 

redox signals. AirR regulates directly or indirectly the expression of the Agr two-

component system involved in quorum sensing, the two-component system SaeRS 

implicated in virulence, stress associated factors (RsbU and RsbW), as well as virulence 

factors  (Cap5A, Spa and HlgC) (356). Recently the AirSR system was reported to be 

involved in the transcriptional regulation of staphyloxanthin production (137). 

AirS contains an N-terminal domain that holds the GAF domain followed by the HK domain 

and the ATPase domain (Fig. 16A). The GAF domain holds a Fe-S cluster-binding motif with 

four conserved cysteines (Cys-X7-CysXCys-X17-Cys). Experiments performed by Sun and co-

workers, suggested that the iron-sulfur cluster was critical for AirS autophosphorylation 

(356). The model proposes that oxidized [2Fe-2S]2+-AirS is the active form that is 

autophosphorylated and then phosphorylates AirR, stimulating the transcriptional 

response. Thus the oxidation of [2Fe-2S]+ to [2Fe-2S]2+ seems to be the signal that initiates 

the signalling cascade. However, the prolonged exposure to O2 or the presence of strong 

oxidants such as H2O2 as well as the presence of NO inhibits the auto-kinase activity of AirS 

(Fig. 16B). The authors suggested that these situations may cause over-oxidation and loss 

of the Fe-S cluster, thus inhibiting AirS activity (Fig. 16B) (356).  

 

2. Sensing by NAD-binding PAS domains: KinA-KinE-Spo0A system 

The KinA-KinE-Spo0A system has been described in Gram-positive bacteria such as Bacillus 

and Clostridium spp. (155, 212, 249, 352, 382). This complex system is composed of five 

HKs (KinA-KinE), two intermediary proteins (Spo0F and Spo0B) and one response regulator 

(Spo0A). The regulon of Spo0A comprises more than 100 genes. Among these genes, those 

deeply implicated in sporulation, colony morphology and biofilm development can be 

found (250).  

KinA is a cytoplasmic sensor kinase containing three PAS domains called PAS-A, PAS-B and 

PAS-C. It has been shown that PAS-A was able to bind NAD+. This binding allowed KinA to 

sense the intracellular NADH/NAD+ ratio (195). The authors proposed that KinA is inhibited 

by NAD+ when respiration levels are high. Conversely, when the NAD+/NADH ratio 
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decreases (low respiration levels), the kinase is activated stimulating the Spo0B 

phosphorylation (195). 

 

3. Flavin-binding PAS based histidine kinase sensors: MmoS-MmoQ two-component 

system.  

Flavin-binding PAS domains are abundant in signalling proteins. The redox state of FAD and 

FMN cofactors senses the redox state of cytoplasm, the electron transfer chains or the 

visible light perception, and allows a response to readapt the metabolism to new 

conditions. In the past few years, several FAD/FMN-containing primary redox sensors have 

been described. These sensors transmit the redox signal to a secondary downstream 

effector domain or protein. The MmoS-MmoQ system constitutes a suitable model for the 

study of sensor kinases containing a FAD-binding PAS domain. 

MmoS is a sensor kinase that regulates the expression of a soluble methane 

monooxygenase (sMMO) in a process that depends on copper availability. sMMO catalyzes 

the oxidation of methane to methanol. This enzyme is found in methanotrophs such as 

Methylococcus capsulatus (Bath) (222). In this bacterium, the mmoS gene forms an operon 

with its cognate response regulator gene mmoQ that is divergently transcribed to mmoR. 

The working model proposes that MmoS sensor kinase phosphorylates MmoQ, which does 

not contain DNA-binding domains and it is able to phosphorylate MmoR that finally binds 

to the target promoters and regulates gene transcription (Fig. 17). Another gene located 

next to mmoQ called mmoG encodes a putative chaperonine that seems to facilitate the 

folding of MmoR and/or the sMMO complex (70).   

MmoS is a non-orthodox sensor kinase that contains two PAS domains (PAS-A and PAS-B) 

and a GAF domain followed by a HK domain, two receiver domains and a histidine 

phosphotransfer domain (Fig. 17A). MmoR is activated by MmoS at low copper levels, 

activating in turn the expression of mmoXYBZ genes that encode structural genes of 

sMMO. The PAS domains of MmoS appear not to contain copper ions so that a redox 

sensing mechanism has been proposed. This mechanism is based on the idea of MmoS 

holding a reduced FADH2 at low copper levels. This configuration triggers auto-

phosphorylation in sensor kinase and in turn the phosphorylation of MmoR that finally 

induces the expression of sMMO genes (Fig. 17B). At high concentrations of copper, FADH2 
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is oxidized to FAD and a conformational change inhibits the phosphotransfer to MmoR and 

then the activation of sMMO expression (70, 373). The crystal structure of MmoS was 

resolved by Ukaegbu and Rosenzweig in 2009 (374). A single FAD molecule was found in 

the PAS-A domain, which is in agreement with the model proposed by the same authors in 

2006. Nowadays the redox signal sensed by MmoS remains unknown. Several hypotheses 

have been proposed such as MmoS direct sensing of copper reduction or indirect sensing 

via the quinone pool or the copper chelator methanobactin (16). Recent studies suggest 

that methanobactin together with a polypeptide called MmoD are involved in the copper-

switch of methanotrophs. This last model proposed that MmoD regulates the transcription 

of the methanobactin synthesis gene cluster, MmoR and MmoG. Then methanobactin, 

MmoR and MmoG interact to induce the expression of the MmoX operon (Fig. 17B). When 

copper is present, it binds to MmoD preventing the expression of the methanobactin gene 

cluster (81, 327). 

 

4. Signal modulation by disulfide bond formation: ArcB-ArcA two-component system 

Sometimes sensor kinases sense changes in O2 availability indirectly. In these cases, they 

are able to sense the redox status of elements that make up part of the electron transport 

chain such as quinones or cytochrome oxidases and in turn activate or repress the 

transcription. These redox molecules/proteins are able to oxidize or reduce some cysteines 

in sensor kinases, generating the redox switch. An increasing number of sensor kinases 

which perform this type of indirect redox sensing are being described in the literature. The 

best characterized examples are ArcB and RegB sensor kinases. ArcB senses the redox 

state of the quinone pool by using a complex and delicate mechanism whereas RegA 

kinase seems to be able to sense the redox state of the cell by using two different 

mechanisms. ArcB is addressed in detail below since its redox sensing mechanism involves 

PAS domains. However, RegB sensor kinase is included in section III.B entitled “Non-PAS 

domain redox sensing based on disulfide bond formation” because although RegB uses a 

cysteine-based switch, these cysteines are not held in a PAS domain. Indeed, neither RegB 

nor its ortholog PrrB include PAS domains in their architecture. 

