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Abstract The DNA-binding protein from stationary phase
(Dps) protein family plays an important role in protecting micro-
organisms from oxidative and nutritional stresses. In silico anal-
ysis of the promoter region of alr3808, a dpsA homologue from
the cyanobacterium Nostoc sp. PCC7120 shows putative iron-
boxes with high homology with those recognized by FurA (ferric
uptake regulator). Evidence for the modulation of dpsA by FurA
was obtained using in vitro and in vivo approaches. SELEX
linked to PCR was used to identify PdpsA as a FurA target. Con-
currently, EMSA assays showed high affinity of FurA for the
dpsA promoter region. DpsA expression analysis in an inser-
tional mutant of the alr1690-afurA message (that exhibited an
increased expression of FurA) showed a reduced synthesis of
DpsA. These studies suggest that FurA plays a significant role
in the regulation of the DpsA.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Prokaryotes have developed efficient mechanisms to adapt

rapidly and to survive a wide range of environmental condi-

tions. Some members of the DNA-binding protein from

stationary phase cells (Dps) family of proteins play an impor-

tant role in protecting cells from oxidative and nutritional

stresses. Dps are divergent members of the bacterioferritin/fer-

ritin superfamily [1], and several homologues have been identi-

fied in different bacteria, playing roles in iron storage and

DNA protection [2].

DpsA protein from the cyanobacterium Synechococcus sp.

PCC7942 is a DNA-binding hemoprotein having heme-depen-
Abbreviations: Dps, DNA-binding protein from stationary phase; Fur,
ferric uptake regulator; SELEX, systematic evolution of ligands by
exponential enrichment; EMSA, electrophoretic mobility shift assays
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dent catalytic activity [1,3] likely conferring resistance to per-

oxide damage during periods of oxidative stress and long

term nutrient starvation [3]. Peña and Bullerjahn [1] suggested

that DpsA could be playing a role related to protection against

the oxidative stress associated with oxygenic photosynthesis.

Indeed, DpsA null mutants exhibit growth inhibition under

high light and the cells were hypersensitive to paraquat and

exogenously added peroxide [4]. Expression of dps in Escheri-

chia coli is dependent on integration host factor (IHF) and the

alternative sigma factor RpoS in the stationary phase, and on

OxyR in the exponential phase [5]. Sen et al. [3] stated that

dpsA from Synechococcus sp. PCC7942 is under the control

of an alternative sigma factor reported previously in Synecho-

coccus sp. PCC7002 [6]. Because dpsA transcription increases

about 12 times under low iron conditions, it was concluded

that this protein is essential for growth under iron starvation.

However, Michel et al. [7] found a fairly high transcription un-

der regular growth conditions. Iron starvation caused a slight

increase of the dpsA message, while the protein DpsA was

clearly decreased in iron deficient conditions, suggesting a

post-translational regulation. A dpsA-mutant shows interest-

ing responses to iron deficiency in comparison with the wild-

type strain, with an altered transcriptional/translational

pattern, including a severe drop in the photosystem II activity

in the mutant compared to the wild-type [7].

Using PdpsA�lacZ reporter gene constructs, Sen et al. [3] iden-

tified a region required for metal-dependent repression which

sequence was apparently different from the site recognized by

E. coli Fur (ferric uptake regulator). For that reason, they pro-

posed that dpsA in cyanobacteria is under the control of

another class of metal-dependent repressor. The ferric uptake

regulator (Fur) is known to act as a Fe2+-dependent transcrip-

tional repressor of bacterial promoters. Fur also modulates re-

sponses to oxidative stress, and actually, the Dps homologue

mrgA from Bacillus subtilis is under negative control of the

repressor PerR [8,9], a Fur homologue responsive to oxidative

stress. In Nostoc (Anabaena) sp. PCC7120 there are three Fur

family members, FurA, FurB and FurC [10]. FurA is an essen-

tial auto-regulated protein whose in vitro activity is affected by

the presence of Mn2+ and the redox status of its cysteines [11].

