
 Previous genomic analyses of the fi lamentous nitrogen-fi xing 
cyanobacterium  Anabaena  sp. PCC 7120 have identifi ed 
three ferric uptake regulator (Fur) homologs with low 
sequence identities and probably different functions in the 
cell. FurA is a constitutive protein that shares the highest 
homology with Fur from heterotrophic bacteria and appears 
to be essential for in vitro growth. In this study, we have 
analysed the effects of FurA overexpression on the  Anabaena  
sp. phenotype and investigated which of the observed 
alterations were directly operated by FurA. Overexpression 
of the regulator led to changes in cellular morphology, 
resulting in shorter fi laments with rounded cells of different 
sizes. The  furA -overexpressing strain showed a slower 
photoautotrophic growth and a marked decrease in the 
oxygen evolution rate. Overexpression of the regulator also 
decreased both catalase and superoxide dismutase activities, 
but did not lead to an increase in the levels of intracellular 
reactive oxygen species. By combining phenotypic studies, 
reverse transcription–PCR analyses and electrophoretic 
mobility shift assays, we identifi ed three novel direct targets 
of FurA, including genes encoding a siderophore outer 
membrane transporter ( schT ), bacterial actins ( mreBCD ) and 
the PSII reaction center protein D1 ( psbA ). The affi nity of 
FurA for these novel targets was markedly affected by the 
absence of divalent metal ions, confi rming previous evidence 
of a critical role for the metal co-repressor in the function of 
the regulator in vivo. The results unravel new cellular 
processes modulated by FurA, supporting its role as a global 
transcriptional regulator in  Anabaena  sp. PCC 7120.  
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   Abbreviations  :    Amp  ,    ampicillin   ;     CAT  ,    catalase   ;     Cm  , 
   chloramphenicol   ;     CM-H 2 DCFDA  ,    chloromethyl- 2,7-
dichlorodihydrofl uorescein diacetate   ;     DTT  ,    dithiothreitol   ; 
    EMSA  ,    electrophoretic mobility shift assay   ;     Fur  ,    ferric uptake 

regulator   ;     Km  ,    kanamycin   ;     NBT  ,    nitro-blue tetrazolium   ;     Nm  , 
   neomycin   ;     PCV  ,    packed cell volume   ;     ROS  ,    reactive oxygen 
species   ;     RT–PCR  ,    reverse transcription–PCR   ;     SOD  ,    superoxide 
dismutase   ;     TCA  ,    trichloroacetic acid.         

 Introduction 

 Iron is a scarce nutrient essential for almost all organisms. How-
ever, an excess of free iron in the cell is potentially toxic under 
aerobic conditions due to its ability to catalyze the formation of 
active species of oxygen by Fenton reactions ( Andrews et al. 
2003 ). Bacteria tightly regulate their iron metabolism by a pre-
dominant regulatory system orchestrated by the ferric uptake 
regulator (Fur), which controls the expression of iron uptake 
and storage machinery in response to iron availability ( Escolar 
et al. 1999 ). The classical model of Fur regulation describes this 
protein as a sensor of the intracellular free iron concentration, 
that binds to Fe 2 +   under iron-rich conditions and acts as an 
active repressor by binding to ‘iron boxes’, located in the pro-
moters of iron-responsive genes. Under iron-restricted condi-
tions, the equilibrium is displaced to release Fe 2 +   and the 
repressor becomes inactive, allowing the transcription of target 
genes. Additionally, transcription of several genes has been 
shown to be directly or indirectly up-regulated by Fur, involving 
a variety of mechanisms ( Masse and Gottesman 2002 ,  Delany 
et al. 2004 ). 

 Fur proteins are considered global transcriptional regulators 
in prokaryotes. The Fur regulons so far identifi ed include 
not only iron assimilation genes, but also a large number of 
genes and operons involved in many cellular processes 
such as respiration, redox stress resistance, glycolysis and the 
tricarboxylic acid cycle, methionine biosynthesis, purine 
metabolism, chemotaxis and synthesis of virulence factors, 
phage–DNA packaging, etc. Around 100 genes are regulated 
by Fur in  Escherichia coli  ( McHugh et al. 2003 ), 59 genes in 
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 Helicobacter pylori  ( Danielli et al. 2006 ), 34 operons in  Yersinia 

pestis  ( Gao et al. 2008 ) and 20 operons in  Bacillus subtilis  
( Baichoo et al. 2002 ). Usually, more than one Fur homolog 
with different functions has been identifi ed in the same micro-
organism ( Bsat et al. 1998 ). 

 Cyanobacteria are widely distributed phototrophic prokary-
otes that carry out oxygenic photosynthesis. As photosynthetic 
organisms, cyanobacteria particularly need iron for photosys-
tem complexes and soluble proteins; but, on the other hand, 
they are exposed to the production of reactive oxygen species 
(ROS) concomitant with photosynthesis ( Latifi  et al. 2009 ). 
Therefore, regulation of iron metabolism in cyanobacteria must 
be particularly important, and Fur proteins could be involved 
in the control of new pathways not previously described in 
heterotrophic microorganisms. 

 The genomic analysis of the fi lamentous nitrogen-fi xing 
cyanobacterium  Anabaena  sp. PCC 7120 led to the identifi ca-
tion of three Fur homologs, named FurA, FurB and FurC, 
corresponding to the CyanoBase ( http://genome.kazusa.or.jp/
cyanobase ) open reading frames  all1691 ,  all2473  and  alr0957 , 
respectively ( Hernández et al. 2004 ). The three proteins share 
typical Fur motifs, but are only distantly related. While FurA 
shares 40–45 %  homology with most well-known members of 
the Fur family, there have been few functional or structural 
characterizations of Fur members with close sequence homol-
ogy to FurB or FurC. Western blot analyses of crude cellular 
extracts of  Anabaena  sp. have shown that FurA is a constitutive 
protein, whose expression slightly increases under iron defi -
ciency ( Hernández et al. 2002 ). Electrophoretical mobility shift 
assays (EMSAs) have shown that FurA binds the three  fur  
homolog promoters, as well as those of genes involved in a vari-
ety of functions including photosynthesis and defense against 
oxidative stress ( Bes et al. 2001 ,  Hernández et al. 2004 ,  Hernán-
dez et al. 2007 ,  López-Gomollón et al. 2007 ). Divalent metal ions 
and thiol-reducing agents enhance the affi nity of FurA for its 
target DNA sequences in vitro, suggesting the importance of 
the metal co-repressor and the redox status of the cysteines for 
the interaction with DNA in vivo ( Hernández et al. 2006b ). 
Attempts to inactivate  furA  have resulted in only a partial 
segregation of the mutated chromosomes, suggesting an essen-
tial role for this protein under standard culture conditions 
( Hernández et al. 2006a ). 