ArcB is a non-orthodox sensor kinase since it contains a histidine phosphotransfer domain 

after the receiver domain (Fig. 18A). ArcB also holds a PAS domain in the N-terminal region 
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containing two cysteines, Cys180 and Cys241, which are responsible for auto-

phosphorylation. ArcB has a crucial role in the adaptation of E. coli to anaerobic 

environments (168). This complex transition from aerobic to anaerobic environments in E. 

coli is coordinated with the FNR, SoxRs and OxyR redox regulators previously described in 

the present review. The genes regulated by the ArcB/ArcA system are mainly involved in 

respiratory metabolism such as enzymes of the TCA cycle, the glyoxylate shunt and 

terminal oxidases (227). As already stated, anaerobic conditions are sensed by ArcB 

indirectly. Auto-phosphorylation of ArcB is inhibited by oxidized ubiquinone-0 and 

menadione (117). These molecules are soluble analogs of ubiquinone-8 and menaquinone-

8. The authors proposed that under anaerobic conditions when the quinone pool was 

mainly formed by oxidized ubiquinone and menaquinone, the activity of ArcB was 

silenced. In contrast, when O2 became limited the quinone pool was transformed into 

ubiquinol and menaquinol and the auto-phosphorylation was triggered (117, 233). 

Afterwards, a more sophisticated mechanism of regulation was proposed in which ArcB is 

able to respond to the redox state of the ubiquinone/ubiquinol pool and the 

menaquinone/menaquinol pool depending on O2 availability (23). The authors suggested 

that after a transition from anaerobic (0% O2) to low aerobiosis conditions (20% O2) the 

menaquinone pool is oxidized resulting in the inactivation of ArcB. Upon a shift from low 

aerobiosis conditions (20% O2) to high aerobiosis conditions (80% O2), the total ubiquinone 

pool increases and therefore ubiquinol reduces disulfide bonds and activates ArcB (Fig. 

18B). In aerobic conditions the quinone pool decreases, the oxidation of cysteines occurs 

and the inactivation of ArcB takes place (Fig. 18B) (23).  Recently, it has been reported that 

a third type of quinone (demethyl-menaquinone) is involved in ArcB phosphorylation 

modulation. It seems that demethyl-menaquinone is also able to oxydize ArcB and that 

demethyl-menaquinol is able to reduce ArcB (376). 

In recent years, several sensor kinases such as EvgS, TodS and HskA have been found that 

also respond to the redox state of quinone pool although the detailed mechanisms are not 

as well understood as for ArcB (27, 330, 340). 
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5. Atypical signal transduction PAS/GAF-based mechanisms: NifL-NifA system 

The NifL protein in nitrogen-fixing organisms senses both the redox and fixed nitrogen 

status to regulate nitrogen fixation by controlling the activity of the transcriptional 

activator NifA (82, 148). In Azotobacter vinelandii, NifL contains two N-terminal PAS 

domains and a C-terminal transmitter region containing a conserved histidine residue (H 

domain) and a GHKL (Gyrase, Hsp90, Histidine Kinase, MutL) nucleotide binding domain 

corresponding to the catalytic core of the histidine kinases. Despite these similarities, NifL 

does not exhibit kinase activity and regulates its partner NifA by direct protein-protein 

interactions rather than phosphorylation (223). The amino terminal PAS1 domain of NifL 

from A. vinelandii accommodates a redox-active FAD group; the elevation of cytosolic O2 

concentrations results in FAD oxidation and a concomitant conformational re-arrangement 

that is relayed via a short downstream linker to the second PAS domain, PAS2. At PAS2, 

the signal is amplified and passed on to effector domains generating the 'on' (inhibitory) 

state of the protein (224).  

The NifA protein from A. vinelandii belongs to a family of enhancer binding proteins that 

activate transcription by RNA polymerase containing the sigma factor 54. These proteins 

have conserved AAA+ domains that catalyse ATP hydrolysis to drive the conformational 

changes necessary for open complex formation by 54-RNA polymerase (235). The activity 

of the NifA protein is highly regulated in response to redox and fixed nitrogen through 

interaction with the antiactivator protein NifL. Binding of NifL to NifA inhibits the ATPase 

activity of NifA, and this interaction is controlled by the amino-terminal GAF domain of 

NifA that binds 2-oxoglutarate (348). 

  

B. Non-PAS domain redox sensing based on disulfide bond formation 

1. RegB-RegA two-component system 

RegB/RegA in R. capsulatus is a two-component system that responds to redox signals and 

regulates important cellular processes such as carbon and nitrogen fixation, electron 

transport chain configuration, photosynthesis and aerotaxis (87, 320, 358, 397). RegB 

protein is a classical sensor kinase that contains five transmembrane regions, a HK domain 

and an ATPase domain (Fig. 19A). RegB sensor kinase is able to auto-phosphorylate in the 

presence of specific redox signals and then phosphorylates its cognate response regulator 
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RegA that binds its target promoters activating or inhibiting the transcription. RegB senses 

redox signals by using the complex mechanism shown in Figs. 19B and 19C. The RegB HK 

domain holds a highly conserved quinone binding site GlyGlyXXAsnProPhe and a conserved 

cysteine in position 265. At high O2 conditions the Cys265 forms an intermolecular 

disulfide bond that inactivates the auto-phosphorylation activity of RegB. This molecular 

bond converts the RegB dimers into inactive tetramers (Fig. 19B). In addition, ubiquinone 

molecules are able to bind to the quinone binding site of RegB inhibiting RegB activity in 

vitro (Fig. 19C) (359, 398). This second mechanism is independent of Cys265 because a 

protein mutant lacking this residue maintains the ability to respond to redox changes in 

the presence of ubiquinone (398).  Both mechanisms contribute then to the redox sensing.  

Moreover, it has also been reported that the sulfenic acid modification at Cys265 as a 

consequence of high O2 tension led to inactivation of RegB kinase (399). 

