80 research outputs found
Perfect sorting by reversals
In computational biology, gene order data is often modelled as signed permutations. A classical problem in genome comparison is to detect conserved segments in a permutation, that is, genes that are co-localised in several species, indicating that they remained grouped during evolution. A second largely studied problem related to gene order data is to compute a minimum scenario of reversals that transforms a signed permutation into another. Several studies began to mix the two problems, and it was observed that their results are not always compatible : often parsimonious scenarios of reversals break conserved segments. In a recent study, Bérard, Bergeron and Chauve stated as an open question whether it was possible to design a polynomial time algorithm to decide if there exists a minimum scenario of reversals that transforms a genome into another while keeping the clusters of co-localised genes together. In this paper, we give this polynomial algorithm, and thus generalise the theoretical result of the aforementioned paper
Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice.
Gut dysbiosis due to the adverse effects of antibiotics affects outcomes of lung infection. Previous murine models relied on significant depletion of both gut and lung microbiota, rendering the analysis of immune gut-lung cross-talk difficult. Here, we study the effects of antibiotic-induced gut dysbiosis without lung dysbiosis on lung immunity and the consequences on acute P. aeruginosa lung infection.
C57BL6 mice received 7 days oral vancomycin-colistin, followed by normal regimen or fecal microbial transplant or Fms-related tyrosine kinase 3 ligand (Flt3-Ligand) over 2 days, and then intra-nasal P. aeruginosa strain PAO1. Gut and lung microbiota were studied by next-generation sequencing, and lung infection outcomes were studied at 24 h. Effects of vancomycin-colistin on underlying immunity and bone marrow progenitors were studied in uninfected mice by flow cytometry in the lung, spleen, and bone marrow.
Vancomycin-colistin administration induces widespread cellular immunosuppression in both the lung and spleen, decreases circulating hematopoietic cytokine Flt3-Ligand, and depresses dendritic cell bone marrow progenitors leading to worsening of P. aeruginosa lung infection outcomes (bacterial loads, lung injury, and survival). Reversal of these effects by fecal microbial transplant shows that these alterations are related to gut dysbiosis. Recombinant Flt3-Ligand reverses the effects of antibiotics on subsequent lung infection.
These results show that gut dysbiosis strongly impairs monocyte/dendritic progenitors and lung immunity, worsening outcomes of P. aeruginosa lung infection. Treatment with a fecal microbial transplant or immune stimulation by Flt3-Ligand both restore lung cellular responses to and outcomes of P. aeruginosa following antibiotic-induced gut dysbiosis
Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations
Muddled Boundaries of Digital Shrines
International audienceBased on an online ethnography study of 274 YouTube videos posted during the Virginia Tech or the Newtown massacres, this article discusses how users resort to participatory media during such mediatized events to create a digital spontaneous shrine. The assemblage of this sanctuary on a website hosting billions of user-generated contents is made possible by means of folksonomy and website architecture, and a two-fold social dynamic based on participatory commitment and the institutionalization of a collective entity. Unlike “physical” spontaneous shrines erected in public spaces, these digital shrines connect the bereaved with provocative or outrageous contributions, notably tributes from school shooting fans using participatory media to commemorate the killer’s memory. This side effect, generated by the technical properties of the platform, compromises the tranquility of the memorial and muddles the boundaries and the contents of such sanctuaries
VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle.
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis
Dynamic transcriptomic analysis reveals suppression of PGC1α/ERRα drives perturbed myogenesis in facioscapulohumeral muscular dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to epigenetic de-repression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD are poorly understood. We performed high-throughput morphological analysis describing FSHD and control myogenesis, revealing altered myogenic differentiation results in hypotrophic myotubes. Employing polynomial models and an empirical Bayes approach, we established eight critical time-points during which human healthy and FSHD myogenesis differ. RNA-sequencing at these eight nodal time-points in triplicate, provided temporal depth for a multivariate regression analysis, allowing assessment of interaction between progression of differentiation and FSHD disease status. Importantly, the unique size and structure of our data permitted identification of many novel FSHD pathomechanisms undetectable by previous approaches. Selected for further analysis here, were pathways that control mitochondria: of interest considering known alterations in mitochondrial structure and function in FSHD muscle, and sensitivity of FSHD cells to oxidative stress. Notably, we identified suppression of mitochondrial biogenesis, in particular via PGC1α, the co-factor and activator of ERRα. PGC1α knock-down caused hypotrophic myotubes to form from healthy myoblasts. Known ERRα agonists and safe food supplements Biochanin A, Genistein or Daidzein, each rescued the hypotrophic FSHD myotube phenotype. Together our work describes transcriptomic changes in high resolution that occur during myogenesis in FSHD ex-vivo, identifying suppression of the PGC1α-ERRα axis leading to perturbed myogenic differentiation, which can effectively be rescued by readily-available food supplements
Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy
It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory
An in vivo cis-Regulatory Screen at the Type 2 Diabetes Associated TCF7L2 Locus Identifies Multiple Tissue-Specific Enhancers
Genome-wide association studies (GWAS) have repeatedly shown an association between non-coding variants in the TCF7L2 locus and risk for type 2 diabetes (T2D), implicating a role for cis-regulatory variation within this locus in disease etiology. Supporting this hypothesis, we previously localized complex regulatory activity to the TCF7L2 T2D-associated interval using an in vivo bacterial artificial chromosome (BAC) enhancer-trapping reporter strategy. To follow-up on this broad initial survey of the TCF7L2 regulatory landscape, we performed a fine-mapping enhancer scan using in vivo mouse transgenic reporter assays. We functionally interrogated approximately 50% of the sequences within the T2D-associated interval, utilizing sequence conservation within this 92-kb interval to determine the regulatory potential of all evolutionary conserved sequences that exhibited conservation to the non-eutherian mammal opossum. Included in this study was a detailed functional interrogation of sequences spanning both protective and risk alleles of single nucleotide polymorphism (SNP) rs7903146, which has exhibited allele-specific enhancer function in pancreatic beta cells. Using these assays, we identified nine segments regulating various aspects of the TCF7L2 expression profile and that constitute nearly 70% of the sequences tested. These results highlight the regulatory complexity of this interval and support the notion that a TCF7L2 cis-regulatory disruption leads to T2D predisposition
Diabetic β-Cells Can Achieve Self-Protection against Oxidative Stress through an Adaptive Up-Regulation of Their Antioxidant Defenses
Background Oxidative stress (OS), through excessive and/or chronic reactive oxygen species (ROS), is a mediator of diabetes-related damages in various tissues including pancreatic β-cells. Here, we have evaluated islet OS status and β-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. Methodology/Principal Findings Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1) gene expression was analyzed by qRT-PCR; 2) insulin secretion rate was measured; 3) ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4) antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H2O2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels) of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. Conclusions The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction
- …