33 research outputs found

    Redescription of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 (Ciliophora, Oligohymenophorea) from a Hot Spring in Iceland with Identification Key for Dexiotricha species

    Get PDF
    Publisher's version (útgefin grein)We isolated an encysted ciliate from a geothermal field in Iceland. The morphological features of this isolate fit the descriptions of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 very well. These comprise body shape and size in vivo, the number of somatic kineties, and the positions of macronucleus and contractile vacuole. Using state-of-the-art taxonomic methods, the species is redescribed, including phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) gene as molecular marker. In the phylogenetic analyses, D. colpidiopsis clusters with the three available SSU rRNA gene sequences of congeners, suggesting a monophyly of the genus Dexiotricha. Its closest relative in phylogenetic analyses is D. elliptica, which also shows a high morphological similarity. This is the first record of a Dexiotricha species from a hot spring, indicating a wide temperature tolerance of this species at least in the encysted state. The new findings on D. colpidiopsis are included in a briefly revision of the scuticociliate genus Dexiotricha and an identification key to the species.This study was funded by grants awarded to TS by Europlanet 2020 (project 15-EPN-006) and by the Bundesministerium für Bildung und Forschung (BMBF)/Deutsches Zentrum für Luft- und Raumfahrt (DLR, grant 50WB1737). Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208. Zhishuai Qu received funds from the China Scholarship Council (CSC). We thank Fengchao Li for his support with species identification and Natasa Desnica (Matis) for the trace metal analysis.Peer Reviewe

    Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Microbiology 13 (2013): 150, doi:10.1186/1471-2180-13-150.Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).This work was funded by NSF grants OCE-0849578 and OCE- 1061774 to VE and support from Carl Zeiss fellowship to AS and from the Deutsche Forschungsgemeinschaft (grants STO414/3-2 and STO414/7-1) to TS

    Monitoring of biofilm development and physico-chemical changes of floating microplastics at the air-water interface

    Full text link
    Microplastics in the aquatic environment serve as a habitat for microbial life, on which they can form biofilms. However, how the development of the biofilm alters the properties of floating microplastics that are at the air-water interface and, therefore, not fully submerged, is not well understood. In this context, an aging experiment was conducted to monitor biofilm formation and changes in physico-chemical properties of low-density polyethylene (floating) microplastics over time. The growth of the biofilm followed the typical bacterial/biofilm growth phases and reached about 30% of the total mass of the microplastics, while the concentration of extracellular polymeric substances within the biofilm remained stable. Presence of chlorophyll a and urease activity indicated presence of photosynthetic microrganisms within the biofilm which was also confirmed by analysis of the biofilm composition. Chemical characterization by FTIR showed the formation of additional functional groups attributed to the formed biofilm, and SEM imaging showed cracks on the surface of the aged microplastics, indicating incipient degradation of the polyethylene. Moreover, the adsorption capacity of the aged particles for metals (Pb(II)) was 52% higher compared to the pristine ones. Aging increased the density and size of the particleshowever, it did not lead to the submersion of the aged particles even after 12 weeks of aging, suggesting that additional environmental processes may influence the transport of microplastics from the air-water interface into the water body

    Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns

    No full text
    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (> 10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures.CONICYT 1140543 APPEAR program Austrian Science Fund (FWF) BACK-ALP P24442-B2

    A fundamental difference between macrobiota and microbial eukaryotes: Protistan plankton has a species maximum in the freshwater‐marine transition zone of the Baltic Sea

    No full text
    Remane's Artenminimum at the horohalinicum is a fundamental concept in ecology to describe and explain the distribution of organisms along salinity gradients. However, a recent metadata analysis challenged this concept for protists, proposing a species maximum in brackish waters. Due to data bias, this literature‐based investigation was highly discussed. Reliable data verifying or rejecting the species minimum for protists in brackish waters were critically lacking. Here, we sampled a pronounced salinity gradient along a west‐east transect in the Baltic Sea and analyzed protistan plankton communities using high‐throughput eDNA metabarcoding. A strong salinity barrier at the upper limit of the horohalinicum and 10 psu appeared to select for significant shifts in protistan community structures, with dinoflagellates being dominant at lower salinities, and dictyochophytes and diatoms, being keyplayers at higher salinities. Also in vertical water column gradients in deeper basins (Kiel Bight, Arkona and Bornholm Basin) appeared salinity as significant environmental determinant influencing alpha‐ and beta‐diversity patterns. Importantly, alpha‐diversity indices revealed species maxima in brackish waters, i.e., indeed contrasting Remane's Artenminimum concept. Statistical analyses confirmed salinity as the major driving force for protistan community structuring with high significance. This suggests that macrobiota and microbial eukaryotes follow fundamentally different rules regarding diversity patterns in the transition zone from freshwater to marine waters

    Redescription of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 (Ciliophora, Oligohymenophorea) from a Hot Spring in Iceland with Identification Key for Dexiotricha species

    No full text
    We isolated an encysted ciliate from a geothermal field in Iceland. The morphological features of this isolate fit the descriptions of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 very well. These comprise body shape and size in vivo, the number of somatic kineties, and the positions of macronucleus and contractile vacuole. Using state-of-the-art taxonomic methods, the species is redescribed, including phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) gene as molecular marker. In the phylogenetic analyses, D. colpidiopsis clusters with the three available SSU rRNA gene sequences of congeners, suggesting a monophyly of the genus Dexiotricha. Its closest relative in phylogenetic analyses is D. elliptica, which also shows a high morphological similarity. This is the first record of a Dexiotricha species from a hot spring, indicating a wide temperature tolerance of this species at least in the encysted state. The new findings on D. colpidiopsis are included in a briefly revision of the scuticociliate genus Dexiotricha and an identification key to the species. Słowa kluczowe: Dexiotricha, hot spring, morphology, phylogeny, SSU rRNA gen

    Hemoglobinas y óxido nítrico en plantas

    No full text
    163 p.- Figs.Peer reviewe
    corecore