 

2. PrrB-PrrA two-component system              

A homolog system of RegB/RegA in R. capsulatus is the PrrB/PrrA system in R. sphaeroides, 

a purple non-sulfur photosynthetic bacterium with a versatile metabolism, since it is able 

to grow aerobically, anaerobically, photosynthetically, fermentatively and lithotrophically 

(90). The PrrB/PrrA two-component system has a pivotal role controlling the expression of 

photosynthetic genes (89, 214), but also regulates directly or indirectly 25% of the total 

genes present in R. sphaeroides, suggesting that it is a global regulator system (90). PrrB is 

a redox sensor whose model of action is based on the Cbb3-1 terminal oxidase redox state, 

although the underlying mechanism that controls HK activity is unknown (191). The model 

suggests that Cbb3-1 oxidase generates an inhibitory signal on PrrB sensor kinase under 

aerobic conditions (268, 269). This inhibition of PrrB triggers a silencing of genes related to 

photosynthesis. Other HKs among the family of RegB and PrrB sensor kinases are ActS in S. 

meliloti (88) and Agrobacterium tumefaciens (15), and RoxS in P. aeruginosa and P. putida 

(60, 100). However, in these cases the redox sensing mechanisms of both ActS and RoxS 

sensor kinases remain unknown. 
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IV. Redox Photosensors based on flavins 

There are three main classes of flavin-based photosensors attending to domain receptor 

type, namely light-oxygen-voltage sensing (LOV) domains, blue light sensors using FAD 

(BLUF) domains and cryptochromes. They regulate many physiological responses to blue-

light. Changes induced by the light promote conversion between different redox and 

protonation states of the flavin, which are then coupled to conformational or other 

changes that signal physiological responses (61). For both the photolyase/cryptochrome 

and LOV domain photosensors, photoexcitation leads to changes to the flavin that are 

common in flavin-dependent enzyme reactions: an alteration in the oxidation state of the 

flavin or the formation of a covalent adduct (119). However, it is not yet clear if there is a 

mechanism linking flavin excitation to photoreceptor activation in the BLUF protein family. 

The formation of a flavin adduct is not involved in BLUF domain activation, therefore the 

role of electron transfer and accompanying changes in the flavin redox state remains a 

subject of controversy (119). A summary of the redox photosensors reviewed in this work 

can be found in Table 4 

 

A. LOV-domains, a special class of PAS-domains 

LOV domains are ubiquitous regulators of phototropic responses, described as a class of 

PAS domains that binds FMN or FAD noncovalently (57). LOV domains are present in both 

chemotrophic and phototrophic bacterial species. They have been found in regulatory 

domains of sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-

binding domains and regulators of RNA polymerase sigma factors (145). LOV proteins 

exhibit the typical PAS fold, with a globular α/β-fold (LOV core) flanked by variable and 

often helical N- and C-terminal extensions (140). This kind of domain may be found as a 

single or multiple domain or associated with additional sensor domains such as GAF, 

cyclases and HKs-associated sensory extracellular (CHASE) domains, or other PAS domains 

(145).  

As a consequence of the light signal and changes in the flavin state, a conserved cysteine 

residue in the LOV domain forms a flavin adduct. Details of the photocycle of this kind of 

photosensors are extensively discussed in an excellent recent review (231). The LOV 

domain signalling involves the generation of conformational changes triggered by the 
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conserved photochemistry of the LOV core (61). The mechanism depends on the 

oligomeric state, structural changes and the type of effector domain (61). In these 

processes, blue light induces the unfolding of flanking helices, dimerization and rotation of 

the LOV modules (61).  

Two major groups of LOV proteins have been described (145). The first, LOV-HKs, 

correspond to approximately 50% of bacterial LOV proteins. The second group comprises 

the so-called LOV-GGDEF-EAL proteins that contain conserved GlyGlyAsp/GluAsp/GluPhe 

and GluAlaLeu motifs. These domains could participate in metal binding and might form 

the phosphodiesterase active site. LOV-GGDEF-EAL proteins are predicted to regulate the 

synthesis and hydrolysis of cyclic di-GMP and constitute ~20% of bacterial LOV proteins. 

Other, less common LOV signalling proteins include LOV STAS (sulphate transporter anti-σ 

antagonist) proteins (~10%), LOV HTH proteins (~3.5%) and the LOV SpoIIE (sporulation 

stage II protein E) proteins (~2%). A small number of LOV proteins with a globin domain, a 

CheB or CheR chemotaxis domain, or a cyclase 4 domain have also been reported (230).  

Several LOV proteins have a specific DNA binding domain, activated by changes in the 

flavin state. In bacteria, a certain number of LOV proteins with a HTH effector domain have 

been identified in recent years. However, no bacterial LOV proteins have been described 

with a zinc-finger DNA binding motif similar to the Neurospora crassa white collar 

complex.  Neither have been described aureochromes in bacteria, with LOV and a C-

terminal leucine zipper domain for DNA binding. To date, aureochromes have been 

detected only in a single group of algae, photosynthetic stramenopiles, but not in any 

other prokaryotic or eukaryotic organisms (201). However, constructs using this type of 

domains, LOV and DNA-binding motifs have been engineered for design experimental 

approaches based on light-inducible gene regulation (292, 293).  

 

1. LOV/Helix-Turn-Helix DNA-binding proteins 

Among the light-regulated transcriptional regulators bearing the LOV domain, there is an 

interesting class in which the LOV domain is fused to a HTH DNA-binding domain. While 

these proteins have been well described in plants and animals, the information for 

bacteria is scarce. They have been described in the alphaproteobacterium Erythrobacter 
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litoralis (Q2NB98) (307, 415), while others have been identified at the genomic level 

(http://www.orthodb.org/).  

In the light-activated EL222 transcription factor from E. litoralis, blue light drives 

conformational changes of the LOV sensor domain and the signal is transmitted to the 

DNA-binding effector domain (LuxR-type HTH domain) to allow photoactivation of gene 

transcription (261). The mechanism occurs through changes that induce dimerization, and 

the dimer then recognizes specific promoters, affecting the transcription of target genes 

(415). EL222 acts as a light-dependent transcriptional factor. The photochemical reactions 

of EL222 and the light sensing properties of the LOV domain have been investigated. 

Concentration dependent experiments revealed that the EL-LOV domain is in equilibrium 

between the dimer and the monomer in the dark state, and the main photoreaction is the 

dimerization reaction between a monomer in the ground state and that in the excited 

state (360). Utilization of light-driven allosteric changes are interesting tools to control 

gene expression or biochemical activities. LOV/HTH proteins have also been proposed as 

good candidates for the design of light-controlled systems (415). 

 

2. Short-LOV proteins 

Several LOV proteins have been identified in bacteria and fungi as so-called “short” LOV 

proteins composed of a conserved LOV core and N- and/or C-terminal helical extensions. 

Due to the absence of fused effector domain(s), the next step in signal propagation in 

short LOV proteins is expected to involve partner proteins, which remain unidentified 

(310). Interestingly, the genes encoding PpSB1-LOV (Q88E39) and PPSB2-LOV (Q88JB0) 

from P. putida are contiguous to putative DNA-binding proteins, and they could perhaps 

represent their molecular partners (230). In R. sphaeroides the short-LOV protein, RsLOV, 

lacking a C-terminal output domain, similarly to PpSB2 in P. putida, has been shown to be 

responsible for controlling the expression of photosynthetic genes (247). "Short" LOV 

proteins could represent suitable building blocks for the design of genetically encoded 

photoswitches (i.e., LOV-based optogenetic tools) (301).  

 

3. Phototropins:  YtvA (PfyP) and stress response 

Phototropins are membrane-associated LOV-proteins that usually possess two N-terminal 
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photoactive LOV domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase 

domain (229). Blue light photoexcitation of the LOV domains results in the receptor auto-

phosphorylation and initiation of the phototropin signalling (56). Phototropins are 

ubiquitous and they are especially abundant in plants. 

