140 research outputs found

    Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism

    Get PDF
    The brain is responsible for maintaining whole-body energy homeostasis by changing energy input and availability. The hypothalamus and dorsal vagal complex (DVC) are the primary sites of metabolic control, able to sense both hormones and nutrients and adapt metabolism accordingly. The mitochondria respond to the level of nutrient availability by fusion or fission to maintain energy homeostasis; however, these processes can be disrupted by metabolic diseases including obesity and type II diabetes (T2D). Mitochondrial dynamics are crucial in the development and maintenance of obesity and T2D, playing a role in the control of glucose homeostasis and whole-body metabolism across neurons and glia in the hypothalamus and DVC

    Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity

    Get PDF
    Impaired glucose homeostasis and energy balance are integral to the pathophysiology of diabetes and obesity. Here we show that administration of a glycine transporter 1 (GlyT1) inhibitor, or molecular GlyT1 knockdown, in the dorsal vagal complex (DVC) suppresses glucose production, increases glucose tolerance and reduces food intake and body weight gain in healthy, obese and diabetic rats. These findings provide proof of concept that GlyT1 inhibition in the brain improves glucose and energy homeostasis. Considering the clinical safety and efficacy of GlyT1 inhibitors in raising glycine levels in clinical trials for schizophrenia, we propose that GlyT1 inhibitors have the potential to be repurposed as a treatment of both obesity and diabetes

    Study protocol: improving cognition in people with progressive multiple sclerosis: a multi-arm, randomized, blinded, sham-controlled trial of cognitive rehabilitation and aerobic exercise (COGEx)

    Get PDF
    Background: Cognitive dysfunction affects up to 70% of people with progressive MS (PMS). It can exert a deleterious effect on activities of daily living, employment and relationships. Preliminary evidence suggests that performance can improve with cognitive rehabilitation (CR) and aerobic exercise (EX), but existing data are predominantly from people with relapsing-remitting MS without cognitive impairment. There is therefore a need to investigate whether this is also the case in people with progressive forms of the disease who have objectively identified cognitive impairment. It is hypothesized that CR and EX are effective treatments for people with PMS who have cognitive impairment, in particular processing speed (PS) deficits, and that a combination of these two treatments is more effective than each individual treatment given alone. We further hypothesize that improvements in PS will be associated with modifications of functional and/or structural plasticity within specific brain networks/regions involved in PS measured with advanced MRI techniques. Methods: This study is a multisite, randomized, double-blinded, sham controlled clinical trial of CR and aerobic exercise. Three hundred and sixty subjects from 11 sites will be randomly assigned into one of four groups: CR plus aerobic exercise; CR plus sham exercise; CR sham plus aerobic exercise and CR sham plus sham exercise. Subjects will participate in the assigned treatments for 12 weeks, twice a week. All subjects will have a cognitive and physical assessment at baseline, 12 weeks and 24 weeks. In an embedded sub-study, approximately 30% of subjects will undergo structural and functional MRI to investigate the neural mechanisms underlying the behavioral response. The primary outcome is the Symbol Digit Modalities Test (SDMT) measuring PS. Secondary outcome measures include: indices of verbal and non-verbal memory, depression, walking speed and a dual cognitive-motor task and MRI. Discussion: The study is being undertaken in 6 countries (11 centres) in multiple languages (English, Italian, Danish, Dutch); with testing material validated and standardized in these languages. The rationale for this approach is to obtain a robustly powered sample size and to demonstrate that these two interventions can be given effectively in multiple countries and in different languages. Trial registration: The trial was registered on September 20th 2018 at www.clinicaltrials.gov having identifier NCT03679468. Registration was performed before recruitment was initiated

    Cardiorespiratory fitness and free-living physical activity are not associated with cognition in persons with progressive multiple sclerosis: Baseline analyses from the CogEx study

    Get PDF
    Background: Aerobic exercise training (physical activity for improving cardiorespiratory fitness) represents a promising approach for managing cognitive impairment in multiple sclerosis (MS). However, there is limited evidence that levels of physical activity and fitness are associated with cognition in progressive MS. Objective: We examined associations among cardiorespiratory fitness, moderate-to-vigorous physical activity (MVPA), and cognitive performance in a large, international progressive MS sample. Methods: Two hundred forty European and North American persons with progressive MS underwent cardiorespiratory fitness measurement on a recumbent stepper, wore an ActiGraph GT3X + accelerometer for 7 days for measuring MVPA, and underwent the Brief International Cognitive Assessment in MS. Results: Cardiorespiratory fitness was not significantly correlated with Symbol Digit Modalities Test (SDMT; r = −0.01; r = −0.04), California Verbal Learning Test-II (CVLT-II; r = 0.05; r = 0.05), or Brief Visuospatial Memory Test–Revised (BVMT-R; r = −0.14; r = −0.14) z-scores controlling for age, sex, and education. MVPA and SDMT ( r = 0.05), CVLT-II ( r = −0.07), and BVMT-R ( r = 0.01) z-scores were not significantly correlated. Conclusion: Cardiorespiratory fitness and MVPA were not associated with cognition in this large progressive MS sample, yet these outcomes represent critical manipulation checks for documenting the success of the CogEx trial. This highlights the importance of examining other exercise-related mechanisms-of-action for improving cognition in progressive MS. </jats:sec

    How environmental managers perceive and approach the issue of invasive species: the case of Japanese knotweed s.l. (Rhône River, France)