 Overexpression of transcriptional regulators has been previ-
ously used in  Anabaena  sp. ( Buikema and Haselkorn 2001 ,  Liu 
and Golden 2002 ,  Wu et al. 2004 ,  Olmedo-Verd et al. 2005 ,  Wu 
et al. 2007 ) and other bacteria ( Marr et al. 2006 ,  Ellermeier and 
Slauch 2008 ,  Wang et al. 2008 ) as a tool to unravel the mecha-
nisms of gene regulation and to identify direct DNA targets in 
complex regulatory networks. In order to gain new insights into 
the cellular functions of FurA, we have constructed a strain of 
 Anabaena  sp. that exhibits a high level of overexpression of this 
transcriptional regulator, and have analyzed some effects of 
such a level of FurA on various aspects of the cyanobacterial 
phenotype. We then investigated which of the observed phe-
notypic changes were the result of a direct FurA modulation of 

gene expression. This overexpression approach led us to iden-
tify three novel direct targets of FurA involved in different 
cellular processes in  Anabaena  sp.   

 Results  

 FurA overexpression from the copper-inducible 
 petE  promoter 
 A derivative strain of  Anabaena  sp. PCC 7120 showing a high 
level of expression of FurA was generated using the shuttle 
vector pAM2770 ( Lee et al. 2003 ); it contained an extra copy 
of the wild-type  furA  gene located downstream of the copper-
inducible  petE  promoter ( Buikema and Haselkorn 2001 ). 
The strain obtained, named AG2770FurA, showed increased 
levels of the FurA protein both in standard BG-11 medium and 
in BG-11 supplemented with copper to 0.4 µM, according to 
Western blot analysis ( Fig. 1      ). However, there was no apprecia-
ble increase in the amount of FurA after supplementation of 
BG11 with additional copper, suggesting a high induction of 
the  petE  promoter with the concentration of copper normally 
present in this medium. Consequently, standard BG-11 was 
used in further analyses. As previously found in cyanobacterial 
FurA (Pellicer et al. 2010), as well as in other Fur family proteins 
( Ortiz de Orue Lucana and Schrempf 2000 ,  Lee and Helmann 
2006 ), additional minor bands of FurA with different gel mobil-
ity appear as a result of oxidation of cysteines in the air and 
intrafragment disulfi de bond formation.   

 Overexpression of FurA alters cyanobacterial 
morphology 
 Photoautotrophic growth of wild-type and  furA -overexpressing 
strains in BG-11 medium was compared by following the cell 
yields during 24 d in terms of optical density at 750 nm ( Fig. 2      ). 
The strain AG2770FurA showed a slower growth, with a dou-
bling time of 4.07 d and a specifi c growth rate of 0.17 d  − 1  
(in contrast to 3.15 d and 0.22 d  − 1  for the wild type), which 
determined minor cell yields in all growth phases. Values of 
packed cell volume (PCV) were in accordance with spectropho-
tometrical readings, showing a linear relationship. For this 
reason, the PCV was used as the parameter for cell mass in 
further determinations. 

 Microscopic examination of cultures in the exponential 
phase of growth revealed appreciable morphological changes 
in the strain AG2770FurA compared with its parental strain 
PCC 7120. Unlike the wild type, whose fi laments formed 
large chains of elliptically shaped cells and highly uniform size 
( Fig. 3A      ), the  furA -overexpressing strain showed an abundance 
of short fi laments and even single cells, with rounded shape and 
loss of the characteristic uniformity in cell size, resulting in cells 
with both increased and diminished sizes compared with the 
wild type ( Fig. 3B ). In addition, the intrinsic fl uorescence of 
cells appeared partially affected, since changes in the intensity 
of fl uorescence of individual cells were observed along a single 
fi lament ( Fig. 3C, D ). 
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 Transmission electron microscopy analysis revealed differ-
ences in the ultrastructure, especially in the thylakoid arrange-
ment. Whereas in the wild-type strain the thylakoids appeared 
in contorted arrays homogeneously distributed in the cyto-
plasm ( Fig. 3E ), in the  furA -overexpressing strain the thylakoid 
membranes appeared evenly spaced and closely appressed to 
the periphery of cells ( Fig. 3F ).   

 Overexpression of FurA decreases 
photosynthetic activity 
 To determine whether overexpression of FurA affected the 
photosynthetic activity of  Anabaena  sp., we compared the 

- + - +

PCC 7120 AG2770FurA FurAr

Cu2+

17.5 kDa

 Fig. 1      Levels of FurA protein in wild-type  Anabaena  sp. strain PCC 
7120 and the  furA -overexpressing strain AG2770FurA revealed by 
Western blotting. Total cell extracts from fi laments grown in BG-11 
medium with ( + ) and without ( − ) additional supplementation with 
copper were separated by SDS–PAGE, electrotransferred and 
challenged with anti-FurA antiserum. Recombinant FurA overexpressed 
and purifi ed from  E. coli  was included as control. The molecular weight 
is indicated.  
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 Fig. 2      Growth of  furA -overexpressing strain AG2770FurA in comparison 
with the wild-type strain PCC 7120, expressed as both packed cell 
volume (columns) and optical density (lines). Values are the averages 
of three independent experiments; SDs are represented by vertical 
bars. Please note that in some instances the error is smaller than the 
symbols used.  

oxygen evolution of wild-type and  furA -overexpressing strains 
using a Clark-type oxygen electrode. Exponentially growing 
 Anabaena  cells overexpressing FurA evolved oxygen at about 
50 %  of the rate of the wild type ( Table 1  ), while dark respira-
tion did not show signifi cant variation between the strains. 

 Hence, the photoautotrophic growth data and measurements 
of oxygen evolution demonstrated that the  furA -overexpressing 
strain was markedly compromised in photosynthetic function, 
but this decline could not be accounted for merely on the 
basis of differences in pigment contents. In fact, the strain 
AG2770FurA showed slightly higher amounts of Chl  a , carote-
noids and phycobiliproteins compared with the wild type 
( Table 2  ). Thus, the decrease in photosynthetic performance 
in a FurA overexpression background could be a consequence 
of changes in the expression pattern of photosynthesis 
genes, or could be a result of pleiotropic effects such as oxida-
tive stress.   

 Overexpression of FurA decreases catalase 
and superoxide dismutase activities 
 Catalase (CAT) and superoxide dismutase (SOD) activities of 
cell-free extracts of wild-type and  furA -overexpressing strains 
were measured to determine whether the enhanced expression 
of FurA affected the antioxidant defenses of  Anabaena  sp. 
Both enzymatic activities appeared clearly decreased in strain 
AG2770FurA compared with the wild type ( Fig. 4      ), although 
CAT activity was particularly affected, displaying a  > 4-fold 
decrease. As expected, this appreciable reduction in the ability 
of cells to remove hydrogen peroxide (H 2 O 2 ) led to a consider-
able decrease in the tolerance of the  furA -overexpressing 
strain to oxidative stress resulting from exposure to exogenous 
H 2 O 2  ( Fig. 5      ). However, the AG2770FurA strain was still capable 
of effectively tolerating up to 300 µM of exogenous H 2 O 2 . 