FurA binds heme in the micromolar range, and this interaction

affects the in vitro ability of FurA to bind DNA [10]. Even

though results from data in the surveyed literature contained

uncertain interpretation, the tight link between iron and DpsA

clearly pointed to a Fur-regulated protein. In this work we de-

scribe evidence indicating that in Nostoc sp. PCC7120, FurA

participates in the regulation of the dpsA homologue alr3808

expression.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Strains and culture conditions
This study was carried out with the heterocyst-forming cyanobacte-

rium Nostoc sp. strain PCC 7120 and the JAH3 mutant strain, which
produces increased levels of FurA due to the disruption of the alr1690-
afurA message [12]. Nostoc sp. PCC7120 was obtained from the Pas-
teur Culture Collection [13]. Cells were photoautotrophically grown
at 30 �C in BG110C medium [13], supplemented with 0.84 g of NaH-
CO3 per litre, in the presence of 8 mM NH4Cl plus 16 mM TES [N-
tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid]–NaOH buffer
[pH 7.5] as a nitrogen source. Cultures were bubbled with a mixture
of CO2 (1% [vol/vol]) and air, and supplemented with 2 lg of strepto-
mycin and 2 lg of spectinomycin ml�1 for mutant strains. Cells were
harvested at the late exponential phase of growth (7–9 lg Chl/ml cul-
ture).

2.2. Cloning and overexpression of furA gene, and purification of the
recombinant product

FurA was cloned and overexpressed as described previously [14].
The purification of the FurA protein for binding assays was performed
according to [15].

2.3. SDS–PAGE and Western blotting
Crude extracts were prepared by sonication of Nostoc sp. PCC7120

cells followed by centrifugation to remove cell debris. Protein content
was quantified using a bicinchoninic acid protein assay reagent
(Pierce), and proteins were separated on 15% SDS–PAGE. For immu-
noblotting, proteins were electrophoretically transferred to a PVDF
membrane (0.45 lm pore size transfer membrane from Waters), as de-
scribed previously [16]. Rabbit polyclonal antibodies raised against
Nostoc FurA protein were obtained as described in [15]. DpsA anti-
bodies against the Synechococcus elongatus sp. PCC7942 protein were
a kind gift from Prof. G.S. Bullerjahn.

2.4. RNA isolation and RT-PCR analysis
RNA was isolated according to [12]. Reverse transcription-PCR

reactions were performed in a volume of 10 ll, using 1 lg RNA per
reaction. The RT reaction was performed using the Superscript II kit
(Invitrogen). rnpB transcript was used as internal control. Oligonucle-
otides dpsA-dir and dpsA-rev were used to analyze the levels of dpsA
mRNA (Table 1). The products were amplified by PCR and then ana-
lyzed by electrophoresis on a 1% agarose gel. All the assays were re-
peated in the presence of DNase-free RNase as a negative control.

2.5. Electrophoretic mobility shift assays
A 245-bp fragment from nt �2 to �247 upstream the coding se-

quence of dpsA was amplified by PCR with the oligonucleotides
PdpsA1 and PdpsA2 and was used in non-radioactive band-shift as-
says, as described previously [10]. Primers were designed according
able 1
ligodeoxyribonucleotides used in this study

Name Sequence (50–3 0) Description

1 proN ctcgcctagcaatttaacaac furA Promoter, direct
2 proC gccttgagcgaagtatttgtg furA Promoter, reverse
3 p2473-N cttacttattgcccgatccc furB Promoter, direct
4 p2473-C gcgtatggctctcatagac furB Promoter, reverse
5 p0957-N cattggtcatcggtcattaga furC Promoter, direct
6 p0957-C gcctgttgctgcatatttatg furC Promoter, reverse
7 fld-PN gtcgcactcactttcgttac isiB Promoter, direct
8 fld-PC ccgtagaataaaccaattttc isiB Promoter, reverse
9 pdpsA1 ctctactagcaaggcggagc Promoter dpsA direct
0 pdpsA2 gttctcctcgcttttgggcag Promoter dpsA reverse
1 dpsA-dir tctagctagctttcaagcac dpsA Sense strand
2 dpsA-rev ctgagccgcttggcgac dpsA Antisense strand
3 C-1 ctagggagtgactcttgacccgggcatgcgca Cyclic selection procedure
4 C-2 tgcgcatgcccgggtcaagagtcactcc Cyclic selection procedure
5 C-3 cccgggtcaagagtcactcc Linker specific primer
6 rnpB-dir aagccgggttctgttctctg rnpB Direct
T
O