    Get PDF
    We would like to thank Springer for publishing our article. The final publication is available at http://link.springer.com/article/10.1007%2Fs10530-015-0969-1International audienceStudying the perceptions of stakeholders or interested parties is a good way to better understand behaviours and decisions. This is especially true for the management of invasive species such as Japanese knotweed s.l. This plant has spread widely in the Rhône basin, where significant financial resources have been devoted to its management. However, no control technique is recognized as being particularly effective. Many uncertainties remain and many documents have been produced by environmental managers to disseminate current knowledge about the plant and its management. This article aims at characterizing the perceptions that environmental managers have of Japanese knotweed s.l. A discourse analysis was conducted on the printed documentation produced about Japanese knotweed s.l. by environmental managers working along the Rhône River (France). The corpus was both qualitatively and quantitatively analysed. The results indicated a diversity of perceptions depending on the type of environmental managers involved, as well as the geographicalareas and scales on which they acted. Whereas some focused on general knowledge relating to the origins and strategies of colonization, others emphasized the diversity and efficacy of the prospective eradication techniques. There is a real interest in implementing targeted actions to meet local issues. To do so, however, these issues must be better defined. This is a challenging task, as it must involve all types of stakeholders

    The relationship between maternal education and mortality among women giving birth in health care institutions: Analysis of the cross sectional WHO Global Survey on Maternal and Perinatal Health

    Get PDF
    Background: Approximately one-third of a million women die each year from pregnancy-related conditions. Three-quarters of these deaths are considered avoidable. Millennium Development Goal five calls for a reduction in maternal mortality and the establishment of universal access to high quality reproductive health care. There is evidence of a relationship between lower levels of maternal education and higher maternal mortality. This study examines the relationship between maternal education and maternal mortality among women giving birth in health care institutions and investigates the association of maternal age, marital status, parity, institutional capacity and state-level investment in health care with these relationships.Methods: Cross-sectional information was collected on 287,035 inpatients giving birth in 373 health care institutions in 24 countries in Africa, Asia and Latin America, between 2004-2005 (in Africa and Latin America) and 2007-2008 (in Asia) as part of the WHO Global Survey on Maternal and Perinatal Health. Analyses investigated associations between indicators measured at the individual, institutional and country level and maternal mortality during the intrapartum period: from admission to, until discharge from, the institution where women gave birth. There were 363 maternal deaths.Results: In the adjusted models, women with no education had 2.7 times and those with between one and six years of education had twice the risk of maternal mortality of women with more than 12 years of education. Institutional capacity was not associated with maternal mortality in the adjusted model. Those not married or cohabiting had almost twice the risk of death of those who were. There was a significantly higher risk of death among those aged over 35 (compared with those aged between 20 and 25 years), those with higher numbers of previous births and lower levels of state investment in health care. There were also additional effects relating to country of residence which were not explained in the model.Conclusions: Lower levels of maternal education were associated with higher maternal mortality even amongst women able to access facilities providing intrapartum care. More attention should be given to the wider social determinants of health when devising strategies to reduce maternal mortality and to achieve the increasingly elusive MDG for maternal mortality

    Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately.</p> <p>Methods</p> <p>In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray.</p> <p>Results</p> <p>We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups).</p> <p>Conclusion</p> <p>We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature.</p

    Functional kinomics establishes a critical node of volume-sensitive cation-Cl<sup>-</sup> cotransporter regulation in the mammalian brain

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/33424Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.We thank the excellent technical support of the MRC-Protein Phosphorylation and Ubiquitylation Unit (PPU) DNA Sequencing Service (coordinated by Nicholas Helps), the MRC-PPU tissue culture team (coordinated by Laura Fin), the Division of Signal Transduction Therapy (DSTT) antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We are grateful to the MRC PPU Proteomics facility (coordinated by David Campbell, Robert Gourlay and Joby Varghese). We thank for support the Medical Research Council (MC_UU_12016/2; DRA) and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer; DRA). We thank Thomas J. Jentsch (Max-Delbrück-Centrum für Molekulare Medizin) for providing the KCC1/3 double KO mice and his reading of this manuscript. We thank Nathaniel Grey (Harvard) for providing the kinase inhibitor library used in this study (NIH LINCS Program grant U54HL127365). This work was also supported by a Harvard-MIT Neuroscience Grant (to KTK/SJE)

    Gamma probes and their use in tumor detection in colorectal cancer

    Get PDF
    The purpose of this article is to summarize the role of gamma probes in intraoperative tumor detection in patients with colorectal cancer (CRC), as well as provide basic information about the physical and practical characteristics of the gamma probes, and the radiopharmaceuticals used in gamma probe tumor detection. In a significant portion of these studies, radiolabeled monoclonal antibodies (Mabs), particularly 125I labeled B72.3 Mab that binds to the TAG-72 antigen, have been used to target tumor. Studies have reported that intraoperative gamma probe radioimmunodetection helps surgeons to localize primary tumor, clearly delineate its resection margins and provide immediate intraoperative staging. Studies also have emphasized the value of intraoperative gamma probe radioimmunodetection in defining the extent of tumor recurrence and finding sub-clinical occult tumors which would assure the surgeons that they have completely removed the tumor burden. However, intraoperative gamma probe radioimmunodetection has not been widely adapted among surgeons because of some constraints associated with this technique. The main difficulty with this technique is the long period of waiting time between Mab injection and surgery. The technique is also laborious and costly. In recent years, Fluorine-18-2-fluoro-2-deoxy-D-glucose (18F-FDG) use in gamma probe tumor detection surgery has renewed interest among surgeons. Preliminary studies during surgery have demonstrated that use of FDG in gamma probe tumor detection during surgery is feasible and useful
    corecore