 Levels of intracellular ROS in wild-type and  furA -overex-
pressing strains were determined using two different methods. 
Fluorometric measurement of the oxidized form of the cell-
permeant probe chloromethyl- 2,7-dichlorodihydrofl uorescein 
diacetate (CM-H 2 DCFDA) permits H 2 O 2 , hydroxyl radicals 
and peroxynitrite anions within the cell to be detected non-
specifi cally ( Latifi  et al. 2005 ). However, since CAT activity was 
particularly affected in the AG2770FurA strain, the intracellular 
peroxide content was also specifi cally estimated by the 
ferrithiocyanate method ( Thurman et al. 1972 ). Surprisingly, 
the reduction in the antioxidant capabilities observed in the 
 furA -overexpressing strain did not lead to an increase in the 
levels of ROS accumulated by cells during the exponential 
phase of photoautotrophic growth. ROS production was simi-
lar and even slightly lower in the strain AG2770FurA compared 
with the wild type, perhaps as a result of a lower photosynthetic 
activity ( Table 3  ). Similar results were observed when endoge-
nously generated H 2 O 2  was specifi cally measured by the 
ferrithiocyanate method. Taken together, these results sug-
gested that FurA overexpression decreased oxidative stress 
defenses, but did not lead to induced oxidative stress in 
 Anabaena  sp.   
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 Overexpression of FurA induces changes in the 
transcriptional pattern of a variety of genes 
 On the basis of the phenotypic changes observed in the 
AG2770FurA strain, we investigated the impact of FurA overex-
pression on the transcription of a variety of genes involved 
in several physiological processes such as photosynthesis, 

 Fig. 3      Overexpression of FurA induced morphological and ultrastructural changes in  Anabaena  sp., as shown in photomicrographs of the 
wild-type strain PCC 7120 (A, C, E) and the  furA -overexpressing strain AG2770FurA (B, D, F) taken at the exponential phase of growth. Bright-
fi eld (A, B) and fl uorescence (C, D) microscopic examinations revealed alterations in fi lament length, cell shape/size and intrinsic fl uorescence. 
Transmission electron microscope analysis (E, F) showed differences in thylakoid arrangement. The photomicrograph of each strain is 
representative of at least 10 different images. Bars  =  1 µm.  

oxidative stress defense and control of cellular morphology. 
Semi-quantitative reverse transcription–PCR (RT–PCR) was 
used to compare the levels of transcripts of selected genes 
in wild-type and  furA -overexpressing strains ( Fig. 6      ). In order 
to obtain accurate determinations, each measure was per-
formed at the early exponential phase of the PCR of each gene. 
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The  rnpB  housekeeping gene was included in all RT–PCR analy-
ses to ensure that equivalent amounts of total RNA were being 
used in all reactions. The relative induction ratio observed for 
each analyzed gene is presented in  Supplementary Table S1 . 

 The analysis of the expression of some genes encoding 
subunits of PSI and PSII showed different effects of a FurA over-
expression background on transcription of photosynthesis 
genes. Transcripts of the PSI genes  psaA  and  psaB , encoding the 
reaction center proteins PsaA and PsaB, respectively, as well as 
those of the PSII gene  psbB  coding for the core antenna 
CP47 protein was clearly increased in the  furA -overexpressing 
strain compared with the wild type, while transcripts of  psbA  
encoding the PSII reaction center protein D1 were only slightly 
increased. However, at least one gene,  psbZ , coding for an 
11 kDa PSII protein, showed a reduced amount of transcripts. 
Thus, despite the increased pigment and phycobiliprotein 
contents found in the  furA -overexpressing strain, the direct or 
indirect effect of FurA overexpression in down-regulation of 
other non-essential but important regulatory proteins, such as 
PsbZ ( Bishop et al. 2007 ), could produce an imbalance among 
components of the photosystems in AG2770FurA cells. 

 The expression of several antioxidant enzymes described 
in  Anabaena  sp. PCC 7120 was also analyzed. Transcripts of 
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 Fig. 4      Catalase (A) and superoxide dismutase (B) activities in wild-type 
 Anabaena  sp. strain PCC 7120 and  furA -overexpressing strain 
AG2770FurA. Values are the averages of two independent experiments; 
SDs are represented by vertical bars.  

 Table 1      Photosynthetic oxygen evolution and dark respiration of 
exponentially growing cells of  Anabaena  sp. strains PCC 7120 and 
AG2770FurA  

 Parameter    Anabaena  sp .  strain   a    

PCC 7120 AG2770FurA 

Apparent O 2  evolution 45.6  ±  2.1   b   19.2  ±  1.2   b    

115.6  ±  5.3   c   46.5  ±  2.8   c    

O 2  consumption 5.7  ±  2.2   b   7.7  ±  3.5   b    

14.6  ±  5.6   c   18.7  ±  8.6   c    

Total O 2  evolution 51.4  ±  4.3   b   26.9  ±  4.7   b    

130.3  ±  11.0   c   65.4  ±  11.4   c    

    a    Anabaena  sp. strains were grown photoautotrophically in BG-11 medium 
to mid-log phase, and fi laments were washed twice and resuspended to 
10 µg ml  − 1  Chl  a .   
   b   Values are means of two independent determinations  ±  SD, expressed as 
µmol O 2  mg Chl  a   − 1  h  − 1 .   
   c   Values are means of two independent determinations  ±  SD, expressed as 
µmol O 2  ml PCV  − 1  h  − 1 .  

 Table 2      Pigments and protein contents of  Anabaena  sp. strains PCC 7120 and AG2770FurA at different stages of growth  

 Pigment/proteins   a     Exponential phase   Stationary phase 

PCC 7120 AG2770FurA PCC 7120 AG2770FurA 

Chl  a 1.42  ±  0.25 2.46  ±  0.15 3.31  ±  0.42 3.74  ±  0.23 

Carotenoids 0.19  ±  0.03 0.31  ±  0.02 0.58  ±  0.06 0.61  ±  0.01 

Phycobiliproteins 6.15  ±  0.46 7.75  ±  0.35 22.5  ±  0.8 21.5  ±  0.6 

Total soluble proteins 59.5  ±  3.2 65  ±  2.5 120  ±  6.8 125  ±  5.1 

    a   Values are means of two independent determinations  ±  SD, expressed as µg µl  − 1  PCV.  

the most abundant thiol peroxidases, namely GCT1 ( alr3183 ) 
and GCT3 ( all2375 ) ( Cha et al. 2007 ), were reduced in the  furA -
overexpressing strain, while transcripts of glutathione reductase 
were increased. Interestingly, the transcriptional patterns of 
SODs observed in the  furA -overexpressing strain resembled 
those previously described in wild-type strains of  Pseudomonas 

aeruginosa  ( Hassett et al. 1996 ) and  E. coli  ( Dubrac and Touati 
2000 ) after iron deprivation. While transcripts of manganese-
containing SOD ( sodA ) appeared increased, the amounts of 
the iron-containing SOD ( sodB ) were reduced. Additionally, 
some of the iron-responsive genes described in  Anabaena  sp. 
seemed to be up-regulated in the  furA -overexpressing strain 
AG2770FurA, such as those encoding the siderophore outer 
membrane transporter SchT ( Nicolaisen et al. 2008 ) and the 
IsiA protein. 

 The overexpression of FurA also led to an increase in the 
transcription of some genes involved in control of cellular 
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morphology, such as those for the bacterial actins MreB and 
MreC ( Hu et al. 2007 ). Conversely, a second ferric uptake regu-
lator described in  Anabaena , FurB, with a possible role in oxida-
tive stress protection ( López-Gomollón et al. 2009 ), seemed to 
be down-regulated, while transcript levels of FurC decreased 
only slightly in the AG2770FurA strain.   