YtvA from B. subtilis is one of the more widely-studied bacterial phototropines, involved in 

transcriptional regulation. B. subtilis YtvA acts as a positive regulator of the general stress 

transcription factor σB, sigB. The N-terminal LOV domain is followed by a STAS, carrying a 

nucleoside triphosphate binding site (42, 229). It is noticeable that the blue-light receptor 

YtvA from B. subtilis is permanently incorporated into the stressosome independent of the 

illumination state (177). This is consistent with the data observed in Listeria 

monocytogenes YtvA-like photoreceptor where blue light induces responses via the 

upregulation of B. The effect depends on blue light induced generation of ROS in the 

medium (231, 272). 

 

B. Non-PAS domain photosensors 

1. Blue Light sensors Using FAD (BLUF domains)  

BLUF domains are light-triggered switches that control enzyme activity or gene expression 

in response to blue light, remaining activated for seconds or even minutes after 

stimulation (283). BLUF was initially described in purple bacteria for its role in 

photosynthetic gene expression (238). Well-studied BLUF domains are present in proteins 

such as AppA, PAC-a/PAC-b, BlsA, BlrB, BlrP (YegF) and PixD (61).  

The secondary structure of the BLUF domain is dissimilar to those of the PAS domains or 

DNA photolyases. Furthermore, no significant similarity was found between the fold of its 

FAD-binding region and those from other FAD-binding protein families (124). For this 

reason, the BLUF domain was considered a novel FAD-binding domain involved in blue-

light- or redox-dependent sensory transduction, with a novel FAD-binding fold (124). 

BLUF proteins are unique in being the only family of photoreceptors known to show 

photo-induced proton-coupled electron transfer (283). The photoresponse of BLUF sensing 

depends on interactions of the flavin with several conserved residues of the domain. Using 

ultrafast time resolved infra-red spectroscopy to investigate the primary photophysics of 

the BLUF domain of the light activated anti-repressor AppA, Laptenok and co-workers 
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established that the electron donor is the Trp104 residue (208). The photocycle is initiated 

by light causing an electron and then a proton to transfer from the conserved tyrosine to 

the flavin, yielding a bi-radical (283). The reaction is not photo-reversible, and within 10 ns 

the photo-excited state falls back to the signalling state with recombination of the bi-

radical (283). 

AppA, a light-and O2-sensor anti-repressor from R. sphaeroides is the best characterized 

BLUF protein (124, 239). It carries a C-terminal sensor containing heme instead of 

cobalamin (SCHIC) responsible for O2-sensing domain that senses redox conditions. AppA 

interacts with the transcription repressor PpsR in the dark and AppA modulates DNA-

binding of PpsR in a ternary complex (393). Previously, Masuda and Bauer (239) suggested 

that AppA could convert PpsR from an active DNA-binding tetramer to an inactive dimer by 

reducing a disulfide bond in the PpsR tetramer. Blue light inactivates the DNA-binding 

activity of the complex so gene expression occurs only under suitable conditions of light 

and redox potential (283, 393). Crystal structures and hydrogen/deuterium exchange of 

AppA complexed with PpsR suggested that blue light dissociated multimeric AppA/PpsR 

complex from DNA but did not appreciably alter the affinity of the two protein 

components. Fig. 8 summarizes the current model for the mechanism of the AppA/PpsR 

system (393).  

BLUF domains are abundant in cyanobacteria, and several AppA homologues are 

annotated in the cyanobase (http://genome.microbedb.jp/cyanobase). The PixD-PixE 

system is the best studied, as for instance PixD (slr1694) from Synechocystis sp. PCC6803 

(119, 271). In this case, PixD lacks the SCHIC C-terminal domain present in AppA, and in 

fact is a short-BLUF protein, with its partner PixE bearing the response regulatory domain 

(http://prosite.expasy.org/cgi-bin/prosite). The light-induced change in the PixD–PixE 

interaction is a crucial part of the early signal transduction process, but the downstream 

signalling, involving gene expression changes, remains largely unresolved (361). Genome-

wide sequencing of mutants has revealed that an uncharacterized Synechocystis gene 

product (sll2003) may be involved in the signal transduction of phototaxis in response to 

light intensity (354). 
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2. Cryptochromes 

Cryptochromes are blue light/UVA photoreceptors involved in regulatory processes. They 

are closely related to photolyases (involved in DNA repair functions, they use light to repair 

UV-damaged DNA), and form the cryptochrome–photolyase family. Cryptochromes and 

photolyases bear a conserved N-terminal α/β domain and an α-helical domain which non-

covalently binds a FAD in their catalytic centre. The catalytic activity of photolyases 

requires the FAD to be in its two-electron reduced active state as FADH− (386). The N-

terminus might bind other antenna chromophores. Cryptochromes are a relatively 

heterogeneous group found in different types of organisms, and they are not as well 

characterized as the photolyases. Cryptochromes act as photoreceptors and 

transcriptional regulators, depending on the type of organisms. The classical 

cryptochromes show high sequence similarity to photolyases, but they lack DNA repair 

activity and only act as signalling molecules, regulating the circadian clock, growth or 

development. However, a distinct group of the classical cryptochromes has been 

identified. Its homologues were found in diverse organisms (Drosophila sp., Arabidopsis 

sp., Synechocystis sp., and Homo sapiens) and named cry-DASH (378). The most prominent 

member and initiator of the new group was described in the cyanobacteria Synechocystis 

(Syn-CRY, encoded by the sll1629 gene), which was the first cryptochrome to be identified 

from bacteria.  

Very few cryptochromes from bacteria have been characterized, and most of them also 

show photolyase activity. In addition to the Syn-CRY, CryB of R. sphaeroides, was first 

described as a cryptochrome that affects light-dependent and singlet oxygen-dependent 

gene expression (106). Also, V. cholerae cryptochrome, VcCry1, has been described as a 

DASH cryptochome (326). RsCryB exhibits repair activity of (6-4) photoproducts (386), 

suggesting a dual character combining the functions of cryptochromes and photolyases. 

Moreover, RsCryB is a close homologue of the photolyase PhrB from A. tumefaciens.  

Based on structural data from RsCryB, Geisselbrecht and co-workers defined a new class of 

cryptochromes, called CryPro (116). This contains two cofactors only conserved in the 

CryPro subfamily: 6,7-dimethyl-8-ribityl-lumazine in the antenna-binding domain and a 

[4Fe-4S] cluster within the catalytic domain (116). The key feature of the CryPro subfamily 

of cryptochromes is a [4Fe-4S] cubane cluster in the C-terminal domain, considered 
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characteristic of the bacterial cryptochromes. cryB transcription of R. sphaeroides 

increases in response to singlet O2 and RsCryB itself affects the regulation of 

photosynthesis related genes. Electron paramagnetic resonance spectroscopy has shown 

that the [4Fe-4S] cluster of RsCryB can readily be oxidized, and thus RsCryB might itself act 

as a sensor for ROS as a result of photooxidative stress. Oxidative changes of the [4Fe-4S] 

cluster could trigger structural changes of the C-terminal nucleotide-binding domain (116). 