#

1
1
1
1
1
1
1

17 rnpB-rev atagtgccacagaaaaa
to the sequences available in the cyanobase (http://www.kazusa.or.jp/
cyano/anabaena/). Binding assays were carried out in a final volume
of 20 ll containing 10 mM Bis–Tris, pH 7.5, 40 mM KCl, 0.1 mM
MnCl2, 1 mM DTT, 0.05 mg/ml BSA, 75–100 ng of the DNA fragment
to be tested, 75 ng of a control DNA fragment, and 5% glycerol. The
DNA fragment used as non-related control DNA was a 224 bp non-
specific competitor DNA (fourth exon of the human apoE gene). As-
says were carried out with purified FurA protein. The binding was
evaluated by estimating the remaining unbound DNA in each sample,
compared to the band measured for free DNA, taken to be 100% (Gel
Doc 2000 Image Analyser from BioRad).

2.6. In silico analysis of the promoter regions
Identification of putative iron boxes in the promoter region of dpsA

was performed using ClustalW (http://www.ebi.ac.uk/clustalw). The
DNA sequence containing 350-bp located upstream dpsA coding
sequence was aligned with the iron boxes identified in PisiB and PfurA

in Nostoc sp. PCC7120 [12,17] and with the E. coli consensus GAT-
AATGATAATCATTATC [18].

2.7. Cyclic selection procedure
The method was performed according to Valsangiacomo et al. [19],

with some modifications. Chromosomal DNA from the Nostoc sp.
strain PCC7120 isolated according to [20] was partially digested with
NheI, SpeI, and XbaI. DNA fragments of approximately 200–900 bp
were gel-purified using the GFX kit (Pharmacia). Two single-stranded
oligonucleotides (Table 1) with complementary sequences and a com-
patible protruding end in oligonucleotide 1 were used in order to build
an identical end in all DNA fragments (see Fig. 1). Oligonucleotide 1
was phosphorylated with T4 polynucleotide kinase (Takara) according
to manufacturer instructions. For the annealing, a reaction mixture
containing a total volume of 35 ll with 0.2 nmol of each oligonucleo-
tide was maintained at 80 �C for 5 min, followed by slow cooling down
to room temperature. Finally, the digested chromosomal DNA and the
linker sequence formed by the annealed oligonucleotides were mixed in
15 ll, containing 250 ng of chromosomal DNA fragments, 2 lg of oli-
gonucleotides and 2 U of T4-DNA ligase (Fermentas) in the buffer
provided by the DNA-ligase manufacturer. The resulting DNA frag-
ments were amplified by PCR using linker-specific primer C-3 (Table
1), designed to allow amplification. A single PCR primer was used in
each reaction because the complementary sequence was present in both
ends of the template DNA fragments. PCR products were purified
using the GFX kit (Pharmacia).

In order to isolate DNA fragments capable of binding to FurA, 10–
50 ng DNA of the purified PCR reaction were mixed in 20 ll final
volume of binding buffer [10] with 700 nM purified FurA. After incu-
bation of the reaction mixture for 30 min at room temperature, the
sample was electrophoresed in 7% polyacrylamide gels. The retarded
DNA fragments were isolated from the gel using the GFX kit (Phar-
macia) and a new cycle of PCR was performed. The amplified DNA
fragments were then subjected to five more rounds of FurA binding
taccg rnpB Reverse

http://www.kazusa.or.jp/cyano/anabaena/
http://www.kazusa.or.jp/cyano/anabaena/
http://www.ebi.ac.uk/clustalw
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Fig. 1. Scheme of the SELEX procedure linked to PCR.
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and PCR amplification. Presence of PfurA, PfurB, PfurC, PisiB, and PdpsA

in the starting pool of DNAs and in the DNA fragments recovered
after five selection cycles was directly assessed by PCR amplification
using primers 1–10 listed in Table 1.
3. Results