 Identifi cation of novel FurA direct target genes 
 To determine whether the expression of genes previously 
analyzed by RT–PCR was directly regulated by FurA, we 
investigated the ability of FurA to bind in vitro the promoter 
regions of such genes by using EMSAs. To confi rm the specifi c-
ity of bindings, all assays included the promoter region of  nifJ  
as non-specifi c competitor DNA, while binding of FurA to 
the promoter region of its own gene was used as a positive 
control. All gene promoters used in the analyses consisted of 
a 300–400 bp DNA fragment upstream of ATG. We assumed 
that genes giving a positive result in both RT–PCR analyses and 
EMSAs were direct targets of FurA. 

 Despite the high variation in transcript levels of photosynthe-
sis genes under a FurA overexpression background, the EMSAs 
showed only a clear binding of FurA to the promoter region 
of  psbA , a PSII gene coding for the reaction center protein D1 
( Fig. 7B      ). Interestingly,  psbA  has been previously shown to 
respond to iron deprivation by increasing its transcriptional level 
( Singh and Sherman 2000 ), but this is the fi rst evidence, to the 
best of our knowledge, of a direct regulation by a Fur. None of 
the other analyzed components of both photosystems showed 
specifi c binding to FurA according to EMSA (data not shown). 
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 Fig. 5      Tolerance to oxidative stress induced by exogenous hydrogen peroxide exposure. (A)  Anabaena  sp. strains were grown in BG-11 medium 
to late log phase, washed and adjusted to the same cell density. Cell suspensions were exposed in duplicate to increasing concentrations of 
H 2 O 2  up to 4 mM for 48 h in the dark, and results were documented by photography. (B) Estimation of chlorosis by reading the microtiter plate 
absorbance at 620 nm. Each experiment was done twice with similar results.  

 Table 3      Intracellular ROS levels of late-log growing cells of  Anabaena  
sp. strains PCC 7120 and AG2770FurA  

 Strain   ROS level 

CM-H 2 DCFDA fl uorescence   a   Ferrithiocyanate   b    

PCC 7120 20.2  ±  0.4 0.073  ±  0.008 

AG2770FurA 15.1  ±  0.1 0.055  ±  0.004 

Control   c   98.6  ±  0.6 0.322  ±  0.053 

    a   Values are means of two independent determinations  ±  SD, presented in 
arbitrary units.   
   b   Values are means of two independent determinations  ±  SD, expressed as µmol 
H 2 O 2  mg FW  − 1 .   
   c   Wild-type PCC 7120 strain treated with 1 mM H 2 O 2  for 30 min.  

 Similarly, no apparent direct regulation by FurA of antioxi-
dant enzyme expression was seen according to binding assays. 
Neither promoters of both SODs nor those of GCT1 and GCT3 
thiol-peroxidases showed specifi c affi nity of FurA. A similar 
result was also observed with the glutathione reductase 
promoter (data not shown). 

 It has been previously shown that the binding affi nity of 
FurA for its target promoters is greatly affected by the redox 
status of the protein and the presence of divalent metal ions 
( Hernández et al. 2006b ). Thus, the optimal binding conditions 
have been observed in the presence of both dithiothreitol 
(DTT) and Mn 2 +  , which are routinely used in the FurA EMSA 
experiments. Taking into account the tight connection between 
iron homeostasis and oxidative stress defenses, as well as previ-
ous reports of Fur direct regulation of SOD gene transcription 
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in other bacteria ( Ernst et al. 2005 ), we further characterized 
the effect of divalent metal ion and redox conditions on the 
DNA-binding of FurA to SOD promoters, in order to determine 
whether pre-established binding conditions affected the affi n-
ity of FurA for these putative targets. Neither the absence of 
Mn 2 +   ( + EDTA) nor non-reducing conditions improved the 
affi nity of FurA for SOD promoters (data not shown). 

 As expected, the EMSA analysis showed that FurA bound 
with high affi nity to the promoter region of  schT  ( Fig. 7C ), 
a gene encoding a membrane transporter of the siderophore 
schizokinen ( Nicolaisen et al. 2008 ). Likewise, the  mreBCD  
operon, encoding the bacterial actins MreB, MreC and MreD 
( Hu et al. 2007 ), seemed also to be directly regulated by FurA 
according to the binding assays ( Fig. 7D ). In agreement with 

the EMSA results, computational analysis of the promoter 
regions of those targets allowed the identifi cation of potential 
AT-rich iron boxes ( Supplementary Fig. S1 ). 

 Overall, the combination of RT–PCR analyses and EMSAs 
led us to identify three novel FurA direct targets: the photosyn-
thesis gene  psbA , the iron metabolism gene  schT  and the mor-
phology-related operon  mreBCD .   

 Metal co-repressor and reducing conditions 
are critical for the affi nity of FurA for direct 
target genes 
 The overexpression of FurA showed two different effects on the 
transcriptional pattern of direct target genes. While most of 
those targets seemed to be up-regulated, at least one of them, 
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 Fig. 6      Semi-quantitative RT–PCR analysis of the expression of several genes involved in a variety of physiological processes such as photosynthesis, 
oxidative stress defense, cellular morphology and iron stress response in wild-type strain PCC 7120 (WT) and the  furA -overexpressing strain 
AG2770FurA (FurA + ). Total RNA was isolated from cells grown in standard BG-11 medium during the exponential phase of growth. The 
housekeeping gene  rnpB  was used as control. Determinations for each gene were performed in the exponential phase of PCR. Experiments were 
repeated at least twice with independent RNA extractions, and the relevant portions of a representative gel are shown.  
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 Fig. 7      Electrophoretic mobility shift assays showing the ability of FurA to bind in vitro the promoter regions of target genes  psbA  (B),  schT  (C) and 
 mreBCD  (D). Binding of FurA to its own promoter (A) was included as a positive control. DNA fragments free or mixed with increasing 
concentrations of recombinant FurA protein were separated by 4 %  PAGE. In gels, the protein concentration (indicated in nM) increases from left 
to right. The promoter region of the  nifJ  gene was used a as non-specifi c competitor DNA in all assays.  
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 furB , decreased its transcript level. In order to determine 
whether these different effects were a consequence of differ-
ences in the mechanism of regulation, we further analyzed the 
impact of several binding conditions (by removing Mn 2 +   and/or 
DTT) on the affi nity of FurA for the promoters of targets 
that had shown different transcriptional response in RT–PCR 
analyses. Notably, the affi nity of FurA for all the target promot-
ers analyzed was markedly affected in the absence of Mn 2 +   
(and addition of EDTA) and/or DTT ( Fig. 8      ). The results dem-
onstrated that the presence of a metal co-repressor and reduc-
ing conditions are critical in the function of FurA, confi rming 
previously obtained evidences ( Hernández et al. 2006b ). Thus, 
differences in the transcriptional patterns of target genes in 
a FurA overexpression background might refl ect a coordinated 
action of more than one transcriptional regulator, rather than 
differences in the mechanism of regulation of FurA on its direct 
target genes.    