 

V. Concluding remarks 

The regulation of redox homeostasis is of paramount importance for the survival of free-

living bacteria and species infecting a host. Thus, their ecological success is strongly 

dependent on the correct performance of a range of transcription factors that trigger the 

appropriate genetic program in response to different redox signals. Understanding the 

mechanisms of the different redox-responsive regulators has been hindered by the 

instability of the redox centres and prosthetic groups that are essential for their activities. 

It is likely that some of them still remain to be discovered. Moreover, cross-talk among 

several regulators and the diversity of responses displayed against the same signal 

complicate the identification of their direct gene targets. Fortunately, in recent decades 

the development of novel biophysical tools together with the resolution of the crystal 

structures of several redox regulators have provided a wealth of knowledge about their 

response mechanisms. Furthermore, high-throughput transcriptomic analyses have 

allowed researchers to complete the cross-roads of regulatory networks in numerous 

bacteria. All these data furnish researchers with valuable information that may allow the 

development of novel drugs and other applications in microbial biotechnology.   
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Abbreviations 

BLUF: blue light sensors using FAD 

DASH: Drosophila-Arabidopsis-Synechocystis-Homo 

FAD: flavin adenine dinucleotide 

FNR: fumarate nitrate reductase regulator 

FMN: flavin mononucleotide 

GAF: cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA 

HRM: heme regulatory motif 

HTH: helix-turn-helix 

IHF: integration host factor 

HK: histidine kinase 

LOV: light-oxygen-voltage sensing 

NHE: normal hydrogen electrode 

OHP: organic hydroperoxides 

PAS: Per-Arnt-Sim 

PDB: Protein Data Bank 

ppGpp: guanosine tetraphosphate 

pppGpp: guanosine pentaphosphate 

RCS: reactive chlorine species 

RES: reactive electrophile species 

RNS: reactive nitrogen species 

ROS: reactive oxygen species 
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SCHIC: sensor containing heme instead of cobalamin 

sMMO: soluble methane monooxygenase 

SUF: sulfur mobilization 

TCA: tricarboxylic acids 

wHTH: winged helix-turn-helix 
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Table 1. Main properties of Wbl paralogs from M. tuberculosis 

Paralog Roles Stability of

the [4Fe-4S] cluster  

Disulfide 

reductase 

activity 

Regulation References

 

WhiB1 Essential for growth and dormancy

NO-sensing transcription factor. 

Transcriptional reprograming in host 

environment 

Reduces GlyB 

O2-stable 

Very sensitive to NO 

(reaction 104 fold 

faster than with O2) 

yes Upregulated by cAMP. 

Autorepressed by Apo-Whi1 

(1, 112, 

209, 345, 

346) 

 

WhiB2 Proposed chaperone-like function

Node in drug resistance 

Essential for growth 

Sensitive to O2 no Activator. Activated upon exposure 

to antibiotics. Moderate upregulation 

under prolongued hypoxia. 

Upregulated by cAMP. Inhibited by 

WhiB4. 

(5, 198, 

209, 313, 

346) 

WhiB3 Sensor of oxidative stress. Control of 

virulence. Metabolic regulator of 

Sensitive to O2 yes Activator. Interacts with SigA. 

Activated under acid stress, hypoxia 

(5, 209, 

314, 341, 

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 103 of 134 
 
 
 

103 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

virulence associated lipids. 

Maintenance of redox homeostasis 

during infection. Maintenance of cell 

shape and size 

Sensitive to NO and NO 342, 353)

WhiB4 Redox balance. Virulence Sensitive to O2 and 

NO. Resistant to 

chaotropic agents  

yes Moderate upregulation under 

prolongued hypoxia. Upregulated by 

cAMP 

(4, 5, 209)

WhiB5 Reactivation. Virulence Sensitive to O2 yes Activator (5)

WhiB6 Virulence. Stress resistance O2-stable

Stable versus reduced 

glutathion 

yes Upregulated under prolongued 

hypoxia and NO. 

Moderate upregulation by cAMP 

(5, 209)

WhiB7 Activates transcription of genes 

involved in drug resistance. Redox 

balance 

O2-stable

Stable versus reduced 

glutathion 

 

yes Activator, redox-sensitive. 

Autoregulated. Interacts with SigA. 

Activated by low iron or antibiotics. 

Moderate upregulation by cAMP 

(5, 38, 209, 

314) 
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Table 2. Summary of representative regulators involved in direct redox-sensing and regulation 

Regulator Family Redox signal Transduction mechanism PDB 

code 

Function/some target genes Ref.

SoxR MerR O2
-, nitric 

oxide,  

natural redox-

cycling 

molecules and 

drugs, guanine 

radicals 

Homodimer with 2 [2Fe-2S] 

clusters. Activates 

transcription through 

oxidation of the [2Fe-2S]+1 to a 

[2Fe-2S]+2  form of the cluster 

2ZHH

2ZHG

Redox sensor. In enteric bacteria oxidized 

SoxR activates transcription of SoxS which in 

turn activates transcription of a regulon of 

around 100 genes including sodA, fumC and 

fpr, among others  

 

(78, 135, 

248, 260, 

279) 

IscR Rrf2 Senses [2Fe-2S] 

homeostasis 

which depends 

on O2 tension, 

redox status 

and 

[2Fe-2S] occupancy. Works as 

a repressor. 

4CIC

4HF0

4CHU

4HF1

 

Integration of iron availability, O2 tension and 

redox signals. Works as holo and apo-forms. 

Targets of holo-IscR incudes iscRSUA-hscBA-

fdx, yadR, yhgY, and sufA. Holo and apo-IscR 

modulates hyaA, ydiU, and sufA. 

(118, 248, 

311, 323, 

402) 
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iron availability

NsrR Rrf2 Nitric oxide 

(nitrosative 

stress) 

[2Fe-2S] or [4Fe-4S] cluster.

Usually works as repressor 

though activation of virulence 

genes has been described in 

some cases.  

5N07

5N08

 

 

 

Genes involved in nitric oxide metabolism 

and detoxification. Some main targets are 

hmp, ytfE, nasR, fliA, msqR 

(28, 183, 

286, 372) 

RsrR Rrf2 O2, other 

oxidants may 

also be 

important in 

vivo 

Senses redox via its [2Fe-2S] 

cluster. RsrR becomes 

activated for DNA binding 

through oxidation and 

inactivated through reduction. 