3.1. Identification of a dpsA homologue in Nostoc sp. PCC 7120

Nostoc sp. PCC7120 genome does not include any ORF

annotated as dpsA; however, alr3808, identified as a ‘‘nutri-
Fig. 2. Alignment of Alr3808 from Nostoc sp. PCC 7120 with Dps proteins f
residues are shadowed in black (identical residues) or grey (side chains belon
ent-stress induced DNA binding protein’’, has high identity

(68.8%) with Synechoccocus DpsA. The Alr3808 protein

showed a conserved region of about 50 residues in their central

region, characteristic of Dps proteins (Fig. 2). The presence of

several histidine residues in conserved positions suggested that

some of those amino acids could be involved in heme-binding

by apo-Dps.

3.2. Analysis of the dpsA promoter region

Previous analysis of the dpsA promoter from Synechococcus

sp. PCC7942 failed to reveal a Fur box sequence [3,21]. More

recently, it has been shown that FurA from Nostoc binds to a

series of A/T-rich sequences present in the promoters of furA

and isiB [17]. While the GAT(A/T)AT ‘‘unit’’ of the Fur-bind-

ing motif proposed for E. coli is highly conserved in most pro-

moters of Fur regulated genes from Pseudomonas sp. and B.

subtilis [22,23], the number of matches with the cyanobacterial

sequences recognised by FurA is lower. Alignment of the iden-

tified Fur binding sites with the canonical consensus from

E. coli showed that the exact positions of A or T nucleotides

is not critical [17]. Alignment of the dpsA promoter with the

FurA-protected regions in PfurA and PisiB, as well as with the

E. coli consensus, shows several A/T rich, potential Fur-boxes

highly homologous to the Fur-binding sites determined exper-

imentally (Fig. 3A).

It has been reported that the alternative sigma factor sigE is

involved in the switch of dpsA in Synechococcus sp. PCC7002

stationary phase gene expression [6]. Moreover, a potential

operator involved in dpsA regulation has been identified by

using different promoter constructs [3]. An A/T rich sequence

showing high homology with the region upstream this putative

repressor-operator is present in the dpsA promoter from Nos-

toc (Fig. 3), suggesting that in addition to sigE, FurA might act

as a repressor of dpsA in cyanobacteria.

3.3. FurA binds specifically to dpsA promoter

A 245-bp fragment from the promoter region of dpsA from

Nostoc sp. PCC7120, containing the putative iron-boxes was
rom several cyanobacteria and Escherichia coli. Conserved amino acid
ging to the same group).
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Fig. 3. Nucleotide sequence analysis of the upstream region of dpsA gene from Nostoc sp. PCC7120. (A) Alignment of the A–T rich regions from
PdpsA with the Fur-protected regions found in PfurA and PisiB and the canonical consensus from E. coli. (B) Promoter region of dpsA from Nostoc
showing the putative iron boxes, which are shown bold and underlined. The region in the promoter of dpsA from Synechococcus sp. PCC7942
showing high homology with the Nostoc sequence, in grey letter, is aligned with the Nostoc alr3808 promoter. Identical bases are indicated by boxes,
and the location of the repeat sequence studied in [3] is represented by arrows. The putative �10 box and the translation start site are underlined.
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Fig. 4. Gel mobility shift assays of the promoter region of alr3808 in
the presence of purified FurA. A 245-bp fragment containing the
putative iron-boxes was incubated with 500 nM FurA in the presence
of an equimolar amount of unrelated DNA and analyzed for reduced
mobility in a native gel. Binding of FurA to its own promoter was used
as positive control. Lane 1: furA promoter region. Lane 2: furA
promoter region in presence of FurA. Lane 3: alr3808 promoter
region. Lane 4: alr3808 promoter region in the presence of FurA.
Assays were performed in the presence of 100 lM MnCl2 and 1 mM
DTT. A fragment of exon IV from the human apoE gene was used as
non-specific competitor DNA.
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prepared by PCR and purified as described in the procedures

section. Electrophoretic mobility shift assays (EMSA) was per-

formed using purified FurA incubated with the amplified PdpsA

and a non-related competitor DNA. Fig. 4 shows that FurA

binds specifically to PdpsA.