 Discussion 

 Although numerous studies have revealed insights into the 
structure, mechanism of action and functions of Fur proteins 

in heterotrophic bacteria ( Escolar et al. 1999 ,  Hantke 2001 , 
 Baichoo et al. 2002 ,  Andrews et al. 2003 ,  McHugh et al. 2003 , 
 Danielli et al. 2006 ,  Lee and Helmann 2007 ,  Gao et al. 2008 ), 
comparatively little is known about the role of this family of 
proteins in cyanobacteria. In the present study, we have con-
structed a strain of  Anabaena  sp. that overexpresses active 
FurA by using a shuttle plasmid with the copper-responsive 
 petE  promoter fused to a  furA  gene copy. Overexpression of 
FurA induced changes in the transcriptional pattern of a variety 
of genes, leading to alterations in photoautotrophic growth, 
fi lament integrity, cell morphology, ultrastructure, photosyn-
thetic function and defense against oxidative stress. Although 
some of the effects observed in the FurA overexpression pheno-
type could result from an aberrant response unrelated to the 
normal function of the protein, the overexpression approach 
led us to identify novel direct targets of this apparently essential 
transcriptional regulator by combining the analysis of the phe-
notypic changes with both transcriptional profi le variations 
and FurA–DNA interactions. 

 Perhaps the most evident effects of the overexpression of 
FurA on the  Anabaena  phenotype were the slowing down of 
photoautotrophic growth and the altered morphology of cells. 

A B C

PnifJ

PnifJ

D E

1   2 3 4     5 1   2 3 4 5 1   2 3 4 5

1   2 3 4     5 1 2 3 4 5

 Fig. 8      Impact of a metal co-repressor and reducing conditions on the in vitro affi nity of FurA for target genes  psbA  (A),  schT  (B),  mreBCD  (C),  furB  
(D) and  isiA  (E). DNA fragments free (line 1) or mixed with recombinant FurA protein at a concentration of 500 nM (lines 2–5) in the presence of 
Mn 2 +   and DTT (2), EDTA and DTT (3), Mn 2 +   without DTT (4) and EDTA without DTT (5) were separated by 4 %  PAGE. The promoter region of 
the  nifJ  gene was used as a non-specifi c competitor DNA in all assays.  
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These effects appeared to be directly associated with the over-
expression of the regulator, since the wild-type  Anabaena  sp. 
PCC 7120 and the  Anabaena  sp. strain harboring the empty 
vector pAM2770 showed identical phenotypes (data not 
shown). 

 Measurement of oxygen evolution of the strain AG2770FurA 
indicated a strong effect on the photosynthetic activity, while 
RT–PCR analyses revealed different effects of FurA overexpres-
sion on the transcriptional pattern of several genes involved in 
photosynthesis. At least one of those genes,  psbA , encoding 
the PSII reaction center protein D1, was directly regulated by 
FurA according to EMSA. Although only a few genes were ana-
lyzed, at least one ( psbZ ) seemed to be down-regulated with 
the overexpression of FurA. The PsbZ subunit of PSII has been 
described in  Synechocystis  sp. as a modulator of the electron 
fl ow through the photosynthetic electron transfer chain 
( Bishop et al. 2007 ). Deletion mutants of the  pbsZ  gene showed 
a retarded photoautotrophic growth compared with the wild 
type. Since expression of photosynthesis genes is infl uenced 
by multiple factors and modulated by several transcriptional 
regulators ( Li and Sherman 2000 ,  Fujimori et al. 2005 ,  Seino 
et al. 2009 ), our results could suggest not only a direct infl uence 
of FurA on photosynthesis regulation, but also an indirect 
effect, perhaps as a result of a coordinated action of different 
regulators, as observed with FurA and NtcA in nitrogen metab-
olism ( López-Gomollón et al. 2007 ). The depletion in photosyn-
thetic function undoubtedly had additional consequences on 
cellular physiology; many of these effects could be pleiotropic 
effects of FurA overexpression. The slightly increased amount 
of photosynthetic pigments and/or the rearrangement of 
thylakoid membranes could be adaptive responses of the 
microorganism in an attempt to improve the photosynthesis 
performance. 

 Our experiments led us to identify another direct target of 
FurA, the operon  mreBCD.  In particular, the bacterial actin 
MreB has been shown to play a critical role in determination 
of cell shape of  Anabaena  sp. PCC 7120 ( Hu et al. 2007 ). 
Either  mreB  deletion or  mreBCD -inducible overexpression 
caused drastic morphological changes in  Anabaena  cells. The 
increased level of  mreB / mreC  transcripts observed in a FurA 
overexpression background could explain the morphological 
alterations seen in the strain AG2770FurA. Likewise, although 
the increased fragility of fi laments in the  furA -overexpressing 
strain could be a result of different factors, the overexpression 
of FurA could directly or indirectly affect the expression of 
genes associated with fi lament integrity ( Bauer et al. 1995 , 
 Nayar et al. 2007 ). 

 The intimate relationship between iron metabolism and 
oxidative stress has been extensively recognized in bacteria 
( Zheng et al. 1999 ,  Andrews et al. 2003 ,  Latifi  et al. 2005 ). 
In  E. coli , the expression of Fur is modulated by oxidative 
stress response regulators, and Fur directly or indirectly regu-
lates the expression of antioxidant enzymes.  Anabaena  sp. 
PCC 7120 has a quorum of oxidative stress defenses, including 
Mn- and Fe-containing SODs ( Li et al. 2002 ), peroxidases 

( Cha et al. 2007 ), glutathione reductase ( Jiang et al. 1995 ) and 
several non-characterized CATs. In our experiments, the over-
expression of FurA decreased both CAT and SOD activities, 
and had different effects of the transcriptional pattern of 
SODs, thiol-peroxidases and glutathione reductase. However, 
the results suggest that FurA does not directly regulate the 
expression of these antioxidant enzymes according to EMSA 
analyses. This fact could refl ect a possible regulatory cascade 
or an indirect pathway of regulation of antioxidant enzyme 
gene expression by FurA, as previously described in other 
bacteria ( Masse and Gottesman 2002 ). Likewise, the existence 
of two additional Fur homologs in  Anabaena  sp. ( Hernández 
et al. 2004 ) makes it possible that there are other Fur-mediated 
regulation pathways, as described in microorganisms with 
more than one Fur protein ( Horsburgh et al. 2001 ). 

 In cyanobacteria, siderophore-mediated iron uptake is 
thought to be a contributing factor in their ability to dominate 
eukaryotic algae.  Anabaena  sp. PCC 7120 synthesizes schizoki-
nen as its major siderophore, although it also shows iron 
uptake from aerobactin and ferrioxamine B ( Goldman et al. 
1983 ). Recently, Nicolaisen and co-workers described an outer 
membrane transporter for schizokinen in  Anabaena , named 
SchT, whose expression is induced under iron-limited condi-
tions ( Nicolaisen et al. 2008 ). Our results indicate that  schT  is 
a direct target of FurA. 