N.R. Its regulon includes several regulators, such 

as NmrA, genes required for glutamine 

synthesis, NADH/NAD(P)H metabolism, as 

well as general DNA/RNA and amino 

acid/protein turnover.   

(256)

FNR Crp/Fnr O2, secondary 

role in nitric 

oxide sensing 

Senses O2 via its [4Fe-4S]2+ 

cluster that in aerobiosis is 

converted into a [2Fe-2S]2+ 

releasing Fe2+ and O2 -and 

dissociating from DNA. Can 

5E44

 

 

Global regulator, its core includes operons 

associated with anaerobic respiration, such 

as nar, dms, frd, as well as glycolytic and 

fermentative enzymes 

(248, 258)
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work as repressor or as 

activator depending of the 

targets.  
 

DksA/ 

TraR 

TraR Oxidative and 

nitrosative 

stresses 

4-cysteine zinc finger motif 

releases zinc ion under 

oxidative and nitrosative 

stresses, triggering 

conformational changes in the 

regulator 

1TJL

4IJJ 

Beyond its function in the stringent response, 

DksA is also involved in modulation of several 

pathogenicity associated processes such as 

differentiation, flagellar gene activation, 

lysosome avoidance, quorum-sensing, 

antioxidant defences; but also central 

metabolism and zinc homeostasis.   

(25, 26, 74, 

138) 

RsrA TetR Oxidative 

stress 

Zinc ion coordinated by 

cysteines is released under 

oxidative stress, triggering 

conformational changes in the 

regulator 

5FRH

5FRF 

Anti-sigma factor. Inactivation of RsrA via 

forming disulphide bonds under oxidative 

stress activates expression of extra-

cytoplasmic function (ECF) sigma factor SigR 

and its regulon, including thioredoxin system 

and several other putative thiol-disulphide 

oxidoreductases.   

(179, 182, 

189) 
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OxyR LysR Oxidative 

stress, H2O2 

Disulfide bond formation 

between conserved cysteines 

may activate or inactivate the 

regulator, which can function 

as activator but also as 

repressor of transcription. S-

nitrosylation and cysteine 

overoxidation appear as other 

mechanisms of regulation. 

1I69

1I6A 

3HO7

3JV9 

4X6G

5X0V 

Regulates the expression of antioxidant 

enzymes including catalases, superoxide 

dismutases, peroxidases, alkyl hydroperoxide 

reductases; but also modulates expression of 

Fur, Dps proteins, etc. 

(58, 190, 

391, 413) 

PpsR/ 

CrtJ 

LuxR O2 Disulfide bonds between 

conserved cysteines 

4HH2 Modulates the synthesis of photosystem 

components in purple bacteria, including 

bacteriochlorophyll, carotenoids, light 

harvesting proteins, but also tetrapyrrole 

biosynthesis genes. 

(254, 357)

OhrR/ 

MgrA/ 

SarZ 

MarR Organic 

hydroperoxides 

(OHP) and 

other ROS 

Two sensing mechanisms: (1) 

single cysteine oxidation, and 

(2) disulfide bond formation 

between two cysteines. Both 

2PFB

1Z9C

2BV6

OhrR modulates expression of organic 

hydroperoxide reductase (Ohr) and other 

antioxidant enzymes and thiol-reducing 

systems. MgrA and SarZ control genes 

(17, 113, 

178, 232, 

298, 369, 

389) 
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cause inactivation of repressor 

and transcription of target 

genes. 

3HSE involved in antibiotic resistance and 

virulence. 

NemR TetR Cysteine-

modifying 

electrophiles, 

alkylation and 

reactive 

chlorine 

species (RCS). 

Cysteine oxidation by RCS 

causes reversible inactivation 

of repressor 

4YZE NemR modulates the expression of enzymes 

involved in detoxification processes including 

glyoxalase I (gloA) and N-ethylmaleimide 

reductase (nemA). 

(132, 375)

FurA Fur Senses iron 

availability 

(Fe2+) and 

redox status 

Thiol/disulfide redox switch N.R. Targets involved in iron homeostasis, 

oxidative stress defences, photosynthesis, 

respiration, heterocyst differentiation, 

tetrapyrrole biosynthetic pathway, virulence, 

etc. 

(101, 125-

129) 

PerR Fur Peroxide Metal-catalyzed oxidation of 

histidine to 2-oxo-histidine 

3F8N

4I7H 

PerR may function as activator and repressor 

of gene expression. Targets include 

antioxidant enzymes, virulence genes and 

(36, 306, 

377) 
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other regulators. 

HypT LysR HOCl Methionine oxidation to 

methionine sulfoxide triggers 

its activation 

N.R. Acts as transcriptional activator for genes 

involved in amino acids (Met, Cys) 

biosynthesis. Negatively regulates expression 

of genes involved in iron homeostasis.  

(114)

CooA Crp/Fnr Carbon 

monoxide 

CO binds to Fe2+ heme 

promoting a redox-mediated 

ligand switch that leads 

conformational changes which 

activate the regulator 

2FMY

1FT9 

Modulates the expression of the coo regulon, 

which allows the CO-dependent anaerobic 

growth of R. rubrum.  

(405)

RcoM LytR/AlgR 

 

Carbon 

monoxide 

CO binds to Fe2+ heme 

promoting a redox-mediated 

ligand switch that leads 

conformational changes which 

activate the regulator 

N.R. Regulates both aerobic (cox) and anaerobic 

(coo) CO oxidation systems. 

 

(187)

Rex Rex NADH/NAD+ 

ratio 

Under microaerobic or anoxic 

conditions, NADH 

2VT3 Rex is a transcriptional repressor that 

remains bound to its DNA targets when the 

(154, 207, 

226, 276, 
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competitively binds to the 

Rex C-terminal domain, 

causing a conformational 

change in the regulator which 

decrease affinity for DNA 

NAD+/NADH ratio is sufficiently high. Rex 

regulons comprise genes involves in redox 

homeostasis, anaerobic and aerobic 

metabolism, lactate and ethanol 

fermentation, nitrate respiration, avermectin 

production, etc. Some examples are hemZ, 

lctP-ldh, ndh, roxS, yjlC, ywcJ and the operons 

alsS-alsD and cydA-cydB-cydC-cydD. 

302)

N.R. Not resolved  
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Table 3. Summary of two-component systems involved in redox sensing  

System Redox 

signal 

Domain/mechanis

m involved in 

redox sensing 

PDB code Function/some target genes Ref.