3.4. Isolation of dpsA promoter from an enriched pool of Nostoc

DNA fragments by a modified SELEX procedure linked to

PCR

As part of an ongoing effort in our laboratory to identify

and characterize some FurA-regulated genes in Nostoc,

DNA fragments with potential FurA binding sites were iso-

lated from Nostoc chromosomal DNA by a SELEX-like pro-

cedure. DNA fragments present in an enriched chromosomal

DNA library (see Section 2), were incubated with purified

FurA. The resulting FurA-DNA complexes were enriched

exponentially using EMSA followed by purification of the re-

tarded FurA-DNA and further PCR. This procedure was per-

formed repeating the cycle five times (Fig. 1).

To identify whether PdpsA was among the DNA fragments

recognized by FurA, the FurA–DNA complexes were collected

after five cycles of this SELEX-like procedure in several inde-

pendent experiments. The selected DNA pool was used as a

template in a PCR reaction, in comparison with the starting

pool of DNA fragments. The promoter of the dpsA gene was

identified as one of the FurA targets, like the promoters of

other FurA-regulated genes, such as PisiB and PfurA, which
were also amplified by PCR from the retarded DNA fragments

after five cycles of enrichment. In contrast, the promoter

regions of other non-regulated genes that were clearly present
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Fig. 5. PCR analysis showing the presence of PfurA, PfurB, PfurC, PisiB,
and PdpsA in the starting pool of DNAs (left panel) and the recovery of
PfurA, PisiB, and PdpsA after five selection cycles (right).
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in the starting library, such as PfurB or PfurC, could not be

amplified after the selection cycles (Fig. 5).

3.5. dpsA is down-regulated in Nostoc mutants with increased

FurA expression

Previous analysis of the furA expression in wild-type cells in

comparison to the JAH3 mutant showed that the absence of

the antisense furA RNA resulted in a marked increase of the

FurA synthesis [12]. Since DfurA mutants in Nostoc sp.

PCC7120 could not be isolated [12], the JAH3 strain was a

valuable tool to investigate deregulation of Fur regulated

genes. To test whether the level of FurA affected transcription

and translation of dpsA, RT-PCR and Western analysis were

performed in the Nostoc WT and the JAH3 mutant. The Wes-

tern analysis showed a single, high molecular weight signal
A WT JAH3

B

DpsA

FurA

rnpB

dpsA

Fig. 6. (A) RT-PCR analysis of the dpsA transcript in Nostoc sp. PCC
7120 and the JAH3 strain. Cells were grown in BG11 in the presence of
ammonium (please, see Section 2) and harvested in the late exponential
phase. RT-PCR of rnpB was performed as internal control. (B)
Western blot analysis of DpsA expression. 25 lg of total protein from
WT and JAH3 strains were separated on 15% PAGE, transferred to
PVDF and analyzed using polyclonal antibodies anti-DpsA from S.
elongatus sp. PCC7942 (kind gift of Prof G.S. Bullerjahn). Lane 1:
Crude extract of wild-type Nostoc sp. PCC7120. Lane 2: Crude extract
of JAH3 mutant.
probably corresponding to a hexameric aggregate of DpsA,

as has been observed in Synechococcus sp. PCC7942 [1].

Fig. 6 shows that in the JAH3 mutant, transcription of dpsA

notably decreased, according to the amount of immunode-

tected DpsA that was around three times lower than in the

wild-type strain. Therefore, in vivo dpsA expression correlates

well with the expression of FurA.
4. Discussion

There is strong evidence supporting the link between Dps

proteins and iron metabolism in many prokaryotes. In

E. coli, the interaction of DNA with the negatively charged

surface of Dps is finely tuned by the intracellular concentration

of divalent cations [24]. Depending on the nutritional status of

the cells and the pressure of environmental conditions, Dps

proteins can act as ferritins and as a defense against oxidative

stress via either the ability in non-specific DNA binding or the

function in protection of DNA from Fenton mediated damage.