 Unexpectedly, most of the novel and previously described 
FurA direct targets seemed to be up-regulated rather than 
down-regulated in a transcriptional repressor overexpression 
background, including those recognized as iron-responsive 
genes. Additionally, the transcriptional patterns observed in 
SOD genes resembles those described in wild-type strains of 
 P. aeruginosa  ( Hassett et al. 1996 ) and  E. coli  ( Dubrac and 
Touati 2000 ) after iron deprivation. It has been previously 
hypothesized that Fur proteins might act as ferrous ion ‘buffers’ 
in the cell, and consequently have a dual action during redox 
stress, regulating the iron uptake and iron storage systems, 
but also themselves increasing the Fe 2 +  -binding capacity of 
the cytosol ( Andrews et al. 2003 ). Since metal co-repressors 
seem to be essential for FurA DNA binding, we speculate 
that the high level of FurA overexpression achieved by the 
strain AG2770FurA using the P petE -pAM2770 system strongly 
reduces the free iron pool in the cytosol and leads to the release 
of the co-repressor from some FurA–Fe 2 +   complexes, allowing 
the transcription of target genes. A similar phenomenon has 
been observed in  Saccharomyces cerevisiae  when ferritins 
were overexpressed under iron-replete conditions ( Kim et al. 
2007 ). 

 Our data provide evidence that in  Anabaena  sp. PCC 7120, 
FurA acts directly or indirectly on the expression of genes 
involved in a variety of physiological processes, including 
iron metabolism, cellular morphology, photosynthesis and 
defense against oxidative stress. Taken together, the results 
strongly support the hypothesis that, as other Fur homologs 
described in heterotrophic bacteria, FurA is a global transcrip-
tional regulator in cyanobacteria.   
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 Materials and Methods  

 Strains and culture conditions 
 Bacterial strains and plasmids used in this study are described 
in  Table 4  . Wild-type  Anabaena  sp. strain PCC 7120 and its 
 furA -overexpressing derivate strain AG2770FurA were grown 
photoautotrophically at 30 ° C in BG-11 medium ( Rippka et al. 
1979 ), supplemented with neomycin (Nm) 50 µg ml  − 1  in the 
case of strain AG2770FurA. For most experiments the strains 
were cultured in 250 ml Erlenmeyer fl asks containing 60 ml of 
culture medium. The cultures were maintained in an incubator 
shaker at 120 r.p.m. under continuous illumination with white 
light at 20 µE m  − 2  s  − 1 . 

 For overexpression phenotype screening after conjugation, 
clones of exconjugant  Anabaena  sp. resistant to Nm were 
grown photoautotrophically in BG-11 medium supplemented 
with 50 µg ml  − 1  Nm to an optical density of 0.3 at 750 nm, 
then a fi lter-sterilized solution of CuSO 4  was added to BG-11 
medium to a fi nal concentration of 0.4 µM, in order to 
induce the  petE  promoter ( Buikema and Haselkorn 2001 ), 
and cultures were further incubated for 72 h under standard 
growth conditions. 

  Escherichia coli  strains carrying plasmids were grown in 
Luria broth supplemented, as appropriate, with 50 µg ml  − 1  
kanamycin (Km), 50 µg ml  − 1  ampicillin (Amp) and/or 34 µg ml  − 1  
chloramphenicol (Cm).   

 Nucleic acid manipulations 
 Total DNA and RNA from  Anabaena  sp. strains growing expo-
nentially were isolated as described previously ( Olmedo-Verd 
et al. 2005 ). Plasmid preparations were performed using the 
GenElute  ™   Plasmid Miniprep Kit (Sigma). DNA purifi cation 
of PCR products was performed using the GFX  ™   PCR DNA 
and the Gel Band Purifi cation Kit (GE Healthcare). Standard 
protocols were used for cloning,  E. coli  transformation and 
PCR ( Sambrook and Russell 2001 ). 

 Plasmid pAM2770FurA, which contains a copy of the  furA  
gene under the control of the  Anabaena  sp. PCC 7120 copper-
inducible  petE  (plastocyanin) promoter, was constructed from 
the shuttle vector pAM2770 ( Lee et al. 2003 ), a kind gift from 
Dr. James W. Golden (Texas A&M University, College Station, 
TX, USA). The entire coding region of  furA  was amplifi ed by 
PCR using the primers 2770FurA_up and FurA_dw ( Table 5 ), 
and genomic DNA from strain PCC 7120 as template. The PCR 
product was cloned into vector pGEM-T (Promega), digested 
with  Nde I and  Bam HI, and cloned into the same restriction 
sites of vector pAM2770. The construct was partially sequenced 
to ensure that no modifi cations in the nucleotide sequence 
occurred during amplifi cation and cloning.   

 Construction of a  furA -overexpressing strain 
 Plasmid pAM2770FurA was transferred to  Anabaena  sp. PCC 
7120 by conjugation according to a previously described 

 Table 4      Strains and plasmids used in this study  

 Strain or plasmid Characteristics Source or reference 

Strains  

 E. coli  

DH5 α F  −    φ 80 lac Z ∆ M15  ∆ ( lac ZYA- arg F)U169  recA1 endA1 hsdR17 (rK  −  , mK  +  )  phoA supE44 thi-1 
gyrA96 relA1   λ   −  , for cloning and maintaining plasmids

Invitrogen 

ED8654 F  −    e14   −   ( mcr A  −   ) rec A 56  lac-3 o lac Y1  gal K2  gal T22  gln V44  sup F58  met B1  hsd R514 (rK  −   mK  +  ) 
 trp R55, for triparental conjugation

Institute of Plant Biochemistry and 
Photosynthesis, Seville, Spain 

CPB1893  mcr A  −    mcr B  −   M .Eco K  +   R. Eco K  −  , for triparental conjugation Institute of Plant Biochemistry and 
Photosynthesis, Seville, Spain 

BL21(DE3)  ompT hsdS B   (r B   −   m B   −  )  gal dcm  (DE3), for expression and purifi cation of recombinant FurA EMD Biosciences 

 Anabaena  sp.  

PCC 7120 Wild type Pasteur Institute, Paris, France 

AG2770FurA PCC 7120 harboring pAM2770FurA, overexpresses FurA This study 

Plasmids  

pGEM-T Cloning vector, Amp r Promega 

pAM2770 Shuttle vector, Km r /Nm r  Lee et al. (2003)  

pAM2770FurA pAM2770 containing  furA  expressed from the  petE  promoter This study 

pRL443 Conjugal plasmid; Amp r  Tc r ; Km s  derivative of RP-4  Elhai et al. (1997)  

pRL623 Conjugation helper plasmid; Cm r ; Mob ColK , M ·  AvaI I, M ·  Eco 47II, M ·  Eco T221  Elhai et al. (1997)  

pET28a Expression vector, Km r EMD Biosciences 
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method ( Elhai et al. 1997 ). Triparental mating was carried out 
using the  E. coli  conjugal donor strain ED8654, which contains 
the plasmid pRL443, and the  E. coli  conjugal helper strain 
CPB1893 carrying the plasmid pRL623. Clones resistant to 
Nm were screened by Western blotting in order to evaluate 
the copper-inducible overexpression of FurA. Finally, the 
clone selected as the  furA -overexpressing strain was named 
AG2770FurA.   