FixL-FixJ 

 

O2 PAS domain-heme 1DP6 Nitrogen fixation genes (fix) heme biosynthetic genes (hem), 

denitrification genes (napEDABC, nirK, norCBDQ and nosRZDFYLX) 

and some hydrogen oxidation genes (hup) 

(85, 275, 

296, 

308) 

DosS-DosR 

 

O2, 

NO and CO 

GAF domain-heme 2W3D devRS, hspX, narK2 and tgs1 genes. (44-46)

NreB-NreC O2 PAS domain-Fe-S 

cluster 

N.R. Nitrate reductase genes (narGHJI), nitrite reductase genes (nirDB) (98, 321)

AirS-AirR O2 GAF domain-Fe-S 

cluster 

N.R. saeRS genes, genes encoding stress associated factors (rsbU and 

rsbW) and virulence factors (cap5A, spa and hlgC) 

(137, 

356) 

KinA-KinE-

Spo0A 

NADH/NAD+ 

ratio 

PAS-A domain 2VLG Genes implicated in sporulation, colony morphology and

biofilm development 

(249)D
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MmoS-

MmoQ 

 

Unknown PAS domain-FAD 3EWK Soluble methane monooxygenase (sMMO) (70)

ArcB-ArcA 

 

Redox state 

of quinone 

pool  

PAS domain-

disulfide bond 

formation 

N.R. Genes involved in the TCA cycle, glyoxylate shunt and terminal 

oxidases. 

(227)

NifL-NifA 

 

FADH2/FAD 

ratio 

PAS domain-FAD 2GJ3 Nitrogen fixation genes (nif genes)

 

(82, 148)

RegB-RegA 

 

O2/Ubiquin

one 

Disulfide bond 

formation 

N.R. Genes involved in carbon and nitrogen fixation, electron

transport chain, photosynthesis and aerotaxis 

 

(320)

PrrB-PrrA 

 

Redox state 

of Cbb3-1 

oxydase 

Disulfide bond 

formation 

N.R. Photosynthetic genes 

 

(90)

N.R. Not resolved 
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Table 4. Summary of redox photosensors 

Protein Signal Domain/family 

involved in redox sensing 

PDB 

code 

Function/some target genes Ref.

EL222 

 

Blue-light LOV-domain 3P7N Radical SAM protein putative pyrimidine dimer lyase 

(ELI_05380), putative indoleamine 2,3-dioxygenase 

(ELI_06040) and NAD synthetase (ELI_08405), among 

others. 

(307)

PpSB1 

 

Blue-light LOV-domain 5J3W Photosynthetic genes

  

(247)

YtvA 

 

Blue-light LOV-domain 2MWG General stress transcription factor sigB

 

(231, 

272) 

AppA 

 

Blue-light 

and O2 

BLUF-domain 1YRX Photosynthetic genes

 

(246)

SynCry Blue-light 

and UVA 

Cry-DASH 1NP7 Genes involved in PSII repair (378)
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Figure legends 

 

Figure 1. Scheme of the SoxR sensing mechanism. A. Oxidative challenge results in SoxR 

activation through reversible oxidation of the sulfo-ferric cluster and untwisting of the soxS 

promoter allowing its transcription. B. Structure of the SoxR-soxS promoter complex 

showing relevant amino acids for the SoxR redox-sensing mechanism. The figure is based 

on the structure from PDB with code 2ZHG and was produced with PyMol.  

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 115 of 134 
 
 
 

115 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

 

Figure 2. Factors influencing the regulation and DNA-binding activity of IscR in E. coli and 

their relationship with the suf operon.  
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Figure 3. A. Model of the two types of regulation by NsrR reported in B. subtilis. While type 

I promoters are controlled by holo-NsrR in response to NO, type II promoters may recruit 

several transcription factors including holo- and apo-NsrR, being the later insensitive to 

NO. B. Model of a S. coelicolor NsrR dimer showing the assymetric environment of the 

[4Fe-4S] cluster. The structure was taken from PDB (code 5N07) and was produced with 

PyMol.  

D
ow

nl
oa

de
d 

by
 Q

ue
en

 M
ar

y 
&

 W
es

tf
ie

ld
 C

ol
l f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
29

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 117 of 134 
 
 
 

117 

An
tio

xid
an

ts
 a

nd
 R

ed
ox

 S
ig

na
lin

g 
Re

do
x-

ba
se

d 
tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
in

 p
ro

ka
ry

ot
es

: r
ev

isi
tin

g 
m

od
el

 m
ec

ha
ni

sm
s (

DO
I: 

10
.1

08
9/

ar
s.2

01
7.

74
42

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

 

Figure 4. Upper panel. Redox response of FNR in E. coli depending of O2 tension. The lower 

panel shows a model of the E. coli FNR monomer in two different orientations. Relevant 

amino acids for its sensing mechanism according to reference [244] are indicated. The 

figure is based on the structure of FNR from A. fischeri (PDB code 5E44) and was produced 

with PyMol.  
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Figure 5. Scheme summarizing the action of holo- and apo-DksA under different stresses in 

Salmonella, based in reference [138]. A. (left) The oxidative stress associated with 

starvation leads to the downregulation of rpsM by ppGpp-bound holo-DksA. Conversely, 

holo-DksA reduced with DTT supports the activation of livJ and hisG (right). B. DksA 

responds to ROS and NRS independently of ppGpp. Oxidative and nitrosative stress 

releases Zn2+ from the 4-cysteine zinc-finger motif of DksA. Then, the free cysteines serve 

as a thiol switch able of increasing repression of rpsM (left). Oxidized apo-DksA also 

prevents the activation of livJ and hisG, elicited by reduced holo-DksA (A, right).  
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Figure 6. Model of metal action in RsrA activity. A. Under reducing conditions, Zn2+ 

coordination by H37 and reduced C11, C41 and C44 activates RsrA repressor state by 

sequestering its cognate sigma factor SigR forming a RsrA/SigR complex. Oxidation of 

either residue C41 or residue C44 of the C41XXC44 motif by formation of a disulfide bond with 

residue C11 releases Zn2+ and inactivates RsrA. The regulator undergoes a dramatic change 

in its 3-D structure that sets SigR free. Once released, SigR can interact with RNA 

polymerase to trancribe the SigR target genes. B. Comparison of the structures of reduced 

(left) and oxidized (right) RrsA from S. coelicolor (PDB codes 5FRF and 5FRH) produced with 

PyMol.    
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Figure 7. OxyR-mediated oxidative stress response via intramolecular disulfide formation. 