Dps homologue mrgA from B. subtilis is under negative con-

trol of the repressor PerR [8,9], a Fur homologue belonging

to the Fur family. DpsA of Synechococcus sp. PCC7942 is a

DNA-binding hemoprotein possessing a weak catalase activ-

ity, with no ferroxidase activities described [1]. There is no data

about the DpsA from Nostoc, but the high identity with the

protein from Synechococcus indicates that its characteristics

are very similar between each other.

While the dps homologue mrgA from B. subtilis is under neg-

ative control of the repressor PerR [8,9], transcription in Syne-

chococus is not sensitive to peroxide treatment [4]. This fact,

together with the low homology with Fur boxes of the opera-

tor region identified in Synechoccocus, suggests that dpsA may

be under the control of a divergent Fur-like repressor, in addi-

tion to the sigma switching control previously described [3,6].

In our opinion, the presence of Fur-binding sequences in PdpsA

from Synechococcus should also be considered since homology

of cyanobacterial iron-boxes with the canonical consensus de-

scribed in E. coli is relatively low.

Systematic Evolution of Ligands by Exponential Enrich-

ment (SELEX) is a powerful tool for isolation of target nucleic

acid sequences when a purified sequence specific binding pro-

tein is available. To obtain relevant DNA fragments, we used

a SELEX-like procedure followed by PCR in order to isolate

FurA-binding fragments. As a result, the fragment with dpsA

upstream sequences was found among others, after five cycles

of selection. This was a very good indication of dpsA as a

FurA-regulated gene, which was reinforced by our in vivo re-

sults (Fig. 6).

In good concordance with the results observed in Synecho-

coccus, transcription of dpsA in Nostoc does not increase after

peroxide or paraquat treatment (RT-PCR analysis, data not

shown). The crosstalk between iron metabolism, oxidative

stress, and redox regulation is even tighter in photosynthetic

organisms. However, it does not mean that synthesis of DpsA

in cyanobacteria should respond to the different stresses in

identical fashion than the protein from heterotrophic bacteria.

Cyanobacteria present a battery of iron-responsive genes, such

as idiA, idiB, isiA, or isiB, which are also induced by oxidative

stress. Some of those genes are directly involved in the protec-

tion of the photosynthetic machinery against photo-oxidative

stress. The protective function exerted by DpsA in E. coli
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and other heterotrophic bacteria could be carried out by a dif-

ferent mechanism in cyanobacteria.

Michel et al. [7] found already high levels of dpsA transcrip-

tion in iron replete conditions. The level of dpsA mRNA de-

creases in mild iron starvation, and it rises slightly under

severe iron deficiency. On the other hand, Sen et al. [3] de-

scribed that dpsA was essential for growth under iron-deficient

conditions and dpsA mRNA levels were 12-fold increased

when iron was limiting, more in accordance with a Fur dere-

pression. These results were obtained with cells in the station-

ary growth phase; however, the Northern blot analysis

performed by Michel et al. [7], was carried out using cells

apparently in exponential growth phase, where dpsA transcrip-

tion is much lower [4].

It is noticeable that the raise of dpsA mRNA under iron lim-

itation is not accompanied by increasing protein concentrations

[7]. Since the ability of the Dps protein complex to bind DNA is

regulated by the presence of bound metal ions [24], these results

could be explained assuming that in the diverse conditions

tested, the distribution of the total Dps protein between the sol-

uble pool and the DNA-bound fraction could be different,

being this later hardly detected by antisera [25].

In our case, the role of DpsA as an iron-storage protein

would be in good concordance with the lower amount of DpsA

in the FurA overexpressing strain whose endogenous content

of iron is lower than in the wild-type Nostoc but still enough

to prevent starvation (our unpublished results).

In this work we show for the first time that a dps homologue

gene is Fur-regulated. Evidence includes (a) EMSA showed

that FurA bound specifically to the dpsA promoter region,

(b) PdpsA was recovered after five cycles of SELEX, (c) tran-

scription and translation of dpsA were down-regulated in a

FurA overexpressing mutant, and (d) several putative iron

boxes were identified using cyanobacterial consensus. All these

data indicate that Nostoc FurA modulates dpsA expression.
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