 SDS–PAGE and Western blotting 
 Filaments of copper-induced exconjugants from 50 ml cultures 
were collected by centrifugation, washed with 50 mM Tris–HCl 
buffer (pH 8.0) and sonicated in an ice–water bath by fi ve 30 s 
bursts with 30 s cooling intervals. The resulting crude extracts 
were centrifuged at 12,000  ×   g  for 5 min at 4 ° C to remove cell 
debris, and the protein concentration was determined using 
the BCA  ™   Protein Assay kit (Thermo Fisher Scientifi c). For each 
sample, 30 µg of total protein was loaded and separated by 
SDS–PAGE with a 17 %  polyacrylamide gel, and transferred to 
a polyvinylidine fl uoride membrane (Millipore). Rabbit poly-
clonal antibodies raised against  Anabaena  sp. FurA recombi-
nant protein were used ( Hernández et al. 2002 ), and the 
blot was visualized with an Universal Hood Image Analyzer 
(Bio-Rad).   

 Measurements of growth and pigments 
 Growth of wild-type  Anabaena  sp. strain PCC 7120 and its 
derivative strain AG2770FurA was measured spectrophoto-
metrically using a Cary 100 Bio UV-Visible spectrophotometer 
(Varian). The optical density of the cell suspensions was 
recorded at 750 nm every 72 h in triplicate with independent 
cultures. The specifi c growth rate and doubling time were 
calculated as previously described ( Stein 1973 ). In order to 
confi rm the spectrophotometric readings, the PCV was also 
determined at certain times during incubation using 5 ml 
graduated centrifuge tubes of 60 µl capacity. Readings of the 
PCV were taken after centrifugation for 5 min at 2,000  ×   g  using 
a swing-bucket rotor, and expressed as microliters of fresh cells 
per milliliter of culture. 

 Cultures were sampled at exponential and stationary 
phases of growth for measurement of pigments and total 
protein. Chl  a  ( Nicolaisen et al. 2008 ), carotenoid ( Davies 1976 ) 
and phycobiliprotein ( Glazer 1976 ) contents were determined 
according to previously described methods. Total soluble pro-
tein present in cell extracts after sonication was determined 
using the BCA  ™   Protein Assay kit (Thermo Fisher Scientifi c). 
Pigments and protein contents were expressed in micrograms 
per microliter of PCV.   

 Microscopy 
 Bright-fi eld and fl uorescence microscopic examinations of 
 Anabaena  sp. fi laments were carried out with a Nikon Eclipse 
50i Epi-fl uorescence microscope. Micrographs were taken 
with a Nikon DXM1200F camera coupled to the microscope. 
The images were processed with Adobe Photoshop version 6.0. 

 For electron microscopy, fi laments were fi xed in 2.5 %  (v/v) 
glutaraldehyde prepared in 66 mM phosphate buffer for 1 h 
at room temperature. After fi xation, the samples were washed 
in phosphate buffer and then fi xed again in 2 %  (w/v) osmium 
tetroxide for 1 h at room temperature. Dehydration was per-
formed in a series of cold ethanol dilutions allowed to warm 
to room temperature at the higher concentrations, followed by 
infi ltration with Spurr resin. Sections were cut on a Reichert 
Om U2 ultramicrotome, collected on nickel grids, stained 
with uranyl acetate and examined with a TECNAI G200 trans-
mission electron microscope (FEI) operated at 120 V. The 
images were processed with Adobe Photoshop version 6.0.   

 Photosynthetic oxygen evolution 
 Oxygen evolution of exponentially growing cells was measured 
at 25 ° C with a Clark-type oxygen electrode model Chlorolab 2 
(Hansatech). Cell suspensions (10 µg ml  − 1  Chl  a ) were illuminated 
with white light at saturating intensity (400 µE m  − 2  s  − 1 ). Dark res-
piration was estimated from O 2  uptake by cells incubated in the 
dark. Total oxygen evolution was calculated as the sum of the 
apparent oxygen evolution in the light and dark respiration.   

 Antioxidant enzymes assays 
 Cyanobacterial cells were grown to late log phase in 50 ml of 
standard BG-11 medium, collected by centrifugation, and soni-
cated in 50 mM potassium phosphate buffer (pH 7). Superna-
tant obtained after centrifugation of the crude extracts was 
used for enzyme assays. Protein concentration was determined 
using the BCA  ™   Protein Assay kit (Thermo Fisher Scientifi c). 
CAT activity was determined according to the method of 
 Beers and Sizer (1952) . Dissociation of H 2 O 2  was followed 
spectrophotometrically at 240 nm in a 3 ml reaction mixture 
containing 20 mM H 2 O 2  and crude extract (600 µg ml  − 1  total 
proteins) at 25 ° C. One unit of enzyme was defi ned as the 
quantity that catalyzes the decomposition of 1 µmol of H 2 O 2  in 
1 min. SOD activity was determined according to the method 
of  Winterbourn et al. (1975) , based on the ability of SOD to 
inhibit the photochemical reduction of nitro-blue tetrazolium 
(NBT) by superoxide in a 3 ml reaction mixture containing 
2 µM ribofl avin, 50 µM NBT, 0.06 M EDTA, 20 µM sodium cya-
nide and crude extract (600 µg ml  − 1  total proteins). One unit 
of enzyme was defi ned as the amount causing half maximal 
inhibition of NBT reduction. Activities of enzymes were 
expressed as units per milligram of protein.   

 Tolerance to oxidative stress induced by H 2 O 2  
 Tolerance of  Anabaena  sp. cells to the oxidative stress caused 
by H 2 O 2  exposure was measured according to  Shcolnick et al. 
(2009)  with slight modifi cations. Basically, the strains were 
grown to late log phase in standard BG-11 medium, washed, 
and adjusted to an optical density at 750 nm of 1.0 in BG-11 
medium. Aliquots of 200 µl of adjusted cultures were put on 
a microtiter plate and incubated for 48 h in the presence of 
0–4 mM H 2 O 2  in darkness. The results were documented 
by photography, and chlorosis was estimated by reading the 
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absorbance at 620 nm using a Multiskan EX microplate pho-
tometer (Thermo Fisher Scientifi c).   

 ROS determination 
 Levels of intracellular ROS in  Anabaena  sp. strains were quanti-
fi ed according to  Latifi  et al. (2005)  by using the fl uorescent 
probe CM-H 2 DCFDA, which detects H 2 O 2 , hydroxyl radicals 
and peroxynitrite anions. Cyanobacterial cells were grown to 
late log phase in 50 ml of standard BG-11 medium, washed 
twice with 10 mM phosphate buffer and incubated with 25 µM 
CM-H 2 DCFDA (Invitrogen) for 5 min at room temperature in 
darkness. Fluorescence was measured using an Aminco Bowman 
Series 2 spectrofl uorometer (Thermo Fisher Scientifi c), with 
excitation and emission settings of 488 nm and 530 nm, respec-
tively. Cells of the wild-type strain treated with 1 mM H 2 O 2  for 
30 min were used as the fl uorescent-positive control. 