A. E. coli OxyR has a tetrameric arrangement assembled via two distinct dimerization 

interfaces. The oxidation of a sensing cysteine residue to sulfenic acid in inactive OxyR, 

followed by formation of an intramolecular disulfide bond with the resolving cysteine, 

involves a conformational change that affects DNA binding affinity stimulating gene 

expression. Oxidized OxyR is reduced by reduced glutathione via glutaredoxin/glutathione 

reductase system, using reducing equivalents supplied by NADPH. B. Structures of reduced 

and oxidized OxyR from E. coli (PDB codes: 1l69 and 1l6A). In the reduced state (left), the 

redox active residue C199 is separated from residue C208 by  17 Å. A short helix formed 

by residues C199-C208 is highlighted in black. Once C199 is oxidized to sulfenic acid 

intermediate (C199-SOH), rapidly reacts with C208 to form an intramolecular disulfide 

bond. During oxidation the short helix disappears rendering a flexible region that increases 

the chance of C199-SOH and C208 meeting to form the disulfide bond. The final result 

upon disulfide bond formation is a significant rearrangement of the secondary structure 
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(right). C. Proposed model for Corynebacterium glutamicum transcriptional repression by 

OxyR. OxyR binding site overlaps the transcription start site and -10 region of katA, but in 

dps promoter overlaps -10 and -35 regions. This suggests that once OxyR binds to its target 

site prevents interaction of RNA polymerase with these promoters leading to 

transcriptional repression. Transcriptional repression by OxyR is alleviated under oxidative 

stress in a titration mechanism due to the decrease in specificity in its DNA-binding 

activity. D. Neisseria meningitidis kat gene repression/activation by OxyR. N. Meningitidis 

activates the catalase gene as response to H2O2 increase. After been oxidized, it binds to a 

region overlapping the -35 hexamer of the single 70-dependent promoter Pkat. As a result, 

a fast and strong activation of the transcription initiation occurs, possibly through direct 

contact to RNA polymerase. Once the redox state of OxyR is reversed the reduced form of 

OxyR represses again transcription. 
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Figure 8. Schematic model of  PpsR and AppA control of gene expression in response to O2 

and light. A conserved cysteine in the DNA binding domain of PpsR undergoes oxidation in 

the presence of O2. Cysteine oxidation induces binding of PpsR to DNA as an octamer that 

represses controlled genes. Reduced PspR and reduced AppA form an AppA-PpsrR2 

complex to enable light- and oxygen-dependent regulation. Photon absorption by AppA 

BLUF domain induces an allosteric structural change in AppA-PspR2 complex that reduces 

its affinity for DNA. AppA-PpsR2-DNA complex prevents the repressing effect of PpsR8-DNA 
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and promotes gene expression depending on relative AppA/PspR concentrations. An 

excess of PpsR competes with AppA-PpsR2 for promoters under light but cannot replace 

the ternary complex in the dark. The levels of AppA and PpsR are inversely regulated by O2. 

When the concentration of O2 increases, PpsR8-DNA is favored with the consequent 

repression of photosynthetic genes [171]. 
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Figure 9. Scheme of the redox control of the ohrA peroxidase by OhrR. A. In the 1-Cys OhrR 

from B. subtilis peroxides cause the oxidation of the conserved Cys15 to sulfenic acid that in 

turn may undergo reversible S-thiolation or be irreversibly overoxidized in the presence of 

strong oxidants. The lower panel shows the location of Cys15 in a model based on the PDB 

structure with code 1Z9C. B. In the X. campestris 2-Cys OhrR oxidants lead to intersubunit 

disulfide formation between Cys22 and Cys127´ that results in a major structural change of 

the regulator. The lower panel shows this structural rearrangement, as well as the location 

of the three conserved cysteines of X. campestris in the oxidized 2-Cys OhrR (left) and the 

reduced form (right). The structures were produced with PyMol according to the PDB files 

with codes 2PFB and 2PEX.      
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Figure 10. Model of metal involvement in the activity of cyanobacterial FurA. The Cys101-

Cys104 disulfide bridge of the Cys101XXCys104 motif keeps the residue Cys101 in the oxidized 

state and therefore, unable to coordinate the metal co-repressor, rendering inactive FurA.  
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Figure 11. Features of RrCooA redox and CO mediated activation. A) One of the axial 

ligands of the heme ferric state undergoes a redox-mediated ligand switch upon reduction. 

The displacement of the axial ligand in the reduced form by CO apparently causes a 

conformational change that induces RrCooA to bind its target site in a site-specific manner. 

B) Schematic models of oxidized Rr-CooA and CO-bound RrCooA. The C-helix is shown as a 

light grey rectangular box.  
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Figure 12. Modulation of Rex DNA-binding activity in response to the ratio of NADH/NAD+ 

and its relationship with the respiratory chain (adapted from reference [133]). Under 

aerobic conditions NADH is rapidly re-oxidized and the concentration of NAD+ is higher 

than that of NADH and Rex becomes activated by the binding of NAD+, blocking the 

transcription of target genes. In contrast, when O2 availability decreases, NADH > NAD+ and 

Rex repression is relieved, leading to the transcription of its regulon. QH2: reduced 

quinone. Q: oxidized quinone 
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Figure 13. S. meliloti and B. japonicum FixL domain architecture and proposed model of 

action of the FixL-FixJ two-component system in S. meliloti. A. Domain organization in the 

sensor kinase FixL in S. meliloti and B. in B. japonicum. C. Redox-dependent 

phosphotransfer mechanism in the S. meliloti FixL-FixJ two-component system. RR: 

receiver domain, DNA-b: DNA binding domain.  
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Figure 14. M. tuberculosis DosS domain architecture and proposed model of action of the 

DosS-DosR two-component system. A. DosR domain organization B. Redox-dependent 

phosphotransfer mechanism in the DosS-DosR two-component system from M. 

tuberculosis.   
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Figure 15. S. carnosus NreB domain architecture and proposed model of action of the 

NreB-NreC two-component system. A. NreB domain organization B. Redox-dependent 

phosphotransfer mechanism in the S. carnosus NreB-NreC two-component system. RR: 

receiver domain, DNA-b: DNA binding domain. 
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Figure 16. S. aureus AirS domain architecture and proposed model of action of the AirS-

AirR two-component system. A. AirS domain organization B. Redox-dependent 

phosphotransfer mechanism in the S. aureus AirS-AirR two-component system. This figure 

is adapted from Sun et al. [356].  
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Figure 17. M. capsulatus (Bath) MmoS domain architecture and proposed model of action 

of the MmoS-MmoQ two-component system. A. MmoS domain organization B. Redox-

dependent phosphotransfer mechanism in the M. capsulatus MmoS-MmoQ two-

component system. ATPase: ATPase domain, REC: receiver domain, HPT: histidine 

phosphotransfer domain. 
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Figure 18. E. coli ArcB domain architecture and proposed model of action of the ArcB-ArcA 

two-component system. A. ArcB domain organization B. Redox-dependent 

phosphotransfer mechanism by ArcB in E. coli. REC: receiver domain, HPT: histidine 

phosphotransfer domain, MK8: menaquinone, UQ8: ubiquinone. This figure is adapted 

from Bekker et al. [23]. 
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Figure 19. R. capsulatus RegB domain architecture and proposed model of action of the 

RegB-RegA two-component system. A. RegB domain organization B. and C. Redox-

dependent phosphotransfer mechanism in the R. capsulatus RegB-RegA two-component 

system. Q: quinone. This figure is adapted from Wu et al. [398]. 
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