 Additionally, the amount of intracellular H 2 O 2  was specifi -
cally determined by the ferrithiocyanate method ( Thurman 
et al. 1972 ). Briefl y, 95–100 mg of fresh cells were homogenized 
with 5 %  trichloroacetic acid (TCA), centrifugated at 12,000  ×   g  
for 5 min at 4 ° C, and the supernatant obtained was used for 
peroxide estimation. Reaction mixtures contained 800 µl of 
crude extract, 160 µl of 50 %  TCA, 160 µl of ferrous ammonium 
sulfate and 80 µl of potassium thiocyanate. The absorbance of 
the ferrithiocyanate complex was read at 480 nm using a Cary 
100 Bio UV-Visible spectrophotometer (Varian), and compared 
with H 2 O 2  standard. Peroxide content was expressed as micro-
moles per milligram of FW. Cells of the wild-type strain treated 
with 1 mM H 2 O 2  for 30 min were used as the control.   

 Semi-quantitative RT–PCR 
 Total RNA (1 µg) was heated at 85 ° C for 10 min and used as 
template for the fi rst-strand cDNA synthesis. Residual DNA in 
RNA preparations was eliminated by digestion with RNase-free 
DNase I (Roche, Basel, Switzerland). The absence of DNA was 
checked by PCR. Reverse transcription was carried out using 
SuperScript retrotranscriptase (Invitrogen) in a 20 µl reaction 
volume containing 150 ng of random primers (Invitrogen), 
1 mM deoxyribonucleotide triphosphate mix (GE Healthcare) 
and 10 mM DTT. The sequences of the specifi c primers used for 
each RT–PCR analysis are given in  Table 5  . The housekeeping 
gene  rnpB  ( Vioque 1992 ) was used as an internal control to 
compensate for variations in the input of RNA amounts and 
normalize the results. The exponential phase of PCR for each 
gene was determined by measuring the amount of PCR prod-
uct at different numbers of cycles. For the fi nal results, 20–23 
cycles were used for the analysis at the early exponential phase 
of PCR in all genes tested. The PCR products were resolved by 
electrophoresis in 1 %  agarose gel, stained with ethidium bromide 
and analyzed using a Gel Doc 2000 Image Analyzer (Bio-Rad).   

 EMSAs 
 Recombinant  Anabaena  sp. FurA protein was produced in 
 E. coli  BL21(DE3) using the expression vector pET28a (EMD 
Biosciences), and purifi ed according to a previously described 

 Table 5      List of oligonucleotides used in this study  

 Primer Sequence (5 ′  to 3 ′ ) Purpose 

2770FurA_up CATATGACTGTCTACACAAATACTTCG Cloning of 
 furA  into 
pAM2770 

FurA_dw GGATCCCTAAAGTGGCATGAGCG Cloning of 
 furA  into 
pAM2770 

rnpB_up AGGGAGAGAGTAGGCGTTG RT–PCR 

rnpB_dw AAAAGAGGAGAGAGTTGGTGG RT–PCR 

FurA_up CGGGATCCATGACTGTCTACACAAATAC RT–PCR 

FurA-5last_dw ACGCGTCGACCTAACGTTGGCACTTGGG RT–PCR 

psaA_up TGGCAGTTGTGACAATTTGG RT–PCR 

psaA_dw GGGCGAACAATACACCTTTC RT–PCR 

psaB_up CTTCGGTCACCTGGCAATC RT–PCR 

psaB_dw GCCAGGGCCAATTGTTAAG RT–PCR 

psaL_up ATGGCGCAAGCAGTAGACG RT–PCR 

psaL_dw AGTAAGCGACTACTGCACCACC RT–PCR 

psbA_up GCTAATTTATGGCATAGATTCGG RT–PCR 

psbA_dw GAAAGAAATGCAAAGAACGGG RT–PCR 

psbB_up GTAGTTCTGAATGACCCAGGGC RT–PCR 

psbB_dw CGGCGTGACCAAAGGTAAAC RT–PCR 

psbZ_up TTATGAAGCGCTATTGGTCACG RT–PCR 

psbZ_dw ACCCCGTTTTAGTGCTGATTC RT–PCR 

sodA_up CTCTGTGGCAACGGTTTATTG RT–PCR 

sodA_dw CTTTGCCGTGAAGCTTGG RT–PCR 

sodB_up CCACTACCCTACGACTTTAATGC RT–PCR 

sodB_dw AAGCTGGGCGAGCATTTC RT–PCR 

GCT1_up ATGCCAGTTAAAGTTGG RT–PCR 

GCT1_dw CTATTTACTCGCCAACTG RT–PCR 

GCT3_up ATGCCTCTAGCGGTTGGTAC RT–PCR 

GCT3_dw TTACAGTCCCAAAGCCGC RT–PCR 

gor_up GGCTGCTTCTAAACGAGCTGC RT–PCR 

gor_dw GGAGGGATGAATGCCAACG RT–PCR 

mreB_up GTGGGGCTTTTTAGGAACTTTC RT–PCR 

mreB_dw CTACATATTTCGAGATCGTCCG RT–PCR 

mreC_up ATGGTTACTGTACGTCGTTGGTG RT–PCR 

mreC_dw CTAGTTGGACTTTTGTTGCTGTG RT–PCR 

alr0397_up CATTAATCAGCCATCCTGGC RT–PCR 

alr0397_dw GTTTCGCGGAGATAAAATGC RT–PCR 

FurB_up ATGAGAGCCATACGCAC RT–PCR 

FurB_dw CTAAATTTCACTCGCGTG RT–PCR 

FurC_up ATGCAGCAACAGGCAATATC RT–PCR 

FurC_dw GAGGATGCCGATATCCATAG RT–PCR 

IsiA_up CTGCTCTGACAACCCTCTGG RT–PCR 

IsiA_dw CAGCTAACTTGACTGTATCGGC RT–PCR 

PnifJ_up GCCTACTCTGCGAGTTCTCCG EMSA 

PnifJ_dw GGCCTGTGAGAGTTGCTGCAC EMSA 

(continued)
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method ( Hernández et al. 2002 ). The promoter regions of each 
gene of interest were obtained by PCR using the primers listed 
in  Table 5 . EMSAs were performed as described previously 
( Hernández et al. 2006b ). Briefl y, 100–120 ng of each DNA frag-
ment were mixed with recombinant FurA protein at a concen-
tration of 150, 300, 500 and 700 nM in a 20 µl reaction volume 
containing 10 mM bis-Tris (pH 7.5), 40 mM KCl, 100 µg ml  − 1  
bovine serum albumin, 1 mM DTT, 100 µM MnCl 2  and 5 %  (v/v) 
glycerol. In some experiments, EDTA was added to a fi nal 
concentration of 200 µM. To insure the specifi city of EMSA, the 
promoter region of the  Anabaena  sp.  nifJ  ( alr1911 ) gene was 
included as non-specifi c competitor DNA in all assays ( López-
Gomollón et al. 2007 ). Binding assay of the promoter region of 
the gene  furA  was included as the EMSA positive control 
( Hernández et al. 2004 ,  Hernández et al. 2006b ). Mixtures 
were incubated at room temperature for 20 min and subse-
quently separated on a 4 %  non-denaturing polyacrylamide 
gel in running buffer (25 mM Tris, 190 mM glycine) at 90 V. The 
gel was stained with SYBR ®  Safe DNA gel stain (Invitrogen) 
and processed with a Gel Doc 2000 Image Analyzer (Bio-Rad).    
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  Supplementary data  are available at PCP online